Diabetes and gut microbiome
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39839113
PubMed Central
PMC11747157
DOI
10.3389/fmicb.2024.1451054
Knihovny.cz E-zdroje
- Klíčová slova
- T1DM, T2DM, antidiabetic drugs, diabetes mellitus, gut microbiota,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Diabetes mellitus represents a significant global health problem. The number of people suffering from this metabolic disease is constantly rising and although the incidence is heterogeneous depending on region, country, economic situation, lifestyle, diet and level of medical care, it is increasing worldwide, especially among youths and children, mainly due to lifestyle and environmental changes. The pathogenesis of the two most common subtypes of diabetes mellitus, type 1 (T1DM) and type 2 (T2DM), is substantially different, so each form is characterized by a different causation, etiology, pathophysiology, presentation, and treatment. Research in recent decades increasingly indicates the potential role of the gut microbiome in the initiation, development, and progression of this disease. Intestinal microbes and their fermentation products have an important impact on host metabolism, immune system, nutrient digestion and absorption, gut barrier integrity and protection against pathogens. This review summarizes the current evidence on the changes in gut microbial populations in both types of diabetes mellitus. Attention is focused on changes in the abundance of specific bacterial groups at different taxonomic levels in humans, and microbiome shift is also assessed in relation to geographic location, age, diet and antidiabetic drug. The causal relationship between gut bacteria and diabetes is still unclear, and future studies applying new methodological approaches to a broader range of microorganisms inhabiting the digestive tract are urgently needed. This would not only provide a better understanding of the role of the gut microbiome in this metabolic disease, but also the use of beneficial bacterial species in the form of probiotics for the treatment of diabetes.
Department of Internal Medicine 2nd Faculty of Medicine Charles University Prague Czechia
Department of Veterinary Medicine University of Sassari Sassari Italy
Institute for Clinical and Experimental Medicine Diabetes Centre Prague Czechia
Laboratory of Anaerobic Microbiology Institute of Animal Physiology and Genetics CAS Prague Czechia
Zobrazit více v PubMed
Ahola A. J., Harjutsalo V., Forsblom C., Freese R., Mäkimattila S., Groop P.-H. (2017). The self-reported use of probiotics is associated with better Glycaemic control and lower odds of metabolic syndrome and its components in type 1 diabetes. J. Probiotics Health 5:4. doi: 10.4172/2329-8901.1000188 DOI
Alkanani A. K., Hara N., Gottlieb P. A., Ir D., Robertson C. E., Wagner B. D., et al. . (2015). Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes. Diabetes 64, 3510–3520. doi: 10.2337/DB14-1847 PubMed DOI PMC
Allen-Vercoe E., Daigneault M., White A., Panaccione R., Duncan S. H., Flint H. J., et al. . (2012). Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. 1976. Anaerobe 18, 523–529. doi: 10.1016/J.ANAEROBE.2012.09.002 PubMed DOI
Almeida A., Mitchell A. L., Boland M., Forster S. C., Gloor G. B., Tarkowska A., et al. . (2019). A new genomic blueprint of the human gut microbiota. Nature 568, 499–504. doi: 10.1038/s41586-019-0965-1 PubMed DOI PMC
American Society for Microbiology (2011). The rare biosphere. The rare biosphere: This report is based on a colloquium convened by the American Academy of microbiology on April 27–29, 2009 in San Francisco, CA. doi: 10.1128/AAMCOL.27APR.2009 PubMed DOI
Arboleya S., Watkins C., Stanton C., Ross R. P. (2016). Gut bifidobacteria populations in human health and aging. Front. Microbiol. 7:212275. doi: 10.3389/FMICB.2016.01204/BIBTEX PubMed DOI PMC
Arneth B., Arneth R., Shams M. (2019). Metabolomics of type 1 and type 2 diabetes. Int. J. Mol. Sci. 20:2467. doi: 10.3390/IJMS20102467 PubMed DOI PMC
Aron-Wisnewsky J., Clement K., Nieuwdorp M. (2019). Fecal microbiota transplantation: a future therapeutic option for obesity / diabetes? Curr. Diab. Rep. 19, 1–9. doi: 10.1007/s11892-019-1180-z PubMed DOI
Bai J., Wan Z., Zhang Y., Wang T., Xue Y., Peng Q. (2022). Composition and diversity of gut microbiota in diabetic retinopathy. Front. Microbiol. 13:3267. doi: 10.3389/FMICB.2022.926926 PubMed DOI PMC
Bajinka O., Tan Y., Abdelhalim K. A., Özdemir G., Qiu X. (2020). Extrinsic factors influencing gut microbes, the immediate consequences and restoring eubiosis. AMB Express 10, 1–11. doi: 10.1186/S13568-020-01066-8/TABLES/1 PubMed DOI PMC
Banos S., Lentendu G., Kopf A., Wubet T., Glöckner F. O., Reich M. (2018). A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiol. 18, 1–16. doi: 10.1186/s12866-018-1331-4 PubMed DOI PMC
Beltrand J., Busiah K., Vaivre-Douret L., Fauret A. L., Berdugo M., Cavé H., et al. . (2020). Neonatal Diabetes Mellitus. Front. Pediatr. 8:540718. doi: 10.3389/FPED.2020.540718 PubMed DOI PMC
Bharti R., Grimm D. G. (2021). Current challenges and best-practice protocols for microbiome analysis. Brief. Bioinform. 22, 178–193. doi: 10.1093/bib/bbz155 PubMed DOI PMC
Bhute S. S., Ghaskadbi S. S., Shouche Y. S. (2017a). “Rare biosphere in human gut: a less explored component of human gut microbiota and its association with human health” in Mining of microbial wealth and metagenomics. Eds. Kalia, V., Shouche, Y., Purohit, H., Rahi, P. (Singapore: Springer; ), 133–142.
Bhute S. S., Suryavanshi M. V., Joshi S. M., Yajnik C. S., Shouche Y. S., Ghaskadbi S. S. (2017b). Gut microbial diversity assessment of Indian type-2-diabetics reveals alterations in eubacteria, archaea, and eukaryotes. Front. Microbiol. 8, 1–15. doi: 10.3389/fmicb.2017.00214 PubMed DOI PMC
Borrel G., Brugère J. F., Gribaldo S., Schmitz R. A., Moissl-Eichinger C. (2020). The host-associated archaeome. Nat. Rev. Microbiol. 18, 622–636. doi: 10.1038/s41579-020-0407-y PubMed DOI
Brown C. T., Davis-Richardson A. G., Giongo A., Gano K. A., Crabb D. B., Mukherjee N., et al. . (2011). Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6, 1–9. doi: 10.1371/journal.pone.0025792 PubMed DOI PMC
Browne H. P., Forster S. C., Anonye B. O., Kumar N., Neville B. A., Stares M. D., et al. . (2016). Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546. doi: 10.1038/nature17645 PubMed DOI PMC
Buchanan T. A., Xiang A. H. (2005). Gestational diabetes mellitus. J. Clin. Invest. 115, 485–491. doi: 10.1172/JCI24531 PubMed DOI PMC
Bukin Y. S., Galachyants Y. P., Morozov I. V., Bukin S. V., Zakharenko A. S., Zemskaya T. I. (2019). The effect of 16s rRNA region choice on bacterial community metabarcoding results. Sci. Data 6, 1–14. doi: 10.1038/sdata.2019.7 PubMed DOI PMC
Candela M., Biagi E., Soverini M., Consolandi C., Quercia S., Severgnini M., et al. . (2016). Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-pi 2 diet. Br. J. Nutr. 116, 80–93. doi: 10.1017/S0007114516001045 PubMed DOI PMC
Cani P. D., Neyrinck A. M., Fava F., Knauf C., Burcelin R. G., Tuohy K. M., et al. . (2007). Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50, 2374–2383. doi: 10.1007/S00125-007-0791-0/FIGURES/7 PubMed DOI
Carlsson S. (2019). Etiology and pathogenesis of latent autoimmune diabetes in adults (LADA) compared to type 2 diabetes. Front. Physiol. 10:320. doi: 10.3389/FPHYS.2019.00320 PubMed DOI PMC
Cekanaviciute E., Yoo B. B., Runia T. F., Debelius J. W., Singh S., Nelson C. A., et al. . (2017). Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl. Acad. Sci. USA 114, 10713–10718. doi: 10.1073/PNAS.1711235114 PubMed DOI PMC
Chang S. C., Shen M. H., Liu C. Y., Pu C. M., Hu J. M., Huang C. J. (2020). A gut butyrate-producing bacterium Butyricicoccus pullicaecorum regulates short-chain fatty acid transporter and receptor to reduce the progression of 1,2-dimethylhydrazine-associated colorectal cancer. Oncol. Lett. 20:327. doi: 10.3892/OL.2020.12190 PubMed DOI PMC
Charlton M., Nair K. S. (1998). Protein metabolism in insulin-dependent diabetes mellitus. J. Nutr. 128, 323S–327S. doi: 10.1093/JN/128.2.323S PubMed DOI
Chen Q., Ma X., Li C., Shen Y., Zhu W., Zhang Y., et al. . (2021). Enteric Phageome alterations in patients with type 2 diabetes. Front. Cell. Infect. Microbiol. 10, 1–15. doi: 10.3389/fcimb.2020.575084 PubMed DOI PMC
Chia L. W., Mank M., Blijenberg B., Aalvink S., Bongers R. S., Stahl B., et al. . (2020). Bacteroides thetaiotaomicron fosters the growth of butyrate-producing Anaerostipes caccae in the presence of lactose and Total human Milk carbohydrates. Microorganisms 8, 1–13. doi: 10.3390/MICROORGANISMS8101513 PubMed DOI PMC
Choi S. I., Kim N., Nam R. H., Jang J. Y., Kim E. H., Ha S., et al. . (2023). The protective effect of Roseburia faecis against repeated water avoidance stress-induced irritable bowel syndrome in a Wister rat model. J. Cancer Prev. 28:93. doi: 10.15430/JCP.2023.28.3.93 PubMed DOI PMC
Cinek O., Kramna L., Mazankova K., Odeh R., Alassaf A., Ibekwe M. A. U., et al. . (2018). The bacteriome at the onset of type 1 diabetes: a study from four geographically distant African and Asian countries. Diabetes Res. Clin. Pract. 144, 51–62. doi: 10.1016/J.DIABRES.2018.08.010 PubMed DOI
Cinek O., Kramna L., Odeh R., Alassaf A., Ibekwe M. A. U., Ahmadov G., et al. . (2021). Eukaryotic viruses in the fecal virome at the onset of type 1 diabetes: a study from four geographically distant African and Asian countries. Pediatr. Diabetes 22, 558–566. doi: 10.1111/pedi.13207 PubMed DOI
Clavel T., Horz H. P., Segata N., Vehreschild M. (2022). Next steps after 15 stimulating years of human gut microbiome research. Microb. Biotechnol. 15, 164–175. doi: 10.1111/1751-7915.13970 PubMed DOI PMC
Cockburn D. W., Orlovsky N. I., Foley M. H., Kwiatkowski K. J., Bahr C. M., Maynard M., et al. . (2015). Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol. Microbiol. 95:209. doi: 10.1111/MMI.12859 PubMed DOI PMC
Crudele L., Gadaleta R. M., Cariello M., Moschetta A. (2023). Gut microbiota in the pathogenesis and therapeutic approaches of diabetes. EBioMedicine 97:104821. doi: 10.1016/j.ebiom.2023.104821 PubMed DOI PMC
Cunningham A. L., Stephens J. W., Harris D. A. (2021). Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut Pathog. 13, 1–13. doi: 10.1186/s13099-021-00446-0 PubMed DOI PMC
D’Andreano S., Cuscó A., Francino O. (2020). Rapid and real-time identification of fungi up to species level with long amplicon nanopore sequencing from clinical samples. Biol. Methods Protoc. 6, 1–6. doi: 10.1093/biomethods/bpaa026 PubMed DOI PMC
de Boer M. D., Schuurs T. A., Vermeer M., Ruijs G. J. H. M., van der Zanden A. G. M., Weel J. F., et al. . (2020). Distribution and relevance of Dientamoeba fragilis and Blastocystis species in gastroenteritis: results from a case-control study. Eur. J. Clin. Microbiol. Infect. Dis. 39, 197–203. doi: 10.1007/s10096-019-03710-z PubMed DOI
De Goffau M. C., Fuentes S., Van Den Bogert B., Honkanen H., De Vos W. M., Welling G. W., et al. . (2014). Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 57, 1569–1577. doi: 10.1007/s00125-014-3274-0 PubMed DOI
De Goffau M. C., Luopajärvi K., Knip M., Ilonen J., Ruohtula T., Härkönen T., et al. . (2013). Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes 62, 1238–1244. doi: 10.2337/db12-0526 PubMed DOI PMC
De Groot P., Nikolic T., Pellegrini S., Sordi V., Imangaliyev S., Rampanelli E., et al. . (2021). Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial. Gut 70, 92–105. doi: 10.1136/gutjnl-2020-322630 PubMed DOI PMC
De La Cuesta-Zuluaga J., Mueller N. T., Corrales-Agudelo V., Velásquez-Mejía E. P., Carmona J. A., Abad J. M., et al. . (2017). Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid–producing microbiota in the gut. Diabetes Care 40, 54–62. doi: 10.2337/DC16-1324 PubMed DOI
De Pessemier B., Grine L., Debaere M., Maes A., Paetzold B., Callewaert C. (2021). Gut–skin axis: current knowledge of the interrelationship between microbial dysbiosis and skin conditions. Microorganisms 9, 1–33. doi: 10.3390/microorganisms9020353 PubMed DOI PMC
Dedrick S., Sundaresh B., Huang Q., Brady C., Yoo T., Cronin C., et al. . (2020). The role of gut microbiota and environmental factors in type 1 diabetes pathogenesis. Front. Endocrinol. (Lausanne) 11:78. doi: 10.3389/FENDO.2020.00078/FULL PubMed DOI PMC
DeFronzo R. A., Ferrannini E., Groop L., Henry R. R., Herman W. H., Holst J. J., et al. . (2015). Type 2 diabetes mellitus. Nat. Rev. Dis. Primers 1:15019. doi: 10.1038/NRDP.2015.19 PubMed DOI
Dempsey E., Corr S. C. (2022). Lactobacillus spp. for gastrointestinal health: current and future perspectives. Front. Immunol. 13:840245. doi: 10.3389/FIMMU.2022.840245 PubMed DOI PMC
Deng X., Zhang C., Wang P., Wei W., Shi X., Wang P., et al. . (2022). Cardiovascular benefits of Empagliflozin are associated with gut microbiota and plasma metabolites in type 2 diabetes. J. Clin. Endocrinol. Metab. 107, 1888–1896. doi: 10.1210/clinem/dgac210 PubMed DOI PMC
Derrien M., Turroni F., Ventura M., van Sinderen D. (2022). Insights into endogenous Bifidobacterium species in the human gut microbiota during adulthood. Trends Microbiol. 30, 940–947. doi: 10.1016/J.TIM.2022.04.004 PubMed DOI
Di Vincenzo F., Del Gaudio A., Petito V., Lopetuso L. R., Scaldaferri F. (2024). Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Intern. Emerg. Med. 19, 275–293. doi: 10.1007/S11739-023-03374-W/FIGURES/2 PubMed DOI PMC
Djemai K., Drancourt M., Tidjani Alou M. (2022). Bacteria and methanogens in the human microbiome: a review of syntrophic interactions. Microb. Ecol. 83, 536–554. doi: 10.1007/s00248-021-01796-7 PubMed DOI
Dong J., Ping L., Cao T., Sun L., Liu D., Wang S., et al. . (2022). Immunomodulatory effects of the Bifidobacterium longum BL-10 on lipopolysaccharide-induced intestinal mucosal immune injury. Front. Immunol. 13, 1–14. doi: 10.3389/fimmu.2022.947755 PubMed DOI PMC
Doumatey A. P., Adeyemo A., Zhou J., Lei L., Adebamowo S. N., Adebamowo C., et al. . (2020). Gut microbiome profiles are associated with type 2 diabetes in urban Africans. Front. Cell. Infect. Microbiol. 10, 1–13. doi: 10.3389/fcimb.2020.00063 PubMed DOI PMC
Duncan S. H., Louis P., Flint H. J. (2004). Lactate-utilizing Bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl. Environ. Microbiol. 70:5810. doi: 10.1128/AEM.70.10.5810-5817.2004 PubMed DOI PMC
Durazzi F., Sala C., Castellani G., Manfreda G., Remondini D., De Cesare A., et al. . (2021). Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci. Rep. 11, 1–10. doi: 10.1038/s41598-021-82726-y PubMed DOI PMC
Eeckhaut V., Machiels K., Perrier C., Romero C., Maes S., Flahou B., et al. . (2013). Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut 62, 1745–1752. doi: 10.1136/gutjnl-2012-303611 PubMed DOI
Eeckhaut V., Van Immerseel F., Pasmans F., De Brandt E., Haesebrouck F., Ducatelle R., et al. . (2010). Anaerostipes butyraticus sp. nov., an anaerobic, butyrate-producing bacterium from Clostridium cluster XIVa isolated from broiler chicken caecal content, and emended description of the genus Anaerostipes. Int. J. Syst. Evol. Microbiol. 60, 1108–1112. doi: 10.1099/IJS.0.015289-0 PubMed DOI
Effendi R. M. R. A., Anshory M., Kalim H., Dwiyana R. F., Suwarsa O., Pardo L. M., et al. . (2022). Akkermansia muciniphila and Faecalibacterium prausnitzii in immune-related diseases. Microorganisms 10:2382. doi: 10.3390/MICROORGANISMS10122382 PubMed DOI PMC
Eiselein L., Schwartz H. J., Rutledge J. C. (2004). The challenge of type 1 diabetes mellitus. ILAR J. 45, 231–236. doi: 10.1093/ILAR.45.3.231 PubMed DOI
Ejtahed H. S., Hoseini-Tavassol Z., Khatami S., Zangeneh M., Behrouzi A., Ahmadi Badi S., et al. . (2020). Main gut bacterial composition differs between patients with type 1 and type 2 diabetes and non-diabetic adults. J. Diabetes Metab. Disord. 19, 265–271. doi: 10.1007/s40200-020-00502-7 PubMed DOI PMC
Elbere I., Silamikelis I., Dindune I. I., Kalnina I., Ustinova M., Zaharenko L., et al. . (2020). Baseline gut microbiome composition predicts metformin therapy short-term efficacy in newly diagnosed type 2 diabetes patients. PLoS One 15, 1–19. doi: 10.1371/journal.pone.0241338 PubMed DOI PMC
Elzinga J., van der Oost J., de Vos W. M., Smidt H. (2019). The use of defined microbial communities to model host-microbe interactions in the human gut. Microbiol. Mol. Biol. Rev. 83, 1–40. doi: 10.1128/mmbr.00054-18 PubMed DOI PMC
Enaud R., Prevel R., Ciarlo E., Beaufils F., Wieërs G., Guery B., et al. . (2020). The gut-lung Axis in health and respiratory diseases: a place for inter-organ and inter-kingdom Crosstalks. Front. Cell. Infect. Microbiol. 10:9. doi: 10.3389/FCIMB.2020.00009 PubMed DOI PMC
Everard A., Belzer C., Geurts L., Ouwerkerk J. P., Druart C., Bindels L. B., et al. . (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110, 9066–9071. doi: 10.1073/pnas.1219451110 PubMed DOI PMC
Ezzamouri B., Rosario D., Bidkhori G., Lee S., Uhlen M., Shoaie S. (2023). Metabolic modelling of the human gut microbiome in type 2 diabetes patients in response to metformin treatment. NPJ Syst. Biol. Appl. 9, 1–8. doi: 10.1038/s41540-022-00261-6 PubMed DOI PMC
Fadeev E., Cardozo-Mino M. G., Rapp J. Z., Bienhold C., Salter I., Salman-Carvalho V., et al. . (2021). Comparison of two 16S rRNA primers (V3–V4 and V4–V5) for studies of Arctic microbial communities. Front. Microbiol. 12:637526. doi: 10.3389/FMICB.2021.637526/BIBTEX PubMed DOI PMC
Fan Y., Pedersen O. (2021). Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71. doi: 10.1038/s41579-020-0433-9 PubMed DOI
Fassatoui M., Lopez-Siles M., Díaz-Rizzolo D. A., Jmel H., Naouali C., Abdessalem G., et al. . (2019). Gut microbiota imbalances in Tunisian participants with type 1 and type 2 diabetes mellitus. Biosci. Rep. 39, 1–7. doi: 10.1042/BSR20182348 PubMed DOI PMC
Feehley T., Plunkett C. H., Bao R., Choi Hong S. M., Culleen E., Belda-Ferre P., et al. . (2019). Healthy infants harbor intestinal bacteria that protect against food allergy. Nat. Med. 25, 448–453. doi: 10.1038/s41591-018-0324-z PubMed DOI PMC
Ferreira-Halder C. V., Faria A. V. D. S., Andrade S. S. (2017). Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract. Res. Clin. Gastroenterol. 31, 643–648. doi: 10.1016/J.BPG.2017.09.011 PubMed DOI
Forslund K., Hildebrand F., Nielsen T., Falony G., Le Chatelier E., Sunagawa S., et al. . (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266. doi: 10.1038/NATURE15766 PubMed DOI PMC
Forster S. C., Kumar N., Anonye B. O., Almeida A., Viciani E., Stares M. D., et al. . (2019). A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 37, 186–192. doi: 10.1038/s41587-018-0009-7 PubMed DOI PMC
Furet J. P., Kong L. C., Tap J., Poitou C., Basdevant A., Bouillot J. L., et al. . (2010). Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59, 3049–3057. doi: 10.2337/db10-0253 PubMed DOI PMC
Gad M., Fawzy M. E., Al-Herrawy A. Z., Abdo S. M., Nabet N., Hu A. (2023). PacBio next-generation sequencing uncovers Apicomplexa diversity in different habitats. Sci. Rep. 13, 1–10. doi: 10.1038/s41598-023-40895-y PubMed DOI PMC
Giongo A., Gano K. A., Crabb D. B., Mukherjee N., Novelo L. L., Casella G., et al. . (2011). Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 5, 82–91. doi: 10.1038/ismej.2010.92 PubMed DOI PMC
Goldberg E., Amir I., Zafran M., Gophna U., Samra Z., Pitlik S., et al. . (2014). The correlation between Clostridium-difficile infection and human gut concentrations of Bacteroidetes phylum and clostridial species. Eur. J. Clin. Microbiol. Infect. Dis. 33, 377–383. doi: 10.1007/S10096-013-1966-X/METRICS PubMed DOI
Gosiewski T., Salamon D., Szopa M., Sroka A., Malecki M. T., Bulanda M. (2014). Quantitative evaluation of fungi of the genus Candida in the feces of adult patients with type 1 and 2 diabetes – a pilot study. Gut Pathog. 6, 1–5. doi: 10.1186/s13099-014-0043-z PubMed DOI PMC
Gowd V., Xie L., Zheng X., Chen W. (2019). Dietary fibers as emerging nutritional factors against diabetes: focus on the involvement of gut microbiota. Crit. Rev. Biotechnol. 39, 524–540. doi: 10.1080/07388551.2019.1576025 PubMed DOI
Greenhill C. (2018). Sphingolipids involved in T1DM. Nat. Rev. Endocrinol. 14, –381. doi: 10.1038/s41574-018-0027-z PubMed DOI
Greer R. L., Dong X., Moraes A. C. F., Zielke R. A., Fernandes G. R., Peremyslova E., et al. . (2016). Akkermansia muciniphila mediates negative effects of IFNγ on glucose metabolism. Nat. Commun. 7, 1–13. doi: 10.1038/ncomms13329 PubMed DOI PMC
Greub G. (2012). Culturomics: a new approach to study the human microbiome. Clin. Microbiol. Infect. 18, 1157–1159. doi: 10.1111/1469-0691.12032 PubMed DOI
Groele L., Szajewska H., Szalecki M., Świderska J., Wysocka-Mincewicz M., Ochocińska A., et al. . (2021). Lack of effect of Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12 on beta-cell function in children with newly diagnosed type 1 diabetes: a randomised controlled trial. BMJ Open Diabetes Res. Care 9, 1–10. doi: 10.1136/bmjdrc-2020-001523 PubMed DOI PMC
Groele L., Szajewska H., Szypowska A. (2017). Effects of Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12 on beta-cell function in children with newly diagnosed type 1 diabetes: protocol of a randomised controlled trial. BMJ Open 7:e017178. doi: 10.1136/BMJOPEN-2017-017178 PubMed DOI PMC
Gu Y., Wang X., Li J., Zhang Y., Zhong H., Liu R., et al. . (2017). Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat. Commun. 8:1785. doi: 10.1038/s41467-017-01682-2 PubMed DOI PMC
Gurung M., Li Z., You H., Rodrigues R., Jump D. B., Morgun A., et al. . (2020). Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 51:102590. doi: 10.1016/j.ebiom.2019.11.051 PubMed DOI PMC
Guzzo G. L., Andrews J. M., Weyrich L. S. (2022). The neglected gut microbiome: Fungi, Protozoa, and bacteriophages in inflammatory bowel disease. Inflamm. Bowel Dis. 28, 1112–1122. doi: 10.1093/ibd/izab343 PubMed DOI PMC
He Q. L., Wang H. C., Ma Y. K., Yang R. L., Dai Z. F., Yang J. N., et al. . (2023). Changes in the microbiota and their roles in patients with type 2 diabetes mellitus. Curr. Microbiol. 80, 1–12. doi: 10.1007/s00284-023-03219-x PubMed DOI
He X., Zhao S., Li Y. (2021). Faecalibacterium prausnitzii: a next-generation probiotic in gut disease improvement. Can. J. Infect. Dis. Med. Microbiol. 2021:6666114. doi: 10.1155/2021/6666114 DOI
Hebert S. L., Nair K. S. (2009). Protein and energy metabolism in type 1 diabetes. Clin. Nutr. 29:13. doi: 10.1016/J.CLNU.2009.09.001 PubMed DOI PMC
Henke M. T., Kenny D. J., Cassilly C. D., Vlamakis H., Xavier R. J., Clardy J. (2019). Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc. Natl. Acad. Sci. USA 116, 12672–12677. doi: 10.1073/pnas.1904099116 PubMed DOI PMC
Hiel S., Gianfrancesco M. A., Rodriguez J., Portheault D., Leyrolle Q., Bindels L. B., et al. . (2020). Link between gut microbiota and health outcomes in inulin -treated obese patients: lessons from the Food4Gut multicenter randomized placebo-controlled trial. Clin. Nutr. 39, 3618–3628. doi: 10.1016/j.clnu.2020.04.005 PubMed DOI
Hitch T. C. A., Afrizal A., Riedel T., Kioukis A., Haller D., Lagkouvardos I., et al. . (2021). Recent advances in culture-based gut microbiome research. Int. J. Med. Microbiol. 311:151485. doi: 10.1016/j.ijmm.2021.151485 PubMed DOI
Hoegenauer C., Hammer H. F., Mahnert A., Moissl-Eichinger C. (2022). Methanogenic archaea in the human gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 19, 805–813. doi: 10.1038/S41575-022-00673-Z PubMed DOI
Hoggard M., Vesty A., Wong G., Montgomery J. M., Fourie C., Douglas R. G., et al. . (2018). Characterizing the human mycobiota: a comparison of small subunit rRNA, ITS1, ITS2, and large subunit rRNA genomic targets. Front. Microbiol. 9, 1–14. doi: 10.3389/fmicb.2018.02208 PubMed DOI PMC
Horikawa Y. (2018). Maturity-onset diabetes of the young as a model for elucidating the multifactorial origin of type 2 diabetes mellitus. J. Diabetes Investig. 9, 704–712. doi: 10.1111/JDI.12812 PubMed DOI PMC
Hu R., Yuan Y., Liu C., Zhou J., Ji L., Jiang G. (2021). New insights into the links between anti-diabetes drugs and gut microbiota. Endocr. Connect. 10, R36–R42. doi: 10.1530/EC-20-0431 PubMed DOI PMC
Huang Y., Li S. C., Hu J., Ruan H. B., Guo H. M., Zhang H. H., et al. . (2018). Gut microbiota profiling in Han Chinese with type 1 diabetes. Diabetes Res. Clin. Pract. 141, 256–263. doi: 10.1016/j.diabres.2018.04.032 PubMed DOI
Huang R., Wu F., Zhou Q., Wei W., Yue J., Xiao B., et al. . (2022). Lactobacillus and intestinal diseases: mechanisms of action and clinical applications. Microbiol. Res. 260:127019. doi: 10.1016/J.MICRES.2022.127019 PubMed DOI
Iebba V., Totino V., Gagliardi A., Santangelo F., Cacciotti F., Trancassini M., et al. . (2016). Eubiosis and dysbiosis: the two sides of the microbiota SuMMAry. PubMed
International Diabetes Federation (2021). IDF Diabetes Atlas 2021. International Diabetes Federation, 30–39. Available at: http://www.idf.org/about-diabetes/facts-figures (accessed July 27, 2023).
Ishaq S. L., Wright A. D. G. (2014). Design and validation of four new primers for next-generation sequencing to target the 18S rRNA genes of gastrointestinal ciliate protozoa. Appl. Environ. Microbiol. 80, 5515–5521. doi: 10.1128/AEM.01644-14 PubMed DOI PMC
Jayasudha R., Das T., Chakravarthy S. K., Prashanthi G. S., Bhargava A., Tyagi M., et al. . (2020). Gut mycobiomes are altered in people with type 2 diabetes mellitus and diabetic retinopathy. PLoS One 15, 1–23. doi: 10.1371/journal.pone.0243077 PubMed DOI PMC
Jeong J., Yun K., Mun S., Chung W. H., Choi S. Y., Nam Y., et al. . (2021). The effect of taxonomic classification by full-length 16S rRNA sequencing with a synthetic long-read technology. Sci. Rep. 11, 1–12. doi: 10.1038/s41598-020-80826-9 PubMed DOI PMC
Johnson J. S., Spakowicz D. J., Hong B. Y., Petersen L. M., Demkowicz P., Chen L., et al. . (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10, 1–11. doi: 10.1038/s41467-019-13036-1 PubMed DOI PMC
Kant R., Chandra L., Verma V., Nain P., Bello D., Patel S., et al. . (2022). Gut microbiota interactions with anti-diabetic medications and pathogenesis of type 2 diabetes mellitus. World J. Methodol. 12, 246–257. doi: 10.5662/wjm.v12.i4.246 PubMed DOI PMC
Kant R., Rasinkangas P., Satokari R., Pietilä T. E., Palva A. (2015). Genome sequence of the butyrate-producing anaerobic bacterium Anaerostipes hadrus PEL 85. Genome Announc. 3, e00224–15. doi: 10.1128/GENOMEA.00224-15 PubMed DOI PMC
Karlsson F. H., Tremaroli V., Nookaew I., Bergström G., Behre C. J., Fagerberg B., et al. . (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103. doi: 10.1038/nature12198 PubMed DOI
Katsarou A., Gudbjörnsdottir S., Rawshani A., Dabelea D., Bonifacio E., Anderson B. J., et al. . (2017). Type 1 diabetes mellitus. Nat. Rev. Dis. Prim. 3, 1–17. doi: 10.1038/nrdp.2017.16 PubMed DOI
Kautzky-Willer A., Leutner M., Harreiter J. (2023). Sex differences in type 2 diabetes. Diabetologia 986–1002. doi: 10.1007/s00125-023-05891-x PubMed DOI PMC
Khan M. A. B., Hashim M. J., King J. K., Govender R. D., Mustafa H., Al Kaabi J. (2020). Epidemiology of type 2 diabetes – global burden of disease and forecasted trends. J. Epidemiol. Glob. Health 10, 107–111. doi: 10.2991/JEGH.K.191028.001 PubMed DOI PMC
Kim K. W., Allen D. W., Briese T., Couper J. J., Barry S. C., Colman P. G., et al. . (2019). Distinct gut Virome profile of pregnant women with type 1 diabetes in the ENDIA study. Open Forum Infect. Dis. 6:ofz025. doi: 10.1093/OFID/OFZ025 PubMed DOI PMC
Kim J., Nam J. H. (2020). Insight into the relationship between obesity-induced low-level chronic inflammation and COVID-19 infection. Int. J. Obes. 44, 1541–1542. doi: 10.1038/s41366-020-0602-y PubMed DOI PMC
King C. H., Desai H., Sylvetsky A. C., LoTempio J., Ayanyan S., Carrie J., et al. . (2019). Baseline human gut microbiota profile in healthy people and standard reporting template. PLoS One 14, 1–25. doi: 10.1371/journal.pone.0206484 PubMed DOI PMC
Knip M., Siljander H. (2016). The role of the intestinal microbiota in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 12, 154–167. doi: 10.1038/nrendo.2015.218 PubMed DOI
Koboziev I., Reinoso Webb C., Furr K. L., Grisham M. B. (2014). Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radic. Biol. Med. 68, 122–133. doi: 10.1016/J.FREERADBIOMED.2013.11.008 PubMed DOI PMC
Kowalewska B., Zorena K., Szmigiero-Kawko M., Wąż P., Myśliwiec M. (2016). Higher diversity in fungal species discriminates children with type 1 diabetes mellitus from healthy control. Patient Prefer. Adherence 10, 591–599. doi: 10.2147/PPA.S97852 PubMed DOI PMC
Kumar S., Kumar R., Rohilla L., Jacob N., Yadav J., Sachdeva N. (2021). A high potency multi-strain probiotic improves glycemic control in children with new-onset type 1 diabetes mellitus: a randomized, double-blind, and placebo-controlled pilot study. Pediatr. Diabetes 22, 1014–1022. doi: 10.1111/pedi.13244 PubMed DOI
Kwan S.-Y., Sabotta C. M., Joon A., Wei P., Petty L. E., Below J. E., et al. . (2022). Gut microbiome alterations associated with diabetes in Mexican Americans in South Texas. mSystems 7:e0003322. doi: 10.1128/msystems.00033-22 PubMed DOI PMC
Lagier J. C., Dubourg G., Million M., Cadoret F., Bilen M., Fenollar F., et al. . (2018). Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 16, 540–550. doi: 10.1038/s41579-018-0041-0 PubMed DOI
Lal S., Kandiyal B., Ahuja V., Takeda K., Das B. (2022). Gut microbiome dysbiosis in inflammatory bowel disease. Prog. Mol. Biol. Transl. Sci. 192, 179–204. doi: 10.1016/BS.PMBTS.2022.09.003 PubMed DOI
Lambeth S. M., Carson T., Lowe J., Ramaraj T., Leff J. W., Luo L., et al. . (2015). Composition, diversity and abundance of gut microbiome in prediabetes and type 2 diabetes. J. Diabetes Obes. 2, 108–114. doi: 10.15436/2376-0949.15.031 PubMed DOI PMC
Lampousi A. M., Carlsson S., Löfvenborg J. E. (2021). Dietary factors and risk of islet autoimmunity and type 1 diabetes: a systematic review and meta-analysis. EBioMedicine 72, 1–9. doi: 10.1016/j.ebiom.2021.103633 PubMed DOI PMC
Larsen N., Vogensen F. K., Van Den Berg F. W. J., Nielsen D. S., Andreasen A. S., Pedersen B. K., et al. . (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:e9085. doi: 10.1371/journal.pone.0009085 PubMed DOI PMC
Lau W. L., Tran T., Rhee C. M., Kalantar-Zadeh K., Vaziri N. D. (2021). Diabetes and the gut microbiome. Semin. Nephrol. 41, 104–113. doi: 10.1016/j.semnephrol.2021.03.005 PubMed DOI
Lee Y., Eun C. S., Lee A. R., Park C. H., Han D. S. (2016). Fusobacterium isolates recovered from colonic biopsies of inflammatory bowel disease patients in Korea. Ann. Lab. Med. 36, 387–389. doi: 10.3343/alm.2016.36.4.387 PubMed DOI PMC
Leiva-Gea I., Sánchez-Alcoholado L., Martín-Tejedor B., Castellano-Castillo D., Moreno-Indias I., Urda-Cardona A., et al. . (2018). Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: a case-control study. Diabetes Care 41, 2385–2395. doi: 10.2337/dc18-0253 PubMed DOI
Li X., Atkinson M. A. (2015). The role for gut permeability in the pathogenesis of type 1 diabetes – a solid or leaky concept? Pediatr. Diabetes 16:485. doi: 10.1111/PEDI.12305 PubMed DOI PMC
Li D., Gao C., Zhang F., Yang R., Lan C., Ma Y., et al. . (2020). Seven facts and five initiatives for gut microbiome research. Protein Cell 11, 391–400. doi: 10.1007/s13238-020-00697-8 PubMed DOI PMC
Li Z., Hu G., Zhu L., Sun Z., Jiang Y., Gao M., et al. . (2021). Study of growth, metabolism, and morphology of Akkermansia muciniphila with an in vitro advanced bionic intestinal reactor. BMC Microbiol. 21:61. doi: 10.1186/s12866-021-02111-7 PubMed DOI PMC
Li Z., Ke H., Wang Y., Chen S., Liu X., Lin Q., et al. . (2022). Global trends in Akkermansia muciniphila research: a bibliometric visualization. Front. Microbiol. 13:1037708. doi: 10.3389/FMICB.2022.1037708/BIBTEX PubMed DOI PMC
Li Y., Liu Y., Chu C. Q. (2015). Th17 cells in type 1 diabetes: role in the pathogenesis and regulation by gut microbiome. Mediat. Inflamm. 2015:638470. doi: 10.1155/2015/638470 PubMed DOI PMC
Li W.-Z., Stirling K., Yang J.-J., Zhang L., Yang J.-J., Stirling K., et al. . (2020). Gut microbiota and diabetes: from correlation to causality and mechanism. World J. Diabetes 11, 293–308. doi: 10.4239/WJD.V11.I7.293 PubMed DOI PMC
López-Aladid R., Fernández-Barat L., Alcaraz-Serrano V., Bueno-Freire L., Vázquez N., Pastor-Ibáñez R., et al. . (2023). Determining the most accurate 16S rRNA hypervariable region for taxonomic identification from respiratory samples. Sci. Rep. 13, 1–10. doi: 10.1038/s41598-023-30764-z PubMed DOI PMC
Lotfy M., Adeghate J., Kalasz H., Singh J., Adeghate E. (2017). Chronic complications of diabetes mellitus: a Mini review. Curr. Diabetes Rev. 13, 3–10. doi: 10.2174/1573399812666151016101622 PubMed DOI
Louis P., Flint H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 19, 29–41. doi: 10.1111/1462-2920.13589 PubMed DOI
Louis P., Young P., Holtrop G., Flint H. J. (2010). Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ. Microbiol. 12, 304–314. doi: 10.1111/j.1462-2920.2009.02066.x PubMed DOI
Lozupone C. A., Stombaugh J. I., Gordon J. I., Jansson J. K., Knight R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230. doi: 10.1038/nature11550 PubMed DOI PMC
Lu H., Xu X., Fu D., Zou D., Han L., Zhao W. (2022). Butyrate-producing Eubacterium rectale suppresses lymphomagenesis by alleviating the TNF-induced TLR4/MyD88/NF-κB axis. Cell Host Microbe 30, 1139–1150.e7. doi: 10.1016/j.chom.2022.07.003 PubMed DOI
Lv Z., Guo Y. (2020). Metformin and its benefits for various diseases. Front. Endocrinol. (Lausanne) 11, 1–10. doi: 10.3389/fendo.2020.00191 PubMed DOI PMC
Lynch S. V., Pedersen O. (2016). The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379. doi: 10.1056/NEJMRA1600266 PubMed DOI
Ma Y., You X., Mai G., Tokuyasu T., Liu C. (2018). A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome 6, 1–12. doi: 10.1186/S40168-018-0410-Y/FIGURES/6 PubMed DOI PMC
Maioli T. U., Borras-Nogues E., Torres L., Barbosa S. C., Martins V. D., Langella P., et al. . (2021). Possible benefits of Faecalibacterium prausnitzii for obesity-associated gut disorders. Front. Pharmacol. 12:740636. doi: 10.3389/FPHAR.2021.740636 PubMed DOI PMC
Majumdar S., Lin Y., Bettini M. L. (2022). Host-microbiota interactions shaping T-cell response and tolerance in type 1 diabetes. Front. Immunol. 13:974178. doi: 10.3389/FIMMU.2022.974178 PubMed DOI PMC
Maloney J. G., Molokin A., Santin M. (2019). Next generation amplicon sequencing improves detection of Blastocystis mixed subtype infections. Infect. Genet. Evol. 73, 119–125. doi: 10.1016/j.meegid.2019.04.013 PubMed DOI
Manor O., Dai C. L., Kornilov S. A., Smith B., Price N. D., Lovejoy J. C., et al. . (2020). Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 11, 1–12. doi: 10.1038/s41467-020-18871-1 PubMed DOI PMC
Maritz J. M., Ten Eyck T. A., Elizabeth Alter S., Carlton J. M. (2019). Patterns of protist diversity associated with raw sewage in New York City. ISME J. 13, 2750–2763. doi: 10.1038/s41396-019-0467-z PubMed DOI PMC
Martínez-López Y. E. N. R., Esquivel-Hernandez D. A., Cristian P. M., Aarón V. J., Paul S. C. J., David G. V., et al. . (2024). Effect of metformin and metformin/linagliptin on gut microbiota in patients with prediabetes. Sci. Rep. 14, 1–16. doi: 10.1038/s41598-024-60081-y PubMed DOI PMC
Matsuo Y., Komiya S., Yasumizu Y., Yasuoka Y., Mizushima K., Takagi T., et al. . (2021). Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinION™ nanopore sequencing confers species-level resolution. BMC Microbiol. 21, 1–13. doi: 10.1186/s12866-021-02094-5 PubMed DOI PMC
Mejía-León M. E., Petrosino J. F., Ajami N. J., Domínguez-Bello M. G., De La Barca A. M. C. (2014). Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci. Rep. 4, 1–5. doi: 10.1038/srep03814 PubMed DOI PMC
Meslier V., Quinquis B., Da Silva K., Plaza Oñate F., Pons N., Roume H., et al. . (2022). Benchmarking second and third-generation sequencing platforms for microbial metagenomics. Sci Data 9, 1–9. doi: 10.1038/s41597-022-01762-z PubMed DOI PMC
Mohammad S., Thiemermann C. (2021). Role of metabolic Endotoxemia in systemic inflammation and potential interventions. Front. Immunol. 11:594150. doi: 10.3389/FIMMU.2020.594150/BIBTEX PubMed DOI PMC
Mojgani N., Dadar M. (Eds.) (2021). Probiotic Bacteria and Postbiotic metabolites: Role in animal and human health. Singapore: Springer Singapore.
Mokhtari P., Metos J., Anandh Babu P. V. (2021). Impact of type 1 diabetes on the composition and functional potential of gut microbiome in children and adolescents: possible mechanisms, current knowledge, and challenges. Gut Microbes 13, 1–18. doi: 10.1080/19490976.2021.1926841 PubMed DOI PMC
Morowitz M. J., Carlisle E. M., Alverdy J. C. (2011). Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surg. Clin. North Am. 91, 771–785. doi: 10.1016/J.SUC.2011.05.001 PubMed DOI PMC
Mrozinska S., Kapusta P., Gosiewski T., Sroka-Oleksiak A., Ludwig-Słomczyńska A. H., Matejko B., et al. . (2021). The gut microbiota profile according to glycemic control in type 1 diabetes patients treated with personal insulin pumps. Microorganisms 9, 1–13. doi: 10.3390/microorganisms9010155 PubMed DOI PMC
Mueller N. T., Differding M. K., Zhang M., Maruthur N. M., Juraschek S. P., Miller E. R., et al. . (2021). Metformin affects gut microbiome composition and function and circulating short-chain fatty acids: a randomized trial. Diabetes Care 44, 1462–1471. doi: 10.2337/dc20-2257 PubMed DOI PMC
Najmanová L., Vídeňská P., Cahová M. (2022). Healthy microbiome – a mere idea or a sound concept? Physiol. Res. 71, 719–738. doi: 10.33549/physiolres.934967 PubMed DOI PMC
Nash A. K., Auchtung T. A., Wong M. C., Smith D. P., Gesell J. R., Ross M. C., et al. . (2017). The gut mycobiome of the human microbiome project healthy cohort. Microbiome 5:153. doi: 10.1186/s40168-017-0373-4 PubMed DOI PMC
Nie K., Ma K., Luo W., Shen Z., Yang Z., Xiao M., et al. . (2021). Roseburia intestinalis: a beneficial gut organism from the discoveries in genus and species. Front. Cell. Infect. Microbiol. 11:757718. doi: 10.3389/FCIMB.2021.757718 PubMed DOI PMC
O’Callaghan A., van Sinderen D. (2016). Bifidobacteria and their role as members of the human gut microbiota. Front. Microb. 7:925. doi: 10.3389/FMICB.2016.00925 PubMed DOI PMC
Ottman N., Geerlings S. Y., Aalvink S., de Vos W. M., Belzer C. (2017). Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract. Res. Clin. Gastroenterol. 31, 637–642. doi: 10.1016/j.bpg.2017.10.001 PubMed DOI
Park C., Kim S. B., Choi S. H., Kim S. (2021). Comparison of 16S rRNA gene based microbial profiling using five next-generation sequencers and various primers. Front. Microbiol. 12, 1–15. doi: 10.3389/fmicb.2021.715500 PubMed DOI PMC
Parsaei M., Sarafraz N., Moaddab S. Y., Ebrahimzadeh Leylabadlo H. (2021). The importance of Faecalibacterium prausnitzii in human health and diseases. New Microbes New Infect 43:100928. doi: 10.1016/J.NMNI.2021.100928 PubMed DOI PMC
Patel B. K., Patel K. H., Huang R. Y., Lee C. N., Moochhala S. M. (2022). The gut-skin microbiota Axis and its role in diabetic wound healing—a review based on current literature. Int. J. Mol. Sci. 23:2375. doi: 10.3390/ijms23042375 PubMed DOI PMC
Paun A., Yau C., Danska J. S. (2017). The influence of the microbiome on type 1 diabetes. J. Immunol. 198, 590–595. doi: 10.4049/jimmunol.1601519 PubMed DOI
Petersmann A., Nauck M., Müller-Wieland D., Kerner W., Müller U. A., Landgraf R., et al. . (2018). Definition, classification and diagnostics of diabetes mellitus. J. Lab. Med. 42, 73–79. doi: 10.1515/labmed-2018-0016 PubMed DOI
Peterson C. T., Perez Santiago J., Iablokov S. N., Chopra D., Rodionov D. A., Peterson S. N. (2022). Short-chain fatty acids modulate healthy gut microbiota composition and functional potential. Curr. Microbiol. 79, 1–13. doi: 10.1007/S00284-022-02825-5/FIGURES/5 PubMed DOI PMC
Piłaciński S., Zozulińska-Ziółkiewicz D. A. (2014). Influence of lifestyle on the course of type 1 diabetes mellitus. Arch. Med. Sci. 10, 124–134. doi: 10.5114/aoms.2014.40739 PubMed DOI PMC
Pingitore A., Chambers E. S., Hill T., Maldonado I. R., Liu B., Bewick G., et al. . (2017). The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes. Metab. 19, 257–265. doi: 10.1111/DOM.12811 PubMed DOI
Pinto A. J., Raskin L. (2012). PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS One 7:e43093. doi: 10.1371/journal.pone.0043093 PubMed DOI PMC
Plöger S., Stumpff F., Penner G. B., Schulzke J. D., Gäbel G., Martens H., et al. . (2012). Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann. N. Y. Acad. Sci. 1258, 52–59. doi: 10.1111/j.1749-6632.2012.06553.x PubMed DOI
Portincasa P., Bonfrate L., Vacca M., De Angelis M., Farella I., Lanza E., et al. . (2022). Gut microbiota and short chain fatty acids: implications in glucose homeostasis. Int. J. Mol. Sci. 23:1105. doi: 10.3390/IJMS23031105 PubMed DOI PMC
Pourkazemi A., Ghanbari A., Khojamli M., Balo H., Hemmati H., Jafaryparvar Z., et al. . (2020). Diabetic foot care: knowledge and practice. BMC Endocr. Disord. 20:40. doi: 10.1186/S12902-020-0512-Y PubMed DOI PMC
Qi C. J., Zhang Q., Yu M., Xu J. P., Zheng J., Wang T., et al. . (2016). Imbalance of fecal microbiota at newly diagnosed type 1 diabetes in Chinese children. Chin. Med. J. 129, 1298–1304. doi: 10.4103/0366-6999.182841 PubMed DOI PMC
Qian X., Si Q., Lin G., Zhu M., Lu J., Zhang H., et al. . (2022). Bifidobacterium adolescentis is effective in relieving type 2 diabetes and may be related to its dominant Core genome and gut microbiota modulation capacity. Nutrients 14:2479. doi: 10.3390/nu14122479 PubMed DOI PMC
Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F., et al. . (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60. doi: 10.1038/nature11450 PubMed DOI
Raimondi S., Amaretti A., Gozzoli C., Simone M., Righini L., Candeliere F., et al. . (2019). Longitudinal survey of fungi in the human gut: ITS profiling, phenotyping, and colonization. Front. Microbiol. 10, 1–12. doi: 10.3389/fmicb.2019.01575 PubMed DOI PMC
Ranjan R., Rani A., Metwally A., McGee H. S., Perkins D. L. (2016). Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun. 469, 967–977. doi: 10.1016/j.bbrc.2015.12.083 PubMed DOI PMC
Riedel S., Pheiffer C., Johnson R., Louw J., Muller C. J. F. (2022). Intestinal barrier function and immune homeostasis are missing links in obesity and type 2 diabetes development. Front. Endocrinol. (Lausanne) 12:833544. doi: 10.3389/FENDO.2021.833544/BIBTEX PubMed DOI PMC
Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G. A. D., Gasbarrini A., et al. . (2019). What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7:14. doi: 10.3390/microorganisms7010014 PubMed DOI PMC
Rivière A., Selak M., Lantin D., Leroy F., De Vuyst L. (2016). Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7:979. doi: 10.3389/fmicb.2016.00979 PubMed DOI PMC
Roberts L. D., Koulman A., Griffin J. L. (2014). Towards metabolic biomarkers of insulin resistance and type 2 diabetes: Progress from the metabolome. Lancet Diabetes Endocrinol. 2, 65–75. doi: 10.1016/S2213-8587(13)70143-8 PubMed DOI
Rodrigues V. F., Elias-Oliveira J., Pereira Í. S., Pereira J. A., Barbosa S. C., Machado M. S. G., et al. . (2022). Akkermansia muciniphila and gut immune system: a good friendship that attenuates inflammatory bowel disease, obesity, and diabetes. Front. Immunol. 13:934695. doi: 10.3389/FIMMU.2022.934695 PubMed DOI PMC
Roep B. O., Thomaidou S., van Tienhoven R., Zaldumbide A. (2020). Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat. Rev. Endocrinol. 17, 150–161. doi: 10.1038/s41574-020-00443-4 PubMed DOI PMC
Ropot A. V., Karamzin A. M., Sergeyev O. V. (2020). Cultivation of the next-generation probiotic Akkermansia muciniphila, methods of its safe delivery to the intestine, and factors contributing to its growth in vivo. Curr. Microbiol. 77, 1363–1372. doi: 10.1007/s00284-020-01992-7 PubMed DOI
Rutsch A., Kantsjö J. B., Ronchi F. (2020). The gut-brain Axis: how microbiota and host Inflammasome influence brain physiology and pathology. Front. Immunol. 11, 1–24. doi: 10.3389/fimmu.2020.604179 PubMed DOI PMC
Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., Unwin N., et al. . (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res. Clin. Pract. 157:107843. doi: 10.1016/J.DIABRES.2019.107843 PubMed DOI
Sanna S., van Zuydam N. R., Mahajan A., Kurilshikov A., Vich Vila A., Võsa U., et al. . (2019). Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605. doi: 10.1038/s41588-019-0350-x PubMed DOI PMC
Sato J., Kanazawa A., Ikeda F., Yoshihara T., Goto H., Abe H., et al. . (2014). Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes Care 37, 2343–2350. doi: 10.2337/dc13-2817 PubMed DOI
Schoch C. L., Seifert K. A., Huhndorf S., Robert V., Spouge J. L., Levesque C. A., et al. . (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 109, 6241–6246. doi: 10.1073/pnas.1117018109 PubMed DOI PMC
Scott K. P., Martin J. C., Campbell G., Mayer C. D., Flint H. J. (2006). Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans. J. Bacteriol. 188, 4340–4349. doi: 10.1128/JB.00137-06 PubMed DOI PMC
Sechovcová H., Mahayri T. M., Mrázek J., Jarošíková R., Husáková J., Wosková V., et al. . (2023). Gut microbiota in relationship to diabetes mellitus and its late complications with a focus on diabetic foot syndrome: a review. Folia Microbiol. (Praha). 69, 259–282. doi: 10.1007/s12223-023-01119-y PubMed DOI
Secondulfo M., Iafusco D., Carratù R., deMagistris L., Sapone A., Generoso M., et al. . (2004). Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Dig. Liver Dis. 36, 35–45. doi: 10.1016/J.DLD.2003.09.016 PubMed DOI
Sedighi M., Razavi S., Navab-Moghadam F., Khamseh M. E., Alaei-Shahmiri F., Mehrtash A., et al. . (2017). Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microb. Pathog. 111, 362–369. doi: 10.1016/j.micpath.2017.08.038 PubMed DOI
Seekatz A. M., Safdar N., Khanna S. (2022). The role of the gut microbiome in colonization resistance and recurrent Clostridioides difficile infection. Ther. Adv. Gastroenterol. 15:17562848221134396. doi: 10.1177/17562848221134396 PubMed DOI PMC
Shang J., Liu F., Zhang B., Dong K., Lu M., Jiang R., et al. . (2021). Liraglutide-induced structural modulation of the gut microbiota in patients with type 2 diabetes mellitus. PeerJ 9, 1–19. doi: 10.7717/peerj.11128 PubMed DOI PMC
Sharma S., Tripathi P. (2019). Gut microbiome and type 2 diabetes: where we are and where to go? J. Nutr. Biochem. 63, 101–108. doi: 10.1016/J.JNUTBIO.2018.10.003 PubMed DOI
Sikalidis A. K., Maykish A. (2020). The gut microbiome and type 2 diabetes mellitus: discussing a complex relationship. Biomedicines 8:8. doi: 10.3390/BIOMEDICINES8010008 PubMed DOI PMC
Silva Y. P., Bernardi A., Frozza R. L. (2020). The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. (Lausanne) 11, 1–14. doi: 10.3389/fendo.2020.00025 PubMed DOI PMC
Singh V., Lee G. D., Son H. W., Koh H., Kim E. S., Unno T., et al. . (2023). Butyrate producers, “the sentinel of gut”: their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front. Microbiol. 13:1103836. doi: 10.3389/FMICB.2022.1103836 PubMed DOI PMC
Sirichoat A., Sankuntaw N., Engchanil C., Buppasiri P., Faksri K., Namwat W., et al. . (2021). Comparison of different hypervariable regions of 16S rRNA for taxonomic profiling of vaginal microbiota using next-generation sequencing. Arch. Microbiol. 203, 1159–1166. doi: 10.1007/s00203-020-02114-4 PubMed DOI
Smits M. M., Fluitman K. S., Herrema H., Davids M., Kramer M. H. H., Groen A. K., et al. . (2021). Liraglutide and sitagliptin have no effect on intestinal microbiota composition: a 12-week randomized placebo-controlled trial in adults with type 2 diabetes. Diabetes Metab. 47:101223. doi: 10.1016/j.diabet.2021.101223 PubMed DOI
Sorini C., Cosorich I., Conte M. L., De Giorgi L., Facciotti F., Lucianò R., et al. . (2019). Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes. Proc. Natl. Acad. Sci. USA 116, 15140–15149. doi: 10.1073/PNAS.1814558116 PubMed DOI PMC
Soyucen E., Gulcan A., Aktuglu-Zeybek A. C., Onal H., Kiykim E., Aydin A. (2014). Differences in the gut microbiota of healthy children and those with type 1 diabetes. Pediatr. Int. 56, 336–343. doi: 10.1111/ped.12243 PubMed DOI
Su L., Hong Z., Zhou T., Jian Y., Xu M., Zhang X., et al. . (2022). Health improvements of type 2 diabetic patients through diet and diet plus fecal microbiota transplantation. Sci. Rep. 12, 1–12. doi: 10.1038/s41598-022-05127-9 PubMed DOI PMC
Su B., Liu H., Li J., Sunli Y., Liu B., Liu D., et al. . (2015). Acarbose treatment affects the serum levels of inflammatory cytokines and the gut content of bifidobacteria in Chinese patients with type 2 diabetes mellitus. J. Diabetes 7, 729–739. doi: 10.1111/1753-0407.12232 PubMed DOI
Sun J., Furio L., Mecheri R., van der Does A. M., Lundeberg E., Saveanu L., et al. . (2015). Pancreatic β-cells limit autoimmune diabetes via an Immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity 43, 304–317. doi: 10.1016/J.IMMUNI.2015.07.013 PubMed DOI
Tai N., Wong F. S., Wen L. (2015). The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev. Endocr. Metab. Disord. 16, 55–65. doi: 10.1007/S11154-015-9309-0 PubMed DOI PMC
Takahashi S., Tomita J., Nishioka K., Hisada T., Nishijima M. (2014). Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS One 9:e105592. doi: 10.1371/journal.pone.0105592 PubMed DOI PMC
Takewaki F., Nakajima H., Takewaki D., Hashimoto Y., Majima S., Okada H., et al. . (2021). Habitual dietary intake affects the altered pattern of gut microbiome by acarbose in patients with type 2 diabetes. Nutrients 13, 1–14. doi: 10.3390/nu13062107 PubMed DOI PMC
Tamanai-Shacoori Z., Smida I., Bousarghin L., Loreal O., Meuric V., Fong S. B., et al. . (2017). Roseburia spp.: a marker of health? Future Microbiol. 12, 157–170. doi: 10.2217/FMB-2016-0130 PubMed DOI
Tang J., Xu L., Zeng Y., Gong F. (2021). Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. Int. Immunopharmacol. 91:107272. doi: 10.1016/J.INTIMP.2020.107272 PubMed DOI
Tetz G., Brown S. M., Hao Y., Tetz V. (2019). Type 1 diabetes: an association between autoimmunity, the dynamics of gut Amyloid-producing E. Coli and their phages. Sci. Rep. 9:9685. doi: 10.1038/s41598-019-46087-x PubMed DOI PMC
Thingholm L. B., Rühlemann M. C., Koch M., Fuqua B., Laucke G., Boehm R., et al. . (2019). Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe 26, 252–264.e10. doi: 10.1016/j.chom.2019.07.004 PubMed DOI PMC
Tilg H., Moschen A. R. (2014). Microbiota and diabetes: an evolving relationship. Gut 63, 1513–1521. doi: 10.1136/GUTJNL-2014-306928 PubMed DOI
Turley S. J., Lee J. W., Dutton-Swain N., Mathis D., Benoist C. (2005). Endocrine self and gut non-self intersect in the pancreatic lymph nodes. Proc. Natl. Acad. Sci. USA 102, 17729–17733. doi: 10.1073/PNAS.0509006102 PubMed DOI PMC
Tuttolomondo A., Maida C., Pinto A. (2015). Diabetic foot syndrome as a possible cardiovascular marker in diabetic patients. J. Diabetes Res. 2015:268390. doi: 10.1155/2015/268390 PubMed DOI PMC
Usta-Gorgun B., Yilmaz-Ersan L. (2020). Short-chain fatty acids production by Bifidobacterium species in the presence of salep. Electron. J. Biotechnol. 47, 29–35. doi: 10.1016/J.EJBT.2020.06.004 DOI
Vaarala O. (2012). Gut microbiota and type 1 diabetes. Rev. Diabet. Stud. 9, 251–259. doi: 10.1900/RDS.2012.9.251 PubMed DOI PMC
Vaarala O. (2013). Human intestinal microbiota and type 1 diabetes. Curr. Diab. Rep. 13, 601–607. doi: 10.1007/s11892-013-0409-5 PubMed DOI
Vaarala O. (2018). Leaking gut in type 1 diabetes. Curr. Opin. Gastroenterol. 6, 701–6. doi: 10.1097/MOG.0b013e32830e6d98 PubMed DOI
van Bommel E. J. M., Herrema H., Davids M., Kramer M. H. H., Nieuwdorp M., van Raalte D. H. (2020). Effects of 12-week treatment with dapagliflozin and gliclazide on faecal microbiome: results of a double-blind randomized trial in patients with type 2 diabetes. Diabetes Metab. 46, 164–168. doi: 10.1016/j.diabet.2019.11.005 PubMed DOI
van Tilburg Bernardes E., Pettersen V. K., Gutierrez M. W., Laforest-Lapointe I., Jendzjowsky N. G., Cavin J. B., et al. . (2020). Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat. Commun. 11, 1–16. doi: 10.1038/s41467-020-16431-1 PubMed DOI PMC
Vatanen T., Franzosa E. A., Schwager R., Tripathi S., Arthur T. D., Vehik K., et al. . (2018). The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562, 589–594. doi: 10.1038/s41586-018-0620-2 PubMed DOI PMC
Vehik K., Lynch K. F., Wong M. C., Tian X., Ross M. C., Gibbs R. A., et al. . (2019). Prospective virome analyses in young children at increased genetic risk for type 1 diabetes. Nat. Med. 25, 1865–1872. doi: 10.1038/s41591-019-0667-0 PubMed DOI PMC
Vekic J., Silva-Nunes J., Rizzo M. (2022). Glucose metabolism disorders: challenges and opportunities for diagnosis and treatment. Meta 12, 10–13. doi: 10.3390/metabo12080712 PubMed DOI PMC
Vrieze A., Van Nood E., Holleman F., Salojärvi J., Kootte R. S., Bartelsman J. F. W. M., et al. . (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916.e7. doi: 10.1053/J.GASTRO.2012.06.031 PubMed DOI
Wang N., Fang J. Y. (2023). Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer. Trends Microbiol. 31, 159–172. doi: 10.1016/j.tim.2022.08.010 PubMed DOI
Wang G., Hu Y. X., He M. Y., Xie Y. H., Su W., Long D., et al. . (2021). Gut-lung Dysbiosis accompanied by diabetes mellitus leads to pulmonary fibrotic change through the NF-κB signaling pathway. Am. J. Pathol. 191, 838–856. doi: 10.1016/J.AJPATH.2021.02.019 PubMed DOI
Wang H., Lu Y., Yan Y., Tian S., Zheng D., Leng D., et al. . (2020). Promising treatment for type 2 diabetes: fecal microbiota transplantation reverses insulin resistance and impaired islets. Front. Cell. Infect. Microbiol. 9, 1–10. doi: 10.3389/fcimb.2019.00455 PubMed DOI PMC
Wang Z., Wang J., Hu J., Chen Y., Dong B., Wang Y. (2021). A comparative study of acarbose, vildagliptin and saxagliptin intended for better efficacy and safety on type 2 diabetes mellitus treatment. Life Sci. 274:119069. doi: 10.1016/j.lfs.2021.119069 PubMed DOI
Wu H., Esteve E., Tremaroli V., Khan M. T., Caesar R., Mannerås-Holm L., et al. . (2017). Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858. doi: 10.1038/nm.4345 PubMed DOI
Wu H., Tremaroli V., Schmidt C., Lundqvist A., Olsson L. M., Krämer M., et al. . (2020). The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metab. 32, 379–390.e3. doi: 10.1016/j.cmet.2020.06.011 PubMed DOI
Wu S., Xiong J., Yu Y. Y. (2015). Taxonomic resolutions based on 18S rRNA genes: a case study of subclass Copepoda. PLoS One 10, 1–19. doi: 10.1371/journal.pone.0131498 PubMed DOI PMC
Wu G., Xu T., Zhao N., Lam Y. Y., Ding X., Wei D., et al. . (2024). A core microbiome signature as an indicator of health. Cell 187, 6550–6565.e11. doi: 10.1016/J.CELL.2024.09.019 PubMed DOI
Wurzbacher C., Larsson E., Bengtsson-Palme J., Van den Wyngaert S., Svantesson S., Kristiansson E., et al. . (2019). Introducing ribosomal tandem repeat barcoding for fungi. Mol. Ecol. Resour. 19, 118–127. doi: 10.1111/1755-0998.12944 PubMed DOI
Xia Y., Xie Z., Huang G., Zhou Z. (2019). Incidence and trend of type 1 diabetes and the underlying environmental determinants. Diabetes Metab. Res. Rev. 35:e3075. doi: 10.1002/dmrr.3075 PubMed DOI
Xie Y. C., Jing X. B., Chen X., Chen L. Z., Zhang S. H., Cai X. B. (2022). Fecal microbiota transplantation treatment for type 1 diabetes mellitus with malnutrition: a case report. Ther. Adv. Chronic Dis. 13:20406223221117449. doi: 10.1177/20406223221117449 PubMed DOI PMC
Yang R. H., Su J. H., Shang J. J., Wu Y. Y., Li Y., Bao D. P., et al. . (2018). Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. PLoS One 13, 1–17. doi: 10.1371/journal.pone.0206428 PubMed DOI PMC
Yang T., Wang H., Li C., Duan H. (2023). Mechanisms of drugs in the treatment of type 2 diabetes mellitus. Chin. Med. J. 136, 394–396. doi: 10.1097/CM9.0000000000002356 PubMed DOI PMC
Yang X., Zhang M., Liu Y., Wei F., Li X., Feng Y., et al. . (2023). Inulin-enriched Megamonas funiformis ameliorates metabolic dysfunction-associated fatty liver disease by producing propionic acid. NPJ Biofilms Microbiomes 9, 1–16. doi: 10.1038/s41522-023-00451-y PubMed DOI PMC
Yazdanpanah L., Shahbazian H., Nazari I., Arti H. R., Ahmadi F., Mohammadianinejad S. E., et al. . (2018). Incidence and risk factors of diabetic foot ulcer: a population-based diabetic foot cohort (ADFC study)-two-year follow-up study. Int. J. Endocrinol. 2018:7631659. doi: 10.1155/2018/7631659 PubMed DOI PMC
Yuan J. H., Xie Q. S., Chen G. C., Huang C. L., Yu T., Chen Q. K., et al. . (2021). Impaired intestinal barrier function in type 2 diabetic patients measured by serum LPS, Zonulin, and IFABP. J. Diabetes Complicat. 35:107766. doi: 10.1016/J.JDIACOMP.2020.107766 PubMed DOI
Ze X., David Y. B., Laverde-Gomez J. A., Dassa B., Sheridan P. O., Duncan S. H., et al. . (2015). Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic firmicutes bacterium ruminococcus bromii. MBio 6:e01058-15. doi: 10.1128/MBIO.01058-15 PubMed DOI PMC
Zhang F., Aschenbrenner D., Yoo J. Y., Zuo T. (2022). The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. Lancet Microbe 3, e969–e983. doi: 10.1016/S2666-5247(22)00203-8 PubMed DOI
Zhang L., Chu J., Hao W., Zhang J., Li H., Yang C., et al. . (2021). Gut microbiota and type 2 diabetes mellitus: association, mechanism, and translational applications. Mediat. Inflamm. 2021:5110276. doi: 10.1155/2021/5110276 PubMed DOI PMC
Zhang Q., Hu N. (2020). Effects of metformin on the gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. 13, 5003–5014. doi: 10.2147/DMSO.S286430 PubMed DOI PMC
Zhang D., Jian Y. P., Zhang Y. N., Li Y., Gu L. T., Sun H. H., et al. . (2023). Short-chain fatty acids in diseases. Cell Commun. Signal 21:212. doi: 10.1186/S12964-023-01219-9 PubMed DOI PMC
Zhang A. H., Qiu S., Xu H. Y., Sun H., Wang X. J. (2014). Metabolomics in diabetes. Clin. Chim. Acta 429, 106–110. doi: 10.1016/J.CCA.2013.11.037 PubMed DOI
Zhang X., Shen D., Fang Z., Jie Z., Qiu X., Zhang C., et al. . (2013). Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8:e71108. doi: 10.1371/journal.pone.0071108 PubMed DOI PMC
Zhang F., Wang M., Yang J., Xu Q., Liang C., Chen B., et al. . (2019). Response of gut microbiota in type 2 diabetes to hypoglycemic agents. Endocrine 66, 485–493. doi: 10.1007/S12020-019-02041-5 PubMed DOI
Zhang X., Zhang Y., Luo L., Le Y., Li Y., Yuan F., et al. . (2023). The beneficial effects of a multispecies probiotic supplement on Glycaemic control and metabolic profile in adults with type 1 diabetes: a randomised, double-blinded, placebo-controlled pilot-study. Diabetes Metab. Syndr. Obes. 16, 829–840. doi: 10.2147/DMSO.S400119 PubMed DOI PMC
Zhao L., Lou H., Peng Y., Chen S., Zhang Y., Li X. (2019). Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine 66, 526–537. doi: 10.1007/s12020-019-02103-8 PubMed DOI
Zhao G., Vatanen T., Droit L., Park A., Kostic A. D., Poon T. W., et al. . (2017). Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proc. Natl. Acad. Sci. USA 114, E6166–E6175. doi: 10.1073/PNAS.1706359114 PubMed DOI PMC
Zheng D., Liwinski T., Elinav E. (2020). Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506. doi: 10.1038/s41422-020-0332-7 PubMed DOI PMC
Zimmermann M., Zimmermann-Kogadeeva M., Wegmann R., Goodman A. L. (2019). Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467. doi: 10.1038/s41586-019-1291-3 PubMed DOI PMC
Zmora N., Zeevi D., Korem T., Segal E., Elinav E. (2016). Taking it personally: personalized utilization of the human microbiome in health and disease. Cell Host Microbe 19, 12–20. doi: 10.1016/J.CHOM.2015.12.016 PubMed DOI
Zou Y., Xue W., Luo G., Deng Z., Qin P., Guo R., et al. . (2019). 1,520 reference genomes from cultivated human gut Bacteria enable functional microbiome analyses. Nat. Biotechnol. 37, 179–185. doi: 10.1038/s41587-018-0008-8 PubMed DOI PMC
Zuppi M., Hendrickson H. L., O’Sullivan J. M., Vatanen T. (2022). Phages in the gut ecosystem. Front. Cell. Infect. Microbiol. 11, 1–13. doi: 10.3389/fcimb.2021.822562 PubMed DOI PMC