Distinct water and phosphorus extraction patterns are key to maintaining the productivity of sorghum under drought and limited soil resources

. 2025 Feb 10 ; 15 (1) : 4949. [epub] 20250210

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39929939
Odkazy

PubMed 39929939
PubMed Central PMC11811011
DOI 10.1038/s41598-025-88705-x
PII: 10.1038/s41598-025-88705-x
Knihovny.cz E-zdroje

Nutrient and water limitations contribute to yield losses in semi-arid regions. Therefore, crop rotations incorporating nitrogen-fixing legumes and drought-tolerant sorghum varieties offer a strategy to improve the utilization of scarce soil resources. Under semi-arid, field-like conditions, sorghum crop rotations with either cowpea pre-crop or fallow, including two early and three late maturing genotypes, were tested to identify stress adaptation traits of sorghum to water and phosphorus limitations. Morphological and physiological parameters were evaluated on a single-plant basis. Lower soil P content significantly delayed flowering compared to higher P levels. However, improved P availability arising from pre-crop residues reduced this effect. Mycorrhizal infection rates and root-to-shoot ratios were positively correlated with panicle N and P content at anthesis under low P conditions. Although drought significantly impacted yield, early maturing genotypes with the highest reduction in shoot biomass and reduced water use before flowering, could sustain yield production. Early-maturing genotypes characterized by high root-to-shoot ratios, rapid AMF establishment, and reduced water use before flowering exhibit a strong potential for maintaining yield and biomass production on nutrient-poor soils in semi-arid regions. Such genotypes conserve water before flowering and thus can alleviate post-flowering water stress, ensuring adequate P uptake despite low soil P availability.

Zobrazit více v PubMed

Rockström, J. & Falkenmark, M. Agriculture: increase water harvesting in Africa. Nature 519, 283–285. 10.1038/519283a (2015). PubMed

Sahrawat, K. L. How fertile are semi-arid tropical soils? Curr. Sci., 1671–1674 (2016).

Huang, J. et al. Global semi-arid climate change over last 60 years. Clim. Dyn. 46, 1131–1150. 10.1007/s00382-015-2636-8 (2016).

Saco, P. M. et al. Vegetation and soil degradation in drylands: non linear feedbacks and early warning signals. Curr. Opin. Environ. Sci. Health. 5, 67–72. 10.1016/j.coesh.2018.06.001 (2018).

United Nations. World Population Prospects (United Nations, 2019).

Franke, A. C., van den Brand, G. J., Vanlauwe, B. & Giller, K. E. Sustainable intensification through rotations with grain legumes in Sub-saharan Africa: a review. Agric. Ecosyst. Environ. 261, 172–185. 10.1016/j.agee.2017.09.029 (2018). PubMed PMC

Murty, M. V., Singh, P., Wani, S. P., Khairwal, I. S. & Srinivas, K. Yield gap analysis of sorghum and pearl millet in India using simulation modeling. (2007).

FAO, Food, F. & Agriculture Organization. https://www.fao.org/faostat/en/#data/QCL. (2023).

Ronda, V., Aruna, C., Visarada, K. & Bhat, B. V. Sorghum for Animal Feed. In Breeding Sorghum for Diverse End Uses (Elsevier pp. 229–238. (2019).

Rooney, W. L., Blumenthal, J., Bean, B. & Mullet, J. E. Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod. Bioref. 1, 147–157. 10.1002/bbb.15 (2007).

Belton, P. S. & Taylor, J. R. Sorghum and millets: protein sources for Africa. Trends Food Sci. Technol. 15, 94–98. 10.1016/j.tifs.2003.09.002 (2004).

Hariprasanna, K., Patil, J. V. & Sorghum Origin, Classification, Biology and Improvement. In Sorghum Molecular Breeding. R. Madhusudhana, P. Rajendrakumar, J. V. Patil (eds). Springer, 3–20. (2015).

Kholová, J., McLean, G., Vadez, V., Craufurd, P. & Hammer, G. L. Drought stress characterization of post-rainy season (rabi) sorghum in India. Field Crops Res. 141, 38–46. 10.1016/j.fcr.2012.10.020 (2013).

Assefa, Y., Staggenborg, S. A. & Prasad, V. P. V. Grain Sorghum Water Requirement and responses to Drought stress: a review. Crop Manage. 9, 1–11. 10.1094/CM-2010-1109-01-RV (2010).

Passioura, J. B. Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct. Plant. Biology: FPB. 39, 851–859. 10.1071/FP12079 (2012). PubMed

Fang, Y. & Xiong, L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell. Mol. Life Sci. 72, 673–689. 10.1007/s00018-014-1767-0 (2015). PubMed PMC

Karthika, G., Choudhary, S., ganesan, M., Kholova, J. & Vadez, V. A comparative analysis of transpiration response to atmospheric increasing vapor pressure deficit conditions in cereal crops. Electron. Journ Plan. Breed. 9, 1461. 10.5958/0975-928X.2018.00181.3 (2018).

Abraha, T., Githiri, S. M., Kasili, R., Araia, W. & Nyende, A. B. Genetic variation among Sorghum (Sorghum bicolor L. Moench) Landraces from Eritrea under Post-flowering Drought stress conditions. AJPS 06, 1410–1424. 10.4236/ajps.2015.69141 (2015).

van Oosterom, E. J., Borrell, A. K., Deifel, K. S. & Hammer, G. L. Does increased Leaf Appearance Rate Enhance Adaptation to Postanthesis Drought stress in Sorghum? Crop Sci. 51, 2728–2740. 10.2135/cropsci2011.01.0031 (2011).

Reddy, B. V. S., Kumar, A. A., Reddy, P. S. & Elangovan, M. Sorghum germplasm: diversity and utilization. 92906651 (2008).

Anbazhagan, K. et al. Socio-Economic Dimension for Agro-Tech Transfer: A Case Study of Post-Rainy Sorghum Cultivars Transfer to Farming Communities in Adilabad, India (2019).

Weltzien, E., Rattunde, H. F. W., van Mourik, T. A. & Ajeigbe, H. A. Sorghum cultivation and improvement in West and Central Africa. In Achieving sustainable cultivation of sorghum Volume 2. W. Rooney (eds). (Burleigh Dodds Science Publishing, 217–240. (2018).

Selvaraju, R. Land configuration and soil nutrient management options for sustainable crop production on Alfisols and Vertisols of southern peninsular India. Soil Tillage. Res. 52, 203–216 (1999).

Sharma, K. L. et al. Long-term soil management effects on crop yields and soil quality in a dryland Alfisol. Soil Tillage. Res. 83, 246–259. 10.1016/j.still.2004.08.002 (2005).

Nziguheba, G. et al. Phosphorus in smallholder farming systems of sub-saharan Africa: implications for agricultural intensification. Fertil. Res. 104, 321–340. 10.1007/s10705-015-9729-y (2016).

Pankhurst, C. E., Pierret, A., Hawke, B. G. & Kirby, J. M. Microbiological and chemical properties of soil associated with macropores at different depths in a red-duplex soil in NSW Australia. Plant. Soil. 238, 11–20. 10.1023/A:1014289632453 (2002).

Alvey, S., Bagayoko, M., Neumann, G. & Buerkert, A. Cereal/legume rotations affect chemical properties and biological activities in two west African soils. Plant. Soil. 231, 45–54. 10.1023/A:1010386800937 (2001).

Leiser, W. L. et al. Selection strategy for Sorghum Targeting Phosphorus-limited environments in West Africa: analysis of multi-environment experiments. Crop Sci. 52, 2517–2527. 10.2135/cropsci2012.02.0139 (2012).

Lockman, R. B. Mineral composition of grain sorghum plant samples. Part III: suggested nutrient sufficiency limits at various stages of growth. Commun. Soil Sci. Plant Anal. 3, 295–303. 10.1080/00103627209366379 (1972).

Leiser, W. L. et al. Phosphorous Efficiency and Tolerance traits for Selection of Sorghum for performance in Phosphorous-Limited environments. Crop Sci. 55, 1152–1162. 10.2135/cropsci2014.05.0392 (2015).

Seetharama, N., Krishna, K. R., Rego, T. J. & Burford, J. R. Prospects for sorghum improvement for phosphorus efficiency. In Sorghum for Acid Soils: Proceedings of a Workshop on Evaluating Sorghum for Tolerance to Al-toxic Tropical Soils in Latin America: Held in Cali, Colombia, 28 May to 2 June, 1984 (CIAT1984), 229. (1984).

Lambers, H. Phosphorus Acquisition and utilization in plants. Annu. Rev. Plant Biol. 73, 17–42. 10.1146/annurev-arplant-102720-125738 (2022). PubMed

Kiers, E. T. et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 333, 880–882. 10.1126/science.1208473 (2011). PubMed

Olander, L. P. & Vitousek, P. M. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49, 175–191. 10.1023/A:1006316117817 (2000).

Postma, J. A., Schurr, U. & Fiorani, F. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation. Biotechnol. Adv. 32, 53–65. 10.1016/j.biotechadv.2013.08.019 (2014). PubMed

Cakmak, I., Hengeler, C. & Marschner, H. Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J. Exp. Bot. 45, 1245–1250. 10.1093/jxb/45.9.1245 (1994).

Pypers, P. et al. Plant-available P for Maize and Cowpea in P-deficient soils from the Nigerian Northern Guinea Savanna – Comparison of E- and L-values. Plant. Soil. 283, 251–264. 10.1007/s11104-006-0016-1 (2006).

Krasilnikoff, G., Gahoonia, T. & Nielsen, N. E. Variation in phosphorus uptake efficiency by genotypes of cowpea (Vigna unguiculata) due to differences in root and root hair length and induced rhizosphere processes. Plant. Soil. 251, 83–91. 10.1023/A:1022934213879 (2003).

Sauerborn, J., Sprich, H. & Mercer-Quarshie, H. Crop rotation to Improve Agricultural production in Sub-saharan Africa. J. Agron. Crop Sci. 184, 67–72. 10.1046/j.1439-037x.2000.00368.x (2000).

Tonitto, C. & Ricker-Gilbert, J. E. Nutrient management in African sorghum cropping systems: applying meta-analysis to assess yield and profitability. Agron. Sustain. Dev. 36. 10.1007/s13593-015-0336-8 (2016).

Parra-Londono, S. et al. Sorghum root-system classification in contrasting P environments reveals three main rooting types and root-architecture-related marker-trait associations. Ann. Bot. 121, 267–280. 10.1093/aob/mcx157 (2018). PubMed PMC

Borrell, A. K. et al. Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns. New Phytol. 203, 817–830. 10.1111/nph.12869 (2014). PubMed

Passioura, J. B. & Angus, J. F. Improving Productivity of Crops in Water-Limited Environments. In Advances in Agronomy v106 Elsevier, 37–75. (2010).

Ahmed, M. A., Passioura, J. & Carminati, A. Hydraulic processes in roots and the rhizosphere pertinent to increasing yield of water-limited grain crops: a critical review. J. Exp. Bot. 69, 3255–3265. 10.1093/jxb/ery183 (2018). PubMed

Blum, A. & Arkin, G. F. Sorghum root growth and water-use as affected by water supply and growth duration. Field Crops Res. 9, 131–142. (1984).

Bacher, H., Sharaby, Y., Walia, H. & Peleg, Z. Modifying root-to-shoot ratio improves root water influxes in wheat under drought stress. J. Exp. Bot. 73, 1643–1654. 10.1093/jxb/erab500 (2022). PubMed

Turner, N. C. & Nicolas, M. E. Early vigour: a yield-positive characteristic for wheat in drought-prone mediterranean-type environments. Crop Improv. Stress Tolerance, 47–62 (1998).

Vadez, V. et al. Responses to Increased Moisture Stress and Extremes: Whole Plant Response to Drought under Climate Change. In Crop Adaptation to Climate Change. S. S. Yadav, R. J. Redden, J. L. Hatfield, H. Lotze-Campen, A. E. Hall (eds). Wiley-Blackwell, Oxford, UK, pp. 186–197. (2011).

Freschet, G. T., Violle, C., Bourget, M. Y., Scherer-Lorenzen, M. & Fort, F. Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. New Phytol. 219, 1338–1352. 10.1111/nph.15225 (2018). PubMed

Gholipoor, M., Sinclair, T. R. & Prasad, P. V. V. genotypic variation within sorghum for transpiration response to drying soil. Plant. Soil. 357, 35–40. 10.1007/s11104-012-1140-8 (2012).

Koester, M. et al. From rock eating to vegetarian ecosystems — disentangling processes of phosphorus acquisition across biomes. Geoderma 388, 114827. 10.1016/j.geoderma.2020.114827 (2021).

Plaxton, W. C. & Lambers, H. (eds) Annual Plant Reviews Volume 48 (Wiley, 2015).

Bhadoria, P. B., Kaselowsky, J., Claassen, N. & Jungk, A. Phosphate diffusion coefficients in soil as affected by bulk density and water content. Z. Pflanzenernaehr Bodenk. 154, 53–57 (1991).

Thorup-Kristensen, K. & Kirkegaard, J. Root system-based limits to agricultural productivity and efficiency: the farming systems context. Ann. Bot. 118, 573–592. 10.1093/aob/mcw122 (2016). PubMed PMC

Lynch, J. P. Roots of the second Green Revolution. Aust J. Bot. 55, 493. 10.1071/BT06118 (2007).

Tsuji, W. et al. Development and distribution of root system in two grain sorghum cultivars originated from Sudan under drought stress. Plant. Prod. Sci. 8, 553–562 (2005).

Stone, L. R., Goodrum, D. E., Jaafar, M. N. & Khan, A. H. Rooting Front and Water Depletion Depths in Grain Sorghum and sunflower. Agron. J. 93, 1105–1110. 10.2134/agronj2001.9351105x (2001).

Reddy, P. S., Reddy, B. V. & Ashok Kumar A. M 35 – 1 derived sorghum varieties for cultivation during the postrainy season. e-Journal of SAT Agricultural Research. J. SAT Agric. Res. 7 (2009).

Vadez, V. et al. Root research for drought tolerance in legumes: Quo Vadis? J. Food Legumes. 21, 77–85 (2008).

Vadez, V., Krishnamurthy, L., Hash, C. T., Upadhyaya, H. D. & Borrell, A. K. Yield, transpiration efficiency, and water-use variations and their interrelationships in the sorghum reference collection. Crop Pasture Sci. 62, 645. 10.1071/CP11007 (2011).

Vadez, V. & Ratnakumar, P. High transpiration efficiency increases pod yield under intermittent drought in dry and hot atmospheric conditions but less so under wetter and cooler conditions in groundnut (Arachis hypogaea (L)). Field Crops Res. 193, 16–23. 10.1016/j.fcr.2016.03.001 (2016). PubMed PMC

Reddy, B. V. S., Seetharama, N. & House, L. R. Sorghums in the Post-rainy season. I. Effect of Irrigation and date of sowing on the grain and Stover yields of diverse cultivars. Ex. Agric. 24, 31–36. 10.1017/S0014479700015672 (1988).

Stickler, F. C., Wearden, S. & Pauli, A. W. Leaf Area determination in Grain Sorghum 1. Agron. J. 53, 187–188. 10.2134/agronj1961.00021962005300030018x (1961).

Heinrichs, H., Brumsack, H. J., Loftfield, N. & König, N. Verbessertes Druckaufschlußsystem für biologische und anorganische Materialien. Z. Pflanzenernaehr Bodenk. 149, 350–353. 10.1002/jpln.19861490313 (1986).

Donald, M. C. (ed Hamblin, J.) The Biological Yield and Harvest Index of Cereals as agronomic and plant breeding criteria. Elsevier 28 361–405 (1976).

Vaux, H. J. Jr & Pruitt, W. O. Crop-water production functions. In Advances in irrigation Elsevier, 61–97. (1983).

Vierheilig, H., Coughlan, A. P., Wyss, U. & Piche, Y. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl. Environ. Microbiol. 64, 5004–5007. 10.1128/AEM.64.12.5004-5007.1998 (1998). PubMed PMC

Nicolson, T. H. The Mycotrophic Habit in Grasses. University of Nottingham. (1955).

Stock, S. C. et al. Plant carbon investment in fine roots and arbuscular mycorrhizal fungi: a cross-biome study on nutrient acquisition strategies. Sci. Total Environ. 781, 146748. 10.1016/j.scitotenv.2021.146748 (2021).

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...