Internet of Robotic Things: Current Technologies, Challenges, Applications, and Future Research Topics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.10.03.01/00/22_003/0000048
European Union under the RE-FRESH
PubMed
39943403
PubMed Central
PMC11820596
DOI
10.3390/s25030765
PII: s25030765
Knihovny.cz E-zdroje
- Klíčová slova
- IoRT, cloud-based, industrial applications, industry 4.0, industry 5.0, robot, robotic things, smart factories,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This article focuses on the integration of the Internet of Things (IoT) and the Internet of Robotic Things, representing a dynamic research area with significant potential for industrial applications. The Internet of Robotic Things (IoRT) integrates IoT technologies into robotic systems, enhancing their efficiency and autonomy. The article provides an overview of the technologies used in IoRT, including hardware components, communication technologies, and cloud services. It also explores IoRT applications in industries such as healthcare, agriculture, and more. The article discusses challenges and future research directions, including data security, energy efficiency, and ethical issues. The goal is to raise awareness of the importance of IoRT and demonstrate how this technology can bring significant benefits across various sectors.
Zobrazit více v PubMed
Al-Fuqaha A., Guizani M., Mohammadi M., Aledhari M., Ayyash M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015;17:2347–2376. doi: 10.1109/COMST.2015.2444095. DOI
Gubbi J., Buyya R., Marusic S., Palaniswami M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013;29:1645–1660. doi: 10.1016/j.future.2013.01.010. DOI
Xu L.D., He W., Li S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014;10:2233–2243. doi: 10.1109/TII.2014.2300753. DOI
Khan Y., Ostfeld A.E., Lochner C.M., Pierre A., Arias A.C. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Adv. Mater. 2016;28:4373–4395. doi: 10.1002/adma.201504366. PubMed DOI
Rahmani A.M., Gia T.N., Negash B., Anzanpour A., Azimi I., Jiang M., Liljeberg P. Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Gener. Comput. Syst. 2018;78:641–658. doi: 10.1016/j.future.2017.02.014. DOI
Dimitrov D.V. Medical internet of things and big data in healthcare. Healthc. Inform. Res. 2016;22:156–163. doi: 10.4258/hir.2016.22.3.156. PubMed DOI PMC
Tzounis A., Katsoulas N., Bartzanas T., Kittas C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017;164:31–48. doi: 10.1016/j.biosystemseng.2017.09.007. DOI
Ayaz M., Ammad-Uddin M., Sharif Z., Mansour A., Aggoune E.H.M. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access. 2019;7:129551–129583. doi: 10.1109/ACCESS.2019.2932609. DOI
Talavera J.M., Tobón L.E., Gómez J.A., Culman M.A., Aranda J.M., Parra D.T., Quiroz L.A., Hoyos A., Garreta L.E. Review of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 2017;142:283–297. doi: 10.1016/j.compag.2017.09.015. DOI
Kott A., Swami A., West B.J. The Internet of Battle Things. Computer. 2016;49:70–75. doi: 10.1109/MC.2016.355. DOI
Shi W., Cao J., Zhang Q., Li Y., Xu L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016;3:637–646. doi: 10.1109/JIOT.2016.2579198. DOI
Chiang M., Zhang T. Fog and IoT: An Overview of Research Opportunities. IEEE Internet Things J. 2016;3:854–864. doi: 10.1109/JIOT.2016.2584538. DOI
Naik N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP; Proceedings of the 2017 IEEE International Systems Engineering Symposium (ISSE); Vienna, Austria. 11–13 October 2017; DOI
Botta A., De Donato W., Persico V., Pescapé A. Integration of Cloud computing and Internet of Things: A survey. Future Gener. Comput. Syst. 2016;56:684–700. doi: 10.1016/j.future.2015.09.021. DOI
Kiesler N., Impagliazzo J. Internet of Everything. Volume 458. Springer; Cham, Swizerland: 2023. Perspectives on the Internet of Everything; pp. 3–17. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST. DOI
Jin B., Khan F., Alturki R., Ikram M.A. Computational intelligence-enabled prediction and communication mechanism for IoT-based autonomous systems. ISA Trans. 2023;132:146–154. doi: 10.1016/j.isatra.2022.06.007. PubMed DOI
Wang B., Tao F., Fang X., Liu C., Liu Y., Freiheit T. Smart Manufacturing and Intelligent Manufacturing: A Comparative Review. Engineering. 2021;7:738–757. doi: 10.1016/j.eng.2020.07.017. DOI
Oztemel E., Gursev S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2020;31:127–182. doi: 10.1007/s10845-018-1433-8. DOI
Wall D., McCullagh P., Cleland I., Bond R. Development of an Internet of Things solution to monitor and analyse indoor air quality. Internet Things. 2021;14:100392. doi: 10.1016/j.iot.2021.100392. DOI
Lombardi M., Pascale F., Santaniello D. Internet of things: A general overview between architectures, protocols and applications. Information. 2021;12:87. doi: 10.3390/info12020087. DOI
Mousavi S.K., Ghaffari A., Besharat S., Afshari H. Security of internet of things based on cryptographic algorithms: A survey. Wirel. Netw. 2021;27:1515–1555. doi: 10.1007/s11276-020-02535-5. DOI
Bragança S., Costa E., Castellucci I., Arezes P.M. Occupational and Environmental Safety and Health. Springer; Cham, Switzerland: 2019. A brief overview of the use of collaborative robots in industry 4.0: Human role and safety; pp. 641–650.
Sagiroglu S., Sinanc D. Big data: A review; Proceedings of the 2013 international conference on collaboration technologies and systems (CTS); San Diego, CA, USA. 20–24 May 2013; Piscataway, NJ, USA: IEEE; 2013. pp. 42–47.
Soori M., Arezoo B., Dastres R. Internet of things for smart factories in industry 4.0, a review. Internet Things-Cyber-Phys. Syst. 2023;3:192–204. doi: 10.1016/j.iotcps.2023.04.006. DOI
Hussain R., Zeadally S. Autonomous cars: Research results, issues, and future challenges. IEEE Commun. Surv. Tutor. 2018;21:1275–1313. doi: 10.1109/COMST.2018.2869360. DOI
Dudhe P., Kadam N., Hushangabade R.M., Deshmukh M.S. Internet of Things (IOT): An overview and its applications; Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS); Chennai, India. 1–2 August 2017; pp. 2650–2653. DOI
Sayeed A., Verma C., Kumar N., Koul N., Illés Z. Approaches and Challenges in Internet of Robotic Things. Future Internet. 2022;14:265. doi: 10.3390/fi14090265. DOI
Masuda Y., Zimmermann A., Shirasaka S., Nakamura O. Internet of robotic things with digital platforms: Digitization of robotics enterprise. Smart Innov. Syst. Technol. 2021;189:381–391. doi: 10.1007/978-981-15-5784-2_31. DOI
ElBanhawy M., Mohamed A., Saber W., Rizk R.Y. The Internet of Robotic Things: A Review of Concept, Challenges and Applications. Lect. Notes Data Eng. Commun. Technol. 2023;184:316–326. doi: 10.1007/978-3-031-43247-7_28. DOI
Paolone G., Iachetti D., Paesani R., Pilotti F., Marinelli M., Di Felice P. A Holistic Overview of the Internet of Things Ecosystem. IoT. 2022;3:398–434. doi: 10.3390/iot3040022. DOI
Kabir H., Tham M.L., Chang Y.C. Internet of robotic things for mobile robots: Concepts, technologies, challenges, applications, and future directions. Digit. Commun. Netw. 2023;9:1265–1290. doi: 10.1016/j.dcan.2023.05.006. DOI
Raza A., Baloch M.H., Ali I., Ali W., Hassan M., Karim A. Artificial Intelligence and IoT-Based Autonomous Hybrid Electric Vehicle with Self-Charging Infrastructure; Proceedings of the 2022 International Conference on Emerging Technologies in Electronics, Computing and Communication (ICETECC); Jamshoro, Pakistan. 7–9 December 2022; pp. 1–6. DOI
Balasubramaniam P., Muthurajan A.K., Arivazhagan A.R., Jayaprakasam H. IoT based multitasking robotic vehicle. AIP Conf. Proc. 2023;2857:020075. doi: 10.1063/5.0169337. DOI
Romeo L., Petitti A., Marani R., Milella A. Internet of Robotic Things in Smart Domains: Applications and Challenges. Sensors. 2020;20:3355. doi: 10.3390/s20123355. PubMed DOI PMC
Eder A., Koller W., Mahlberg B. The contribution of industrial robots to labor productivity growth and economic convergence: A production frontier approach. J. Product. Anal. 2024;61:157–181. doi: 10.1007/s11123-023-00707-x. DOI
Hjorth S., Chrysostomou D. Human–robot collaboration in industrial environments: A literature review on non-destructive disassembly. Robot. Comput.-Integr. Manuf. 2022;73:102208. doi: 10.1016/j.rcim.2021.102208. DOI
Maurtua I., Ibarguren A., Kildal J., Susperregi L., Sierra B. Human–robot collaboration in industrial applications: Safety, interaction and trust. Int. J. Adv. Robot. Syst. 2017;14:1729881417716010. doi: 10.1177/1729881417716010. DOI
Othman U., Yang E. Human–Robot Collaborations in Smart Manufacturing Environments: Review and Outlook. Sensors. 2023;23:5663. doi: 10.3390/s23125663. PubMed DOI PMC
Guerra-Zubiaga D.A., Luong K.Y. Energy consumption parameter analysis of industrial robots using design of experiment methodology. Int. J. Sustain. Eng. 2021;14:996–1005. doi: 10.1080/19397038.2020.1805040. DOI
Wang X., Chi Y., Li F., Gao L., Peng Y. The research of industrial robots design based on synchronous technology. Appl. Mech. Mater. 2012;233:347–350. doi: 10.4028/www.scientific.net/AMM.233.347. DOI
Amiri P., Müller M., Southgate M., Theodoridis T., Wei G., Richards-Brown M., Holderbaum W. A Statistical Analysis of Commercial Articulated Industrial Robots and Cobots. J. Manuf. Mater. Process. 2024;8:216. doi: 10.3390/jmmp8050216. DOI
Dzedzickis A., Subačiūtė-Žemaitienė J., Šutinys E., Samukaitė-Bubnienė U., Bučinskas V. Advanced Applications of Industrial Robotics: New Trends and Possibilities. Appl. Sci. 2022;12:135. doi: 10.3390/app12010135. DOI
Siemasz R., Tomczuk K., Malecha Z. 3D printed robotic arm with elements of artificial intelligence. Procedia Comput. Sci. 2020;176:3741–3750. doi: 10.1016/j.procs.2020.09.013. DOI
Wu K., Li J., Zhao H., Zhong Y. Review of Industrial Robot Stiffness Identification and Modelling. Appl. Sci. 2022;12:8719. doi: 10.3390/app12178719. DOI
Tipary B., Erdős G. Tolerance analysis for robotic pick-and-place operations. Int. J. Adv. Manuf. Technol. 2021;117:1405–1426. doi: 10.1007/s00170-021-07672-5. DOI
Ji W., Wang L. Industrial robotic machining: A review. Int. J. Adv. Manuf. Technol. 2019;103:1239–1255. doi: 10.1007/s00170-019-03403-z. DOI
Martinova L.I., Sokolov S.S., Nikishechkin P.A. Advances in Swarm and Computational Intelligence. Volume 9141. Springer; Cham, Switzerland: 2015. Tools for monitoring and parameter visualization in computer control systems of industrial robots; pp. 200–207. Lecture Notes in Computer Science. DOI
Hoang M., Chen S., Go M., Yu Z., Lo A., Brumley A., Li M., Santiago R., Dobbs S.K., Ocampo J. Designing Regenerative and Sustainable High Endurance Unmanned Aerial Vehicles; Proceedings of the 2024 IEEE Conference on Technologies for Sustainability (SusTech); Portland, OR, USA. 14–17 April 2024; pp. 212–219. DOI
Airbus Defence and Space Zephyr: The Stratospheric UAS. 2024. [(accessed on 9 October 2024)]. Available online: https://www.airbus.com/en/products-services/defence/uas/uas-solutions/zephyr.
Sharma N., Pandey J.K., Mondal S. A Review of Mobile Robots: Applications and Future Prospect. Int. J. Precis. Eng. Manuf. 2023;24:1695–1706. doi: 10.1007/s12541-023-00876-7. DOI
Rubio F., Valero F., Llopis-Albert C. A review of mobile robots: Concepts, methods, theoretical framework, and applications. Int. J. Adv. Robot. Syst. 2019;16:1729881419839596. doi: 10.1177/1729881419839596. DOI
Hijikata M., Miyagusuku R., Ozaki K. Wheel Arrangement of Four Omni Wheel Mobile Robot for Compactness. Appl. Sci. 2022;12:5798. doi: 10.3390/app12125798. DOI
Dhanush D., Raghul K.R., KR S.R., Mukund P.G., Ganesan M. An Omni-Directional Self driving Robot for Indoor Surveillance; Proceedings of the 2024 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT); Karaikal, India. 4–5 July 2024; pp. 1–6. DOI
Hwang S.H., Jang I.S., Kim D.H., Kim H.J. Safe Motion Planning and Control for Mobile Robots: A Survey. Int. J. Control. Autom. Syst. 2024;22:2955–2969. doi: 10.1007/s12555-024-0784-5. DOI
Bradshaw J.M. An introduction to software agents. Softw. Agents. 1997;4:3–46.
Rawassizadeh R., Sen T., Kim S.J., Meurisch C., Keshavarz H., Mühlhäuser M., Pazzani M. Manifestation of virtual assistants and robots into daily life: Vision and challenges. CCF Trans. Pervasive Comput. Interact. 2019;1:163–174. doi: 10.1007/s42486-019-00014-1. DOI
Aylett R., Ballin D. Intelligent Virtual Agents. Springer; Berlin/Heidelberg, Germany: 2013.
Sandini G., Sciutti A., Morasso P. Artificial cognition vs. artificial intelligence for next-generation autonomous robotic agents. Front. Comput. Neurosci. 2024;18:1349408. doi: 10.3389/fncom.2024.1349408. PubMed DOI PMC
Rohit K., Shankar A., Katiyar G., Mehrotra A., Alzeiby E.A. Consumer engagement in chatbots and voicebots. A multiple-experiment approach in online retailing context. J. Retail. Consum. Serv. 2024;78:103728. doi: 10.1016/j.jretconser.2024.103728. DOI
Patrício L., Varela L., Silveira Z. Integration of Artificial Intelligence and Robotic Process Automation: Literature Review and Proposal for a Sustainable Model. Appl. Sci. 2024;14:9648. doi: 10.3390/app14219648. DOI
Gopal L.S., Prabha R., Pullarkatt D., Ramesh M.V. Machine Learning based Classification of Online News Data for Disaster Management; Proceedings of the 2020 IEEE Global Humanitarian Technology Conference (GHTC); Seattle, WA, USA. 29 October–1 November 2020; pp. 1–8. DOI
Qiu B., Chen S., Gu Y., Zhang C., Yang G. Concurrent layout and trajectory optimization for robot workcell toward energy-efficient and collision-free automation. Int. J. Adv. Manuf. Technol. 2022;122:263–275. doi: 10.1007/s00170-022-09398-4. DOI
Siciliano B., Khatib O., editors. Springer Handbook of Robotics. Springer International Publishing; Cham, Switzerland: 2016. DOI
Flammini A., Ferrari P., Marioli D., Sisinni E., Taroni A. Wired and wireless sensor networks for industrial applications. Microelectron. J. 2009;40:1322–1336. doi: 10.1016/j.mejo.2008.08.012. DOI
Deveci B.U., Bas H., Ummak E., Albayrak O., Unal P. A Thorough Analysis and Comparison of Data Communication Protocols Used in Industry 4.0: The Case of Smart-CNC; Proceedings of the 2022 9th International Conference on Future Internet of Things and Cloud (FiCloud); Rome, Italy. 22–24 August 2022; pp. 199–206. DOI
Wollschlaeger M., Sauter T., Jasperneite J. The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0. IEEE Ind. Electron. Mag. 2017;11:17–27. doi: 10.1109/MIE.2017.2649104. DOI
Chettri L., Bera R. A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems. IEEE Internet Things J. 2020;7:16–32. doi: 10.1109/JIOT.2019.2948888. DOI
Sufyan A., Khan K.B., Khashan O.A., Mir T., Mir U. From 5G to beyond 5G: A Comprehensive Survey of Wireless Network Evolution, Challenges, and Promising Technologies. Electronics. 2023;12:2200. doi: 10.3390/electronics12102200. DOI
Mosenia A., Jha N.K. A Comprehensive Study of Security of Internet-of-Things. IEEE Trans. Emerg. Top. Comput. 2017;5:586–602. doi: 10.1109/TETC.2016.2606384. DOI
Xu X., Zang S., Bilal M., Xu X., Dou W. Intelligent architecture and platforms for private edge cloud systems: A review. Future Gener. Comput. Syst. 2024;160:457–471. doi: 10.1016/j.future.2024.06.024. DOI
Vermesan O., Bahr R., Ottella M., Serrano M., Karlsen T., Wahlstrøm T., Sand H.E., Ashwathnarayan M., Gamba M.T. Internet of Robotic Things Intelligent Connectivity and Platforms. Front. Robot. AI. 2020;7:104. doi: 10.3389/frobt.2020.00104. PubMed DOI PMC
Bhat K.U., Kumar N., Koul N., Verma C., Enescu F.M., Raboaca M.S. Intelligent Communication for Internet of Things (IoRT) In: Singh Y., Verma C., Zoltán I., Chhabra J.K., Singh P.K., editors. Proceedings of the International Conference on Recent Innovations in Computing. Springer; Singapore: 2023. pp. 313–328.
Paul B. Internet of Things (IoT), Three-Layer Architecture, Security Issues and Counter Measures. In: Fong S., Dey N., Joshi A., editors. Proceedings of the ICT Analysis and Applications. Springer; Singapore: 2022. pp. 23–34.
Adi P.D.P., Kitagawa A., Akita J. Finger Robotic control use M5Stack board and MQTT Protocol based; Proceedings of the 2020 7th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE); Semarang, Indonesia. 24–25 September 2020; pp. 1–6. DOI
Li X.Q., Ding X., Zhang Y., Sun Z.P., Zhao H.W. IoT family robot based on raspberry Pi; Proceedings of the 2016 International Conference on Information System and Artificial Intelligence (ISAI); Hong Kong, China. 24–26 June 2016; pp. 622–625. DOI
Joshi J., Kurian D., Awasthi S.B.P., Mukherjee S., Mittal S., Sharma S. Health Monitoring Using Wearable Sensor and Cloud Computing; Proceedings of the 2016 International Conference on Cybernetics, Robotics and Control; Hong Kong, China. 19–21 August 2016; pp. 104–108. DOI
Kim W.S., Lee W.S., Kim Y.J. A Review of the Applications of the Internet of Things (IoT) for Agricultural Automation. J. Biosyst. Eng. 2020;45:385–400. doi: 10.1007/s42853-020-00078-3. DOI
Sharma A., Kapoor D.S., Nayyar A., Qureshi B., Singh K.J., Thakur K. Exploration of IoT Nodes Communication Using LoRaWAN in Forest Environment. Comput. Mater. Contin. 2022;71:6240–6256. doi: 10.32604/cmc.2022.024639. DOI
Samuel S.S.I. A review of connectivity challenges in IoT-smart home; Proceedings of the 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC); Muscat, Oman. 15–16 March 2016; pp. 364–367. DOI
Al-Sarawi S., Anbar M., Alieyan K., Alzubaidi M. Internet of Things (IoT) communication protocols: Review; Proceedings of the 2017 8th International Conference on Information Technology (ICIT); Amman, Jordan. 17–18 May 2017; pp. 685–690. DOI
Amaran M.H., Noh N.A.M., Rohmad M.S., Hashim H. A Comparison of Lightweight Communication Protocols in Robotic Applications. Procedia Comput. Sci. 2015;76:400–405. doi: 10.1016/j.procs.2015.12.318. DOI
Zhang J., Ma M., Wang P., dong Sun X. Middleware for the Internet of Things: A survey on requirements, enabling technologies, and solutions. J. Syst. Archit. 2021;117:102098. doi: 10.1016/j.sysarc.2021.102098. DOI
Ngu A.H., Gutierrez M., Metsis V., Nepal S., Sheng Q.Z. IoT Middleware: A Survey on Issues and Enabling Technologies. IEEE Internet Things J. 2017;4:1–20. doi: 10.1109/JIOT.2016.2615180. DOI
Babiuch M., Foltýnek P. Creating a Mobile Application with the ESP32 Azure IoT Development Board Using a Cloud Platform; Proceedings of the 2021 22nd International Carpathian Control Conference (ICCC); Velké Karlovice, Czech Republic. 31 May–1 June 2021; pp. 1–4. DOI
Ayaida M., Messai N., Valentin F., Marcheras D. TalkRoBots: A Middleware for Robotic Systems in Industry 4.0. Future Internet. 2022;14:109. doi: 10.3390/fi14040109. DOI
The Open Source Robotics Foundation Robot Operating System (ROS) 2025. [(accessed on 6 January 2025)]. Available online: https://ros.org/
The Open Source Robotics Foundation Micro ROS. 2025. [(accessed on 6 January 2025)]. Available online: https://micro.ros.org/
Aleem S., Ahmed F., Batool R., Khattak A. Empirical Investigation of Key Factors for SaaS Architecture. IEEE Trans. Cloud Comput. 2021;9:1037–1049. doi: 10.1109/TCC.2019.2906299. DOI
Saraswat M., Tripathi R. Cloud Computing: Analysis of Top 5 CSPs in SaaS, PaaS and IaaS Platforms; Proceedings of the 9th International Conference on System Modeling & Advancement in Research Trends (SMART); Moradabad, India. 4–5 December 2020; Piscataway, NJ, USA: IEEE; 2020. pp. 300–305. DOI
Kim J.H., Starr J.W., Lattimer B.Y. Firefighting Robot Stereo Infrared Vision and Radar Sensor Fusion for Imaging through Smoke. Fire Technol. 2015;51:823–845. doi: 10.1007/s10694-014-0413-6. DOI
The MathWorks, Inc MATLAB–The Language of Technical Computing. 2025. [(accessed on 6 January 2025)]. Available online: https://www.mathworks.com/products/matlab.html.
Mangiaracina G., Plebani P., Salnitri M., Vitali M. Efficient Data as a Service in Fog Computing: An Adaptive Multi-Agent Based Approach. IEEE Trans. Cloud Comput. 2022;11:2646–2663. doi: 10.1109/TCC.2022.3220811. DOI
Soori M., Arezoo B., Dastres R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cogn. Robot. 2023;3:54–70. doi: 10.1016/j.cogr.2023.04.001. DOI
Jeong H., Lee H., Kim C., Shin S. A Survey of Robot Intelligence with Large Language Models. Appl. Sci. 2024;14:8868. doi: 10.3390/app14198868. DOI
Cao S., Parviziomran I., Yang H., Park S., Won D. Prediction of component shifts in pick and place process of surface mount technology using support vector regression. Procedia Manuf. 2019;39:210–217. doi: 10.1016/j.promfg.2020.01.316. DOI
Ullah I., Adhikari D., Khan H., Anwar M.S., Ahmad S., Bai X. Mobile robot localization: Current challenges and future prospective. Comput. Sci. Rev. 2024;53:100651. doi: 10.1016/j.cosrev.2024.100651. DOI
TensorFlow TensorFlow Learn. [(accessed on 26 January 2025)]. Available online: https://www.tensorflow.org/learn.
Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., Devin M., Ghemawat S., Irving G., Isard M., et al. TensorFlow: A system for large-scale machine learning; Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16); Savannah, GA, USA. 2–4 November 2016; pp. 265–283.
Chollet, F. & contributors. Keras. 2015. [(accessed on 9 March 2023)]. Available online: https://keras.io/
Paszke A., Gross S., Chintala S., Chanan G., Yang E., DeVito Z., Lin Z., Desmaison A., Antiga L., Lerer A. PyTorch: An Imperative Style, High-Performance Deep Learning Library. 2019. [(accessed on 9 March 2023)]. Available online: https://pytorch.org/
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. Scikit-Learn: Machine Learning in Python. 2011. [(accessed on 22 March 2023)]. Available online: https://scikit-learn.org/
Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten I.H. Weka: Data Mining Software in Java. 2009. [(accessed on 22 March 2023)]. Available online: https://www.cs.waikato.ac.nz/ml/weka/
Python Software Foundation Python. 2023. [(accessed on 9 March 2023)]. Available online: https://www.python.org/
R Core Team R: A Language and Environment for Statistical Computing. 2022. [(accessed on 9 March 2023)]. Available online: https://www.r-project.org/
The Julia Language Julia. 2023. [(accessed on 9 March 2023)]. Available online: https://julialang.org/
Krejčí J., Babiuch M., Babjak J., Suder J., Wierbica R. Implementation of an Embedded System into the Internet of Robotic Things. Micromachines. 2022;14:113. doi: 10.3390/mi14010113. PubMed DOI PMC
Kasiviswanathan S., Gnanasekaran S., Thangamuthu M., Rakkiyannan J. Machine-Learning- and Internet-of-Things-Driven Techniques for Monitoring Tool Wear in Machining Process: A Comprehensive Review. J. Sens. Actuator Netw. 2024;13:53. doi: 10.3390/jsan13050053. DOI
Tubis A.A., Rohman J. Intelligent Warehouse in Industry 4.0—Systematic Literature Review. Sensors. 2023;23:4105. doi: 10.3390/s23084105. PubMed DOI PMC
Singh H., Veeraiah V., Khan H., Kumar D., Talukdar V., Anand R., Sindhwani N. Robotics and Automation in Industry 4.0. Volume 1–2. CRC Press; Boca Raton, FL, USA: 2024. Investigating Scope and Applications for the Internet of Robotics in Industrial Automation; pp. 132–151. DOI
Srivastava S.K., Bag S. Recent Developments on Flexible Manufacturing in the Digital Era: A Review and Future Research Directions. Glob. J. Flex. Syst. Manag. 2023;24:483–516. doi: 10.1007/s40171-023-00351-2. DOI
Kalsoom T., Ramzan N., Ahmed S., Ur-Rehman M. Advances in Sensor Technologies in the Era of Smart Factory and Industry 4.0. Sensors. 2020;20:6783. doi: 10.3390/s20236783. PubMed DOI PMC
Maddikunta P.K.R., Pham Q.V., B P., Deepa N., Dev K., Gadekallu T.R., Ruby R., Liyanage M. Industry 5.0: A survey on enabling technologies and potential applications. J. Ind. Inf. Integr. 2022;26:100257. doi: 10.1016/j.jii.2021.100257. DOI
Li C., Zheng P., Yin Y., Wang B., Wang L. Deep reinforcement learning in smart manufacturing: A review and prospects. CIRP J. Manuf. Sci. Technol. 2023;40:75–101. doi: 10.1016/j.cirpj.2022.11.003. DOI
Carrese F., Sportiello S., Zhaksylykov T., Colombaroni C., Carrese S., Papaveri M., Patella S.M. The Integration of Shared Autonomous Vehicles in Public Transportation Services: A Systematic Review. Sustainability. 2023;15:13023. doi: 10.3390/su151713023. DOI
Oladimeji D., Gupta K., Kose N.A., Gundogan K., Ge L., Liang F. Smart Transportation: An Overview of Technologies and Applications. Sensors. 2023;23:3880. doi: 10.3390/s23083880. PubMed DOI PMC
Alverhed E., Hellgren S., Isaksson H., Olsson L., Palmqvist H., Flodén J. Autonomous last-mile delivery robots: A literature review. Eur. Transp. Res. Rev. 2024;16:4. doi: 10.1186/s12544-023-00629-7. DOI
Mukta M.Y., Rahman M.A., Asyhari A.T., Alam Bhuiyan M.Z. IoT for energy efficient green highway lighting systems: Challenges and issues. J. Netw. Comput. Appl. 2020;158:102575. doi: 10.1016/j.jnca.2020.102575. DOI
Chaudhari P., Xiao Y., Cheng M.M.C., Li T. Fundamentals, Algorithms, and Technologies of Occupancy Detection for Smart Buildings Using IoT Sensors. Sensors. 2024;24:2123. doi: 10.3390/s24072123. PubMed DOI PMC
Fang B., Yu J., Chen Z., Osman A.I., Farghali M., Ihara I., Hamza E.H., Rooney D.W., Yap P.S. Artificial intelligence for waste management in smart cities: A review. Environ. Chem. Lett. 2023;21:1959–1989. doi: 10.1007/s10311-023-01604-3. PubMed DOI PMC
Kim H., Choi H., Kang H., An J., Yeom S., Hong T. A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities. Renew. Sustain. Energy Rev. 2021;140:110755. doi: 10.1016/j.rser.2021.110755. DOI
Nguyen D.C., Ding M., Pathirana P.N., Seneviratne A., Li J., Vincent Poor H. Federated Learning for Internet of Things: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2021;23:1622–1658. doi: 10.1109/COMST.2021.3075439. DOI
Jiang J.C., Kantarci B., Oktug S., Soyata T. Federated learning in smart city sensing: Challenges and opportunities. Sensors. 2020;20:6230. doi: 10.3390/s20216230. PubMed DOI PMC
Dritsas E., Trigka M. Machine Learning for Blockchain and IoT Systems in Smart Cities: A Survey. Future Internet. 2024;16:324. doi: 10.3390/fi16090324. DOI
Gebbers R., Adamchuk V.I. Precision agriculture and food security. Science. 2010;327:828–831. doi: 10.1126/science.1183899. PubMed DOI
Dhanaraju M., Chenniappan P., Ramalingam K., Pazhanivelan S., Kaliaperumal R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture. 2022;12:1745. doi: 10.3390/agriculture12101745. DOI
Navarro E., Costa N., Pereira A. A systematic review of iot solutions for smart farming. Sensors. 2020;20:4231. doi: 10.3390/s20154231. PubMed DOI PMC
Tang Y., Dananjayan S., Hou C., Guo Q., Luo S., He Y. A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Comput. Electron. Agric. 2021;180:105895. doi: 10.1016/j.compag.2020.105895. DOI
Jan F., Min-Allah N., Düştegör D. IoT based smart water quality monitoring: Recent techniques, trends and challenges for domestic applications. Water. 2021;13:1729. doi: 10.3390/w13131729. DOI
Sharma A., Jain A., Gupta P., Chowdary V. Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access. 2021;9:4843–4873. doi: 10.1109/ACCESS.2020.3048415. DOI
Ecke S., Dempewolf J., Frey J., Schwaller A., Endres E., Klemmt H.J., Tiede D., Seifert T. UAV-Based Forest Health Monitoring: A Systematic Review. Remote Sens. 2022;14:3205. doi: 10.3390/rs14133205. DOI
Islam M.Z., Sagar A.S.M.S., Kim H.S. Enabling Pandemic-Resilient Healthcare: Edge-Computing-Assisted Real-Time Elderly Caring Monitoring System. Appl. Sci. 2024;14:8486. doi: 10.3390/app14188486. DOI
Salama R., Al-Turjman F., Chaudhary P., Yadav S.P. Benefits of Internet of Things (IoT) Applications in Health care—An Overview; Proceedings of the 2023 International Conference on Computational Intelligence, Communication Technology and Networking (CICTN); Ghaziabad, India. 20–21 April 2023; pp. 778–784. DOI
Peters B.S., Armijo P.R., Krause C., Choudhury S.A., Oleynikov D. Review of emerging surgical robotic technology. Surg. Endosc. 2018;32:1636–1655. doi: 10.1007/s00464-018-6079-2. PubMed DOI
Dupont P.E., Nelson B.J., Goldfarb M., Hannaford B., Menciassi A., O’Malley M.K., Simaan N., Valdastri P., Yang G.Z. A decade retrospective of medical robotics research from 2010 to 2020. Sci. Robot. 2021;6:eabi8017. doi: 10.1126/scirobotics.abi8017. PubMed DOI PMC
Soto F., Wang J., Ahmed R., Demirci U. Medical Micro/Nanorobots in Precision Medicine. Adv. Sci. 2020;7:2002203. doi: 10.1002/advs.202002203. PubMed DOI PMC
Gifari M.W., Naghibi H., Stramigioli S., Abayazid M. A review on recent advances in soft surgical robots for endoscopic applications. Int. J. Med Robot. Comput. Assist. Surg. 2019;15:e2010. doi: 10.1002/rcs.2010. PubMed DOI PMC
Thalman C., Artemiadis P. A review of soft wearable robots that provide active assistance: Trends, common actuation methods, fabrication, and applications. Wearable Technol. 2020;1:e3. doi: 10.1017/wtc.2020.4. PubMed DOI PMC
Vélez-guerrero M.A., Callejas-cuervo M., Mazzoleni S. Artificial intelligence-based wearable robotic exoskeletons for upper limb rehabilitation: A review. Sensors. 2021;21:2146. doi: 10.3390/s21062146. PubMed DOI PMC
Chitikena H., Sanfilippo F., Ma S. Robotics in Search and Rescue (SAR) Operations: An Ethical and Design Perspective Framework for Response Phase. Appl. Sci. 2023;13:1800. doi: 10.3390/app13031800. DOI
Battistuzzi L., Recchiuto C., Sgorbissa A. Ethical concerns in rescue robotics: A scoping review. Ethics Inf. Technol. 2021;23:863–875. doi: 10.1007/s10676-021-09603-0. DOI
Sepasgozar S., Karimi R., Farahzadi L., Moezzi F., Shirowzhan S.M., Ebrahimzadeh S., Hui F., Aye L. A Systematic Content Review of Artificial Intelligence and the Internet of Things Applications in Smart Home. Appl. Sci. 2020;10:3074. doi: 10.3390/app10093074. DOI
Maswadi K., Ghani N.B.A., Hamid S.B. Systematic Literature Review of Smart Home Monitoring Technologies Based on IoT for the Elderly. IEEE Access. 2020;8:92244–92261. doi: 10.1109/ACCESS.2020.2992727. DOI
Song Y., Yu F.R., Zhou L., Yang X., He Z. Applications of the Internet of Things (IoT) in Smart Logistics: A Comprehensive Survey. IEEE Internet Things J. 2021;8:4250–4274. doi: 10.1109/JIOT.2020.3034385. DOI
Tang Y., Zhao C., Wang J., Zhang C., Sun Q., Zheng W.X., Du W., Qian F., Kurths J. Perception and Navigation in Autonomous Systems in the Era of Learning: A Survey. IEEE Trans. Neural Netw. Learn. Syst. 2023;34:9604–9624. doi: 10.1109/TNNLS.2022.3167688. PubMed DOI
Dorigo M., Theraulaz G., Trianni V. Swarm Robotics: Past, Present, and Future [Point of View] Proc. IEEE. 2021;109:1152–1165. doi: 10.1109/JPROC.2021.3072740. DOI
Khorasani M., Loy J., Ghasemi A.H., Sharabian E., Leary M., Mirafzal H., Cochrane P., Rolfe B., Gibson I. A review of Industry 4.0 and additive manufacturing synergy. Rapid Prototyp. J. 2022;28:1462–1475. doi: 10.1108/RPJ-08-2021-0194. DOI
Hu K., Zou L., Chen Z., Jiang J., Jiang F., Tao X. Wireless Multi-Robot Collaboration: Communications, Perception, Control and Planning. IEEE Netw. 2024 doi: 10.1109/MNET.2024.3483829. DOI
Anusha S., Ezhilvandan M., Gayathri S., Sivaraman V., Anish T., Siva Subramanian R. AI Innovations in Service and Tourism Marketing. IGI Global; Hershey, PA, USA: 2024. Emerging trends in edge AI for Industry 4.0 and 5.0: Technologies, applications, and challenges; pp. 211–228. DOI
Bouzarkouna I., Sahnoun M., Bettayeb B., Baudry D., Gout C. Optimal Deployment of Fog-Based Solution for Connected Devices in Smart Factory. IEEE Trans. Ind. Inform. 2024;20:5137–5146. doi: 10.1109/TII.2023.3330336. DOI
Shata E., Chen B., Hu L., Seskar I., Guo Y., Mahmoudi C., Shekhar S., Zou Q. 5G-Cloud-based real-time robotic part repairing for advanced manufacturing via computer vision. Manuf. Lett. 2024;41:1398–1404. doi: 10.1016/j.mfglet.2024.09.166. DOI
Mohammad Z., Qattam T.A., Saleh K. Security weaknesses and attacks on the internet of things applications; Proceedings of the 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT); Amman, Jordan. 9–11 April 2019; pp. 431–436. DOI
Almazroi A.A. Security mechanism in the internet of things by interacting HTTP and MQTT protocols; Proceedings of the 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN); Chongqing, China. 12–15 June 2019; pp. 181–186. DOI
Dutta V., Zielińska T. Cybersecurity of Robotic Systems: Leading Challenges and Robotic System Design Methodology. Electronics. 2021;10:2850. doi: 10.3390/electronics10222850. DOI
Zafir E.I., Akter A., Islam M., Hasib S.A., Islam T., Sarker S.K., Muyeen S. Enhancing security of Internet of Robotic Things: A review of recent trends, practices, and recommendations with encryption and blockchain techniques. Internet Things. 2024;28:101357. doi: 10.1016/j.iot.2024.101357. DOI
Tanimu J.A., Abada W. Addressing cybersecurity challenges in robotics: A comprehensive overview. Cyber Secur. Appl. 2025;3:100074. doi: 10.1016/j.csa.2024.100074. DOI
Younas M.I., Iqbal M.J., Aziz A., Sodhro A.H. Toward QoS Monitoring in IoT Edge Devices Driven Healthcare—A Systematic Literature Review. Sensors. 2023;23:8885. doi: 10.3390/s23218885. PubMed DOI PMC
Mazhar T., Malik M.A., Mohsan S.A.H., Li Y., Haq I., Ghorashi S., Karim F.K., Mostafa S.M. Quality of Service (QoS) Performance Analysis in a Traffic Engineering Model for Next-Generation Wireless Sensor Networks. Symmetry. 2023;15:513. doi: 10.3390/sym15020513. DOI
Sahoo S., Sahoo S., Kabat M. A Pragmatic Review of QoS Optimisations in IoT Driven Networks. Wirel. Pers. Commun. 2024;137:325–366. doi: 10.1007/s11277-024-11412-9. DOI
An X., Wu C., Lin Y., Lin M., Yoshinaga T., Ji Y. Multi-Robot Systems and Cooperative Object Transport: Communications, Platforms, and Challenges. IEEE Open J. Comput. Soc. 2023;4:23–36. doi: 10.1109/OJCS.2023.3238324. DOI
Corradini F., Pettinari S., Re B., Ruschioni L., Tiezzi F. ER2023: Companion, Proceedings of the 42nd International Conference on Conceptual Modeling: ER Forum, 7th SCME, Project Exhibitions, Posters and Demos, and Doctoral Consortium, Lisbon, Portugal, 6–9 November 2023. Volume 3618 Rheinisch Westfälische Technische Hochschule; Aachen, Germany: 2023. Enhancing compatibility in QoS communication for the Internet of Robotic Things.
Dey E., Walczak M., Anwar M.S., Roy N., Freeman J., Gregory T., Suri N., Busart C. A Novel ROS2 QoS Policy-Enabled Synchronizing Middleware for Co-Simulation of Heterogeneous Multi-Robot Systems; Proceedings of the 2023 32nd International Conference on Computer Communications and Networks (ICCCN); Honolulu, HI, USA. 24–27 July 2023; pp. 1–10. DOI
Pasricha S., Ayoub R., Kishinevsky M., Mandal S.K., Ogras U.Y. A Survey on Energy Management for Mobile and IoT Devices. IEEE Des. Test. 2020;37:7–24. doi: 10.1109/MDAT.2020.2976669. DOI
Siderska J., Aunimo L., Süße T., von Stamm J., Kedziora D., Aini S.N.B.M. Towards Intelligent Automation (IA): Literature review on the evolution of Robotic Process Automation (RPA), its challenges, and future trends. Eng. Manag. Prod. Serv. 2023;15:90–103. doi: 10.2478/emj-2023-0030. DOI
van der Aalst W.M.P., Bichler M., Heinzl A. Robotic Process Automation. Bus. Inf. Syst. Eng. 2018;60:269–272. doi: 10.1007/s12599-018-0542-4. DOI
Maraveas C. Incorporating Artificial Intelligence Technology in Smart Greenhouses: Current State of the Art. Appl. Sci. 2023;13:14. doi: 10.3390/app13010014. DOI
Sutikno T. The future of artificial intelligence-driven robotics: Applications and implications. IAES Int. J. Robot. Autom. 2024;13:361–372. doi: 10.11591/ijra.v13i4.pp361-372. DOI
Shahraki A., Haugen Ø. Social ethics in Internet of Things: An outline and review; Proceedings of the 2018 IEEE Industrial Cyber-Physical Systems (ICPS); St. Petersburg, Russia. 15–18 May 2018; pp. 509–516. DOI
Chamola V., Hassija V., Sulthana A.R., Ghosh D., Dhingra D., Sikdar B. A Review of Trustworthy and Explainable Artificial Intelligence (XAI) IEEE Access. 2023;11:78994–79015. doi: 10.1109/ACCESS.2023.3294569. DOI
Barata J., Kayser I. Industry 5.0–Past, Present, and Near Future. Procedia Comput. Sci. 2023;219:778–788. doi: 10.1016/j.procs.2023.01.351. DOI
Zhang C., Wang Z., Zhou G., Chang F., Ma D., Jing Y., Cheng W., Ding K., Zhao D. Towards new-generation human-centric smart manufacturing in Industry 5.0: A systematic review. Adv. Eng. Inform. 2023;57:102121. doi: 10.1016/j.aei.2023.102121. DOI
Liang P., Sun X., Qi L. Does artificial intelligence technology enhance green transformation of enterprises: Based on green innovation perspective. Environ. Dev. Sustain. 2024;26:21651–21687. doi: 10.1007/s10668-023-04225-6. DOI
Orr J., Dutta A. Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey. Sensors. 2023;23:3625. doi: 10.3390/s23073625. PubMed DOI PMC
Iftikhar S., Gill S.S., Song C., Xu M., Aslanpour M.S., Toosi A.N., Du J., Wu H., Ghosh S., Chowdhury D., et al. AI-based fog and edge computing: A systematic review, taxonomy and future directions. Internet Things. 2023;21:100674. doi: 10.1016/j.iot.2022.100674. DOI
Gkagkas G., Vergados D.J., Michalas A., Dossis M. The Advantage of the 5G Network for Enhancing the Internet of Things and the Evolution of the 6G Network. Sensors. 2024;24:2455. doi: 10.3390/s24082455. PubMed DOI PMC
Lessi C.C., Gavrielides A., Solina V., Qiu R., Nicoletti L., Li D. 5G and Beyond 5G Technologies Enabling Industry 5.0: Network Applications for Robotics. Procedia Comput. Sci. 2024;232:675–687. doi: 10.1016/j.procs.2024.01.067. DOI
Tian W., Gu C., Guo M., He S., Kang J., Niyato D., Chen J. Large-Scale Deterministic Networks: Architecture, Enabling Technologies, Case Study, and Future Directions. IEEE Netw. 2024;38:284–291. doi: 10.1109/MNET.2024.3355116. DOI
Ferdaus M.M., Dam T., Anavatti S., Das S. Digital technologies for a net-zero energy future: A comprehensive review. Renew. Sustain. Energy Rev. 2024;202:114681. doi: 10.1016/j.rser.2024.114681. DOI
Pizoń J., Gola A. Human–Machine Relationship—Perspective and Future Roadmap for Industry 5.0 Solutions. Machines. 2023;11:203. doi: 10.3390/machines11020203. DOI
Xiang W., Yu K., Han F., Fang L., He D., Han Q.L. Advanced Manufacturing in Industry 5.0: A Survey of Key Enabling Technologies and Future Trends. IEEE Trans. Ind. Inform. 2024;20:1055–1068. doi: 10.1109/TII.2023.3274224. DOI
Alojaiman B. Technological Modernizations in the Industry 5.0 Era: A Descriptive Analysis and Future Research Directions. Processes. 2023;11:1318. doi: 10.3390/pr11051318. DOI
Golovianko M., Terziyan V., Branytskyi V., Malyk D. Industry 4.0 vs. Industry 5.0: Co-existence, Transition, or a Hybrid. Procedia Comput. Sci. 2023;217:102–113. doi: 10.1016/j.procs.2022.12.206. DOI
Mäntymäki M., Minkkinen M., Birkstedt T., Viljanen M. Putting AI Ethics into practice: The hourglass model of organizational AI governance. arXiv. 20222206.00335
Birkstedt T., Minkkinen M., Tandon A., Mäntymäki M. AI governance: Themes, knowledge gaps and future agendas. Internet Res. 2023;33:133–167. doi: 10.1108/INTR-01-2022-0042. DOI
Botta A., Rotbei S., Zinno S., Ventre G. Cyber security of robots: A comprehensive survey. Intell. Syst. Appl. 2023;18:200237. doi: 10.1016/j.iswa.2023.200237. DOI