Platinum Single Atoms Strongly Promote Superoxide Formation in Titania-Based Photocatalysis - Platinum Nanoparticles Don't

. 2025 Mar ; 21 (11) : e2412097. [epub] 20250216

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39955763

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000416 European Regional Development Fund
Ministry of Education, Youth and Sports of the Czech Republic
Deutsche Forschungsgemeinschaft
23-08019X Czech Science Foundation
"APPROACH"No101120397 HORIZON-WIDERA-2022-TALENTS
"GlaS-A-Fuels"(No.101130717) Horizon Europe EIC Pathfinder Open 2023

The selective reduction of molecular oxygen to superoxide is one of the key reactions in electrochemistry and photocatalysis. Here the effect of Pt co-catalysts, dispersed on titania, either as single atoms or as nanoparticles, on the photocatalytic superoxide (•O2 -) formation in O2 containing solutions is investigated. The •O2 - formation is traced by nitroblue tetrazolium (NBT) assays and in detail by EPR measurements using TEMPO as •O2 - radical scavenger. The results show that the photocatalytic formation rate of •O2 - on titania can strongly be enhanced by using Pt single atoms as a co-catalyst, whereas Pt nanoparticles hardly exhibit any accelerating effect. This finding is of considerable significance regarding photocatalytic degradation and photocatalytic oxidative synthesis processes.

Zobrazit více v PubMed

a) Fujishima A., Honda K., Nature 1972, 238, 37; PubMed

b) Chen H., Nanayakkara C. E., Grassian V. H., Chem. Rev. 2012, 112, 5919; PubMed

c) Arun J., Nachiappan S., Rangarajan G., Alagappan R. P., Gopinath K. P., Lichtfouse E., Environ. Chem. Lett. 2023, 21, 339; PubMed PMC

d) Nakata K., Fujishima A., J. Photochem. Photobiol., C 2012, 13, 169;

e) Guo Q., Zhou C., Ma Z., Yang X., Adv. Mater. 2019, 31, 1901997; PubMed

f) Park H., Park Y., Kim W., Choi W., J. Photochem. Photobiol., C 2013, 15, 1;

g) Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., Bahnemann D. W., Chem. Rev. 2014, 114, 9919; PubMed

h) Linsebigler A. L., Lu G., Yates J. T., Chem. Rev. 1995, 95, 735.

a) Van Thuan D., Ngo H. L., Thi H. P., Chu T. T. H., Environ. Res. 2023, 229, 116000; PubMed

b) Jain M., Mudhoo A., Ramasamy D. L., Najafi M., Usman M., Zhu R., Kumar G., Shobana S., Garg V. K., Sillanpää M., Environ. Sci. Pollut. Res. 2020, 27, 34862; PubMed

c) Tsang C. H. A., Li K., Zeng Y., Zhao W., Zhang T., Zhan Y., Xie R., Leung D. Y. C., Huang H., Environ. Int. 2019, 125, 200; PubMed

d) Gaya U. I., Abdullah A. H., J. Photochem. Photobiol., C 2008, 9, 1;

e) Kaplan R., Erjavec B., Dražić G., Grdadolnik J., Pintar A., Appl. Catal., B 2016, 181, 465;

f) Shayegan Z., Lee C.‐S., Haghighat F., Chem. Eng. J. 2018, 334, 2408;

g) Chen D., Cheng Y., Zhou N., Chen P., Wang Y., Li K., Huo S., Cheng P., Peng P., Zhang R., Wang L., Liu H., Liu Y., Ruan R., J. Cleaner Prod. 2020, 268, 121725.

a) Kumar A., Choudhary P., Kumar A., Camargo P. H. C., Krishnan V., Small 2022, 18, 2101638; PubMed

b) Zhang M., Wang Q., Chen C., Zang L., Ma W., Zhao J., Angew. Chem. 2009, 48, 6081; PubMed

c) Tripathy J., Lee K., Schmuki P., Angew. Chem. 2014, 126, 12813; PubMed

d) Qi M.‐Y., Conte M., Anpo M., Tang Z.‐R., Xu Y.‐J., Chem. Rev. 2021, 121, 13051; PubMed

e) Ma Y., Wang X., Jia Y., Chen X., Han H., Li C., Chem. Rev. 2014, 114, 9987; PubMed

f) Augugliaro V., Bellardita M., Loddo V., Palmisano G., Palmisano L., Yurdakal S., J. Photochem. Photobiol., C 2012, 13, 224;

g) Deng X., Yue Y., Gao Z., Appl. Catal., B 2002, 39, 135.

a) Denisov N., Yoo J., Schmuki P., Electrochim. Acta 2019, 319, 61;

b) Zhang T., Lu S., Chem. Catal. 2022, 2, 1502;

c) Melián E. P., López C. R., Santiago D. E., Quesada‐Cabrera R., Méndez J. O., Rodríguez J. D., Díaz O. G., Appl. Catal., A 2016, 518, 189;

d) Chen X., Shen S., Guo L., Mao S. S., Chem. Rev. 2010, 110, 6503; PubMed

e) Roy P., Berger S., Schmuki P., Angew. Chem. 2011, 50, 2904. PubMed

a) Dimitrijevic N. M., Rozhkova E., Rajh T., J. Am. Chem. Soc. 2009, 131, 2893; PubMed

b) Ribao P., Corredor J., Rivero M. J., Ortiz I., J. Hazard. Mater. 2019, 372, 45; PubMed

c) Nosaka Y., Nosaka A. Y., Chem. Rev. 2017, 117, 11302; PubMed

d) Li Y.‐F., Aschauer U., Chen J., Selloni A., Acc. Chem. Res. 2014, 47, 3361; PubMed

e) Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W., Chem. Rev. 1995, 95, 69;

f) Thompson T. L., Yates J. T., Chem. Rev. 2006, 106, 4428; PubMed

g) Liao Y., Brame J., Que W., Xiu Z., Xie H., Li Q., Fabian M., Alvarez P. J., J. Hazard. Mater. 2013, 260, 434. PubMed

Hayyan M., Hashim M. A., AlNashef I. M., Chem. Rev. 2016, 116, 3029. PubMed

a) Chen J., Zhang Z., Zhu W., Zhang L., Zhao B., Ji Y., Li G., An T., Environ. Res. 2021, 195, 110747; PubMed

b) Ryu J., Choi W., Environ. Sci. Technol. 2004, 38, 2928; PubMed

c) Hirakawa T., Daimon T., Kitazawa M., Ohguri N., Koga C., Negishi N., Matsuzawa S., Nosaka Y., J. Photochem. Photobiol., A 2007, 190, 58.

a) Campos‐Martin J. M., Blanco‐Brieva G., Fierro J. L. G., Angew. Chem. 2006, 45, 6962; PubMed

b) Zhang J., Zheng L., Wang F., Chen C., Wu H., Leghari S. A. K., Long M., Appl. Catal., B 2020, 269, 118770;

c) Fu C., Liu L., Li Z., Wei Y., Huang W., Zhang X., J. Phys. Chem. Lett. 2023, 14, 7690; PubMed

d) Burek B. O., Bahnemann D. W., Bloh J. Z., ACS Catal. 2019, 9, 25.

a) Wang D., Zhao L., Wang D., Yan L., Jing C., Zhang H., Guo L.‐H., Tang N., Phys. Chem. Chem. Phys. 2018, 20, 18978; PubMed

b) Zhang X., Tryk D., Irie H., Fujishima A., Handbook of self‐cleaning surfaces and materials, WILEY‐VCH, Weinheim, Germany, 2023;

c) Xiao J., Xie Y., Han Q., Cao H., Wang Y., Nawaz F., Duan F., J. Hazard. Mater. 2016, 304, 126. PubMed

a) Sawyer D. T., Valentine J. S., Acc. Chem. Res. 1981, 14, 393;

b) Ma Z., Jia Q., Tao C., Han B., Sep. Purif. Technol. 2020, 238, 116402;

c) Fei H., Leng W., Li X., Cheng X., Xu Y., Zhang J., Cao C., Environ. Sci. Technol. 2011, 45, 4532. PubMed

a) Su R., Tiruvalam R., Logsdail A. J., He Q., Downing C. A., Jensen M. T., Dimitratos N., Kesavan L., Wells P. P., Bechstein R., Jensen H. H., Wendt S., Catlow C. R. A., Kiely C. J., Hutchings G. J., Besenbacher F., ACS Nano 2014, 8, 3490; PubMed

b) Dessal C., Martínez L., Maheu C., Len T., Morfin F., Rousset J. L., Puzenat E., Afanasiev P., Aouine M., Soler L., Llorca J., Piccolo L., J. Catal. 2019, 375, 155;

c) Kumaravel V., Mathew S., Bartlett J., Pillai S. C., Appl. Catal., B 2019, 244, 1021;

d) Al‐Azri Z. H. N., Chen W.‐T., Chan A., Jovic V., Ina T., Idriss H., Waterhouse G. I. N., J. Catal. 2015, 329, 355;

e) Caudillo‐Flores U., Muñoz‐Batista M. J., Fernández‐García M., Kubacka A., Appl. Catal., B 2018, 238, 533.

a) Yamamoto K., Imaoka T., Chun W.‐J., Enoki O., Katoh H., Takenaga M., Sonoi A., Nat. Chem. 2009, 1, 397; PubMed

b) Liu Z., Zhao Z., Peng B., Duan X., Huang Y., J. Am. Chem. Soc. 2020, 142, 17812; PubMed

c) Wu J., Yang H., Acc. Chem. Res. 2013, 46, 1848. PubMed

a) Shao M.‐h., Liu P., Adzic R. R., J. Am. Chem. Soc. 2006, 128, 7408; PubMed

b) Liu Y., Wu H., Li M., Yin J.‐J., Nie Z., Nanoscale 2014, 6, 11904. PubMed

a) Chen Y., Ji S., Sun W., Lei Y., Wang Q., Li A., Chen W., Zhou G., Zhang Z., Wang Y., Zheng L., Zhang Q., Gu L., Han X., Wang D., Li Y., Angew. Chem. 2020, 132, 1311; PubMed

b) Cai J., Cao A., Wang Z., Lu S., Jiang Z., Dong X.‐Y., Li X., Zang S.‐Q., J. Mater. Chem. A 2021, 9, 13890;

c) DeRita L., Resasco J., Dai S., Boubnov A., Thang H. V., Hoffman A. S., Ro I., Graham G. W., Bare S. R., Pacchioni G., Pan X., Christopher P., Nat. Mater. 2019, 18, 746; PubMed

d) Xing J., Chen J. F., Li Y. H., Yuan W. T., Zhou Y., Zheng L. R., Wang H. F., Hu P., Wang Y., Zhao H. J., Wang Y., Yang H. G., Chem.‐Eur. J. 2014, 20, 2138; PubMed

e) Xu T., Zhao H., Zheng H., Zhang P., Chem. Eng. J. 2020, 385, 123832.

Wu S.‐M., Wu L., Denisov N., Badura Z., Zoppellaro G., Yang X.‐Y., Schmuki P., J. Am. Chem. Soc. 2024, 146, 16363. PubMed

Qin S., Denisov N., Will J., Kolařík J., Spiecker E., Schmuki P., Sol. RRL 2022, 6, 2101026.

Qin S., Denisov N., Sarma B. B., Hwang I., Doronkin D. E., Tomanec O., Kment S., Schmuki P., Adv. Mater. Interfaces 2022, 9, 2200808.

a) Wang Y., Qin S., Denisov N., Kim H., Bad'ura Z., Sarma B. B., Schmuki P., Adv. Mater. 2023, 35, 2211814; PubMed

b) Wang Y., Denisov N., Qin S., Gonçalves D. S., Kim H., Sarma B. B., Schmuki P., Adv. Mater. 2024, 36, 2400626. PubMed

Liu Y., Chen P., Fan Y., Fan Y., Shi X., Cui G., Tang B., Nanomaterials 2020, 10, 920. PubMed PMC

Qin S., Will J., Kim H., Denisov N., Carl S., Spiecker E., Schmuki P., ACS Energy Lett. 2023, 8, 1209.

a) Hejazi S., Mohajernia S., Osuagwu B., Zoppellaro G., Andryskova P., Tomanec O., Kment S., Zbořil R., Schmuki P., Adv. Mater. 2020, 32, 1908505; PubMed

b) Wang Y., Hwang I., Wu Z., Schmuki P., Electrochem. Commun. 2021, 133, 107166.

Denisov N., Qin S., Will J., Vasiljevic B. N., Skor odumova N. V., Pašti I. A., Sarma B. B., Osuagwu B., Yokosawa T., Voss J., Wirth J., Spiecker E., Schmuki P., Adv. Mater. 2023, 35, 2206569. PubMed

Goto H., Hanada Y., Ohno T., Matsumura M., J. Catal. 2004, 225, 223.

Pattison D. I., Lam M., Shinde S. S., Anderson R. F., Davies M. J., Free Radical Biol. Med. 2012, 53, 1664. PubMed

Murphy M. P., Bayir H., Belousov V., Chang C. J., Davies K. J. A., Davies M. J., Dick T. P., Finkel T., Forman H. J., Janssen‐Heininger Y., Gems D., Kagan V. E., Kalyanaraman B., Larsson N.‐G., Milne G. L., Nyström T., Poulsen H. E., Radi R., van Remmen H., Schumacker P. T., Thornalley P. J., Toyokuni S., Winterbourn C. C., Yin H., Halliwell B., Nat. Metab. 2022, 4, 651. PubMed PMC

Krishna M. C., Russo A., Mitchell J. B., Goldstein S., Dafni H., Samuni A., J. Biol. Chem. 1996, 271, 26026. PubMed

a) Prescott C., Bottle S. E., Cell Biochem. Biophys. 2017, 75, 227; PubMed

b) Sadowska‐Bartosz I., Bartosz G., Int. J. Mol. Sci. 2024, 25, 1446. PubMed

a) Bonke S. A., Risse T., Schnegg A., Brückner A., Nat. Rev. Methods Primers 2021, 1, 1;

b) Voest E. E., van Faassen E., Marx J. J., Free Radical Biol. Med. 1993, 15, 589. PubMed

Dvoranová D., Barbieriková Z., Brezová V., Molecules 2014, 19, 17279. PubMed PMC

a) Yang S., Kim J., Tak Y. J., Soon A., Lee H., Angew. Chem. 2016, 55, 2058; PubMed

b) Chen K.‐Y., Huang Y.‐X., Jin R.‐C., Huang B.‐C., Appl. Catal., B 2023, 337, 122987;

c) Kim J., Roh C.‐W., Sahoo S. K., Yang S., Bae J., Han J. W., Lee H., Adv. Energy Mater. 2018, 8, 1701476.

Zhang J., Yang H., Liu B., Adv. Energy Mater. 2021, 11, 2002473.

Wu S.‐M., Schmuki P., Adv. Mater. 2024, 2414889. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...