Platinum Single Atoms Strongly Promote Superoxide Formation in Titania-Based Photocatalysis - Platinum Nanoparticles Don't
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/15_003/0000416
European Regional Development Fund
Ministry of Education, Youth and Sports of the Czech Republic
Deutsche Forschungsgemeinschaft
23-08019X
Czech Science Foundation
"APPROACH"No101120397
HORIZON-WIDERA-2022-TALENTS
"GlaS-A-Fuels"(No.101130717)
Horizon Europe EIC Pathfinder Open 2023
PubMed
39955763
PubMed Central
PMC11922030
DOI
10.1002/smll.202412097
Knihovny.cz E-resources
- Keywords
- Pt single atoms, degradation, photocatalysis, superoxide, titanium dioxide,
- Publication type
- Journal Article MeSH
The selective reduction of molecular oxygen to superoxide is one of the key reactions in electrochemistry and photocatalysis. Here the effect of Pt co-catalysts, dispersed on titania, either as single atoms or as nanoparticles, on the photocatalytic superoxide (•O2 -) formation in O2 containing solutions is investigated. The •O2 - formation is traced by nitroblue tetrazolium (NBT) assays and in detail by EPR measurements using TEMPO as •O2 - radical scavenger. The results show that the photocatalytic formation rate of •O2 - on titania can strongly be enhanced by using Pt single atoms as a co-catalyst, whereas Pt nanoparticles hardly exhibit any accelerating effect. This finding is of considerable significance regarding photocatalytic degradation and photocatalytic oxidative synthesis processes.
See more in PubMed
a) Fujishima A., Honda K., Nature 1972, 238, 37; PubMed
b) Chen H., Nanayakkara C. E., Grassian V. H., Chem. Rev. 2012, 112, 5919; PubMed
c) Arun J., Nachiappan S., Rangarajan G., Alagappan R. P., Gopinath K. P., Lichtfouse E., Environ. Chem. Lett. 2023, 21, 339; PubMed PMC
d) Nakata K., Fujishima A., J. Photochem. Photobiol., C 2012, 13, 169;
e) Guo Q., Zhou C., Ma Z., Yang X., Adv. Mater. 2019, 31, 1901997; PubMed
f) Park H., Park Y., Kim W., Choi W., J. Photochem. Photobiol., C 2013, 15, 1;
g) Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., Bahnemann D. W., Chem. Rev. 2014, 114, 9919; PubMed
h) Linsebigler A. L., Lu G., Yates J. T., Chem. Rev. 1995, 95, 735.
a) Van Thuan D., Ngo H. L., Thi H. P., Chu T. T. H., Environ. Res. 2023, 229, 116000; PubMed
b) Jain M., Mudhoo A., Ramasamy D. L., Najafi M., Usman M., Zhu R., Kumar G., Shobana S., Garg V. K., Sillanpää M., Environ. Sci. Pollut. Res. 2020, 27, 34862; PubMed
c) Tsang C. H. A., Li K., Zeng Y., Zhao W., Zhang T., Zhan Y., Xie R., Leung D. Y. C., Huang H., Environ. Int. 2019, 125, 200; PubMed
d) Gaya U. I., Abdullah A. H., J. Photochem. Photobiol., C 2008, 9, 1;
e) Kaplan R., Erjavec B., Dražić G., Grdadolnik J., Pintar A., Appl. Catal., B 2016, 181, 465;
f) Shayegan Z., Lee C.‐S., Haghighat F., Chem. Eng. J. 2018, 334, 2408;
g) Chen D., Cheng Y., Zhou N., Chen P., Wang Y., Li K., Huo S., Cheng P., Peng P., Zhang R., Wang L., Liu H., Liu Y., Ruan R., J. Cleaner Prod. 2020, 268, 121725.
a) Kumar A., Choudhary P., Kumar A., Camargo P. H. C., Krishnan V., Small 2022, 18, 2101638; PubMed
b) Zhang M., Wang Q., Chen C., Zang L., Ma W., Zhao J., Angew. Chem. 2009, 48, 6081; PubMed
c) Tripathy J., Lee K., Schmuki P., Angew. Chem. 2014, 126, 12813; PubMed
d) Qi M.‐Y., Conte M., Anpo M., Tang Z.‐R., Xu Y.‐J., Chem. Rev. 2021, 121, 13051; PubMed
e) Ma Y., Wang X., Jia Y., Chen X., Han H., Li C., Chem. Rev. 2014, 114, 9987; PubMed
f) Augugliaro V., Bellardita M., Loddo V., Palmisano G., Palmisano L., Yurdakal S., J. Photochem. Photobiol., C 2012, 13, 224;
g) Deng X., Yue Y., Gao Z., Appl. Catal., B 2002, 39, 135.
a) Denisov N., Yoo J., Schmuki P., Electrochim. Acta 2019, 319, 61;
b) Zhang T., Lu S., Chem. Catal. 2022, 2, 1502;
c) Melián E. P., López C. R., Santiago D. E., Quesada‐Cabrera R., Méndez J. O., Rodríguez J. D., Díaz O. G., Appl. Catal., A 2016, 518, 189;
d) Chen X., Shen S., Guo L., Mao S. S., Chem. Rev. 2010, 110, 6503; PubMed
e) Roy P., Berger S., Schmuki P., Angew. Chem. 2011, 50, 2904. PubMed
a) Dimitrijevic N. M., Rozhkova E., Rajh T., J. Am. Chem. Soc. 2009, 131, 2893; PubMed
b) Ribao P., Corredor J., Rivero M. J., Ortiz I., J. Hazard. Mater. 2019, 372, 45; PubMed
c) Nosaka Y., Nosaka A. Y., Chem. Rev. 2017, 117, 11302; PubMed
d) Li Y.‐F., Aschauer U., Chen J., Selloni A., Acc. Chem. Res. 2014, 47, 3361; PubMed
e) Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W., Chem. Rev. 1995, 95, 69;
f) Thompson T. L., Yates J. T., Chem. Rev. 2006, 106, 4428; PubMed
g) Liao Y., Brame J., Que W., Xiu Z., Xie H., Li Q., Fabian M., Alvarez P. J., J. Hazard. Mater. 2013, 260, 434. PubMed
Hayyan M., Hashim M. A., AlNashef I. M., Chem. Rev. 2016, 116, 3029. PubMed
a) Chen J., Zhang Z., Zhu W., Zhang L., Zhao B., Ji Y., Li G., An T., Environ. Res. 2021, 195, 110747; PubMed
b) Ryu J., Choi W., Environ. Sci. Technol. 2004, 38, 2928; PubMed
c) Hirakawa T., Daimon T., Kitazawa M., Ohguri N., Koga C., Negishi N., Matsuzawa S., Nosaka Y., J. Photochem. Photobiol., A 2007, 190, 58.
a) Campos‐Martin J. M., Blanco‐Brieva G., Fierro J. L. G., Angew. Chem. 2006, 45, 6962; PubMed
b) Zhang J., Zheng L., Wang F., Chen C., Wu H., Leghari S. A. K., Long M., Appl. Catal., B 2020, 269, 118770;
c) Fu C., Liu L., Li Z., Wei Y., Huang W., Zhang X., J. Phys. Chem. Lett. 2023, 14, 7690; PubMed
d) Burek B. O., Bahnemann D. W., Bloh J. Z., ACS Catal. 2019, 9, 25.
a) Wang D., Zhao L., Wang D., Yan L., Jing C., Zhang H., Guo L.‐H., Tang N., Phys. Chem. Chem. Phys. 2018, 20, 18978; PubMed
b) Zhang X., Tryk D., Irie H., Fujishima A., Handbook of self‐cleaning surfaces and materials, WILEY‐VCH, Weinheim, Germany, 2023;
c) Xiao J., Xie Y., Han Q., Cao H., Wang Y., Nawaz F., Duan F., J. Hazard. Mater. 2016, 304, 126. PubMed
a) Sawyer D. T., Valentine J. S., Acc. Chem. Res. 1981, 14, 393;
b) Ma Z., Jia Q., Tao C., Han B., Sep. Purif. Technol. 2020, 238, 116402;
c) Fei H., Leng W., Li X., Cheng X., Xu Y., Zhang J., Cao C., Environ. Sci. Technol. 2011, 45, 4532. PubMed
a) Su R., Tiruvalam R., Logsdail A. J., He Q., Downing C. A., Jensen M. T., Dimitratos N., Kesavan L., Wells P. P., Bechstein R., Jensen H. H., Wendt S., Catlow C. R. A., Kiely C. J., Hutchings G. J., Besenbacher F., ACS Nano 2014, 8, 3490; PubMed
b) Dessal C., Martínez L., Maheu C., Len T., Morfin F., Rousset J. L., Puzenat E., Afanasiev P., Aouine M., Soler L., Llorca J., Piccolo L., J. Catal. 2019, 375, 155;
c) Kumaravel V., Mathew S., Bartlett J., Pillai S. C., Appl. Catal., B 2019, 244, 1021;
d) Al‐Azri Z. H. N., Chen W.‐T., Chan A., Jovic V., Ina T., Idriss H., Waterhouse G. I. N., J. Catal. 2015, 329, 355;
e) Caudillo‐Flores U., Muñoz‐Batista M. J., Fernández‐García M., Kubacka A., Appl. Catal., B 2018, 238, 533.
a) Yamamoto K., Imaoka T., Chun W.‐J., Enoki O., Katoh H., Takenaga M., Sonoi A., Nat. Chem. 2009, 1, 397; PubMed
b) Liu Z., Zhao Z., Peng B., Duan X., Huang Y., J. Am. Chem. Soc. 2020, 142, 17812; PubMed
c) Wu J., Yang H., Acc. Chem. Res. 2013, 46, 1848. PubMed
a) Shao M.‐h., Liu P., Adzic R. R., J. Am. Chem. Soc. 2006, 128, 7408; PubMed
b) Liu Y., Wu H., Li M., Yin J.‐J., Nie Z., Nanoscale 2014, 6, 11904. PubMed
a) Chen Y., Ji S., Sun W., Lei Y., Wang Q., Li A., Chen W., Zhou G., Zhang Z., Wang Y., Zheng L., Zhang Q., Gu L., Han X., Wang D., Li Y., Angew. Chem. 2020, 132, 1311; PubMed
b) Cai J., Cao A., Wang Z., Lu S., Jiang Z., Dong X.‐Y., Li X., Zang S.‐Q., J. Mater. Chem. A 2021, 9, 13890;
c) DeRita L., Resasco J., Dai S., Boubnov A., Thang H. V., Hoffman A. S., Ro I., Graham G. W., Bare S. R., Pacchioni G., Pan X., Christopher P., Nat. Mater. 2019, 18, 746; PubMed
d) Xing J., Chen J. F., Li Y. H., Yuan W. T., Zhou Y., Zheng L. R., Wang H. F., Hu P., Wang Y., Zhao H. J., Wang Y., Yang H. G., Chem.‐Eur. J. 2014, 20, 2138; PubMed
e) Xu T., Zhao H., Zheng H., Zhang P., Chem. Eng. J. 2020, 385, 123832.
Wu S.‐M., Wu L., Denisov N., Badura Z., Zoppellaro G., Yang X.‐Y., Schmuki P., J. Am. Chem. Soc. 2024, 146, 16363. PubMed
Qin S., Denisov N., Will J., Kolařík J., Spiecker E., Schmuki P., Sol. RRL 2022, 6, 2101026.
Qin S., Denisov N., Sarma B. B., Hwang I., Doronkin D. E., Tomanec O., Kment S., Schmuki P., Adv. Mater. Interfaces 2022, 9, 2200808.
a) Wang Y., Qin S., Denisov N., Kim H., Bad'ura Z., Sarma B. B., Schmuki P., Adv. Mater. 2023, 35, 2211814; PubMed
b) Wang Y., Denisov N., Qin S., Gonçalves D. S., Kim H., Sarma B. B., Schmuki P., Adv. Mater. 2024, 36, 2400626. PubMed
Liu Y., Chen P., Fan Y., Fan Y., Shi X., Cui G., Tang B., Nanomaterials 2020, 10, 920. PubMed PMC
Qin S., Will J., Kim H., Denisov N., Carl S., Spiecker E., Schmuki P., ACS Energy Lett. 2023, 8, 1209.
a) Hejazi S., Mohajernia S., Osuagwu B., Zoppellaro G., Andryskova P., Tomanec O., Kment S., Zbořil R., Schmuki P., Adv. Mater. 2020, 32, 1908505; PubMed
b) Wang Y., Hwang I., Wu Z., Schmuki P., Electrochem. Commun. 2021, 133, 107166.
Denisov N., Qin S., Will J., Vasiljevic B. N., Skor odumova N. V., Pašti I. A., Sarma B. B., Osuagwu B., Yokosawa T., Voss J., Wirth J., Spiecker E., Schmuki P., Adv. Mater. 2023, 35, 2206569. PubMed
Goto H., Hanada Y., Ohno T., Matsumura M., J. Catal. 2004, 225, 223.
Pattison D. I., Lam M., Shinde S. S., Anderson R. F., Davies M. J., Free Radical Biol. Med. 2012, 53, 1664. PubMed
Murphy M. P., Bayir H., Belousov V., Chang C. J., Davies K. J. A., Davies M. J., Dick T. P., Finkel T., Forman H. J., Janssen‐Heininger Y., Gems D., Kagan V. E., Kalyanaraman B., Larsson N.‐G., Milne G. L., Nyström T., Poulsen H. E., Radi R., van Remmen H., Schumacker P. T., Thornalley P. J., Toyokuni S., Winterbourn C. C., Yin H., Halliwell B., Nat. Metab. 2022, 4, 651. PubMed PMC
Krishna M. C., Russo A., Mitchell J. B., Goldstein S., Dafni H., Samuni A., J. Biol. Chem. 1996, 271, 26026. PubMed
a) Prescott C., Bottle S. E., Cell Biochem. Biophys. 2017, 75, 227; PubMed
b) Sadowska‐Bartosz I., Bartosz G., Int. J. Mol. Sci. 2024, 25, 1446. PubMed
a) Bonke S. A., Risse T., Schnegg A., Brückner A., Nat. Rev. Methods Primers 2021, 1, 1;
b) Voest E. E., van Faassen E., Marx J. J., Free Radical Biol. Med. 1993, 15, 589. PubMed
Dvoranová D., Barbieriková Z., Brezová V., Molecules 2014, 19, 17279. PubMed PMC
a) Yang S., Kim J., Tak Y. J., Soon A., Lee H., Angew. Chem. 2016, 55, 2058; PubMed
b) Chen K.‐Y., Huang Y.‐X., Jin R.‐C., Huang B.‐C., Appl. Catal., B 2023, 337, 122987;
c) Kim J., Roh C.‐W., Sahoo S. K., Yang S., Bae J., Han J. W., Lee H., Adv. Energy Mater. 2018, 8, 1701476.
Zhang J., Yang H., Liu B., Adv. Energy Mater. 2021, 11, 2002473.