Characterisation of SLC38A8 and Its Role in Retinal Pathways and Disease
Jazyk angličtina Země Austrálie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO 68378050
Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences
32003125000
Ernest and Nusia Gothelf research funds
0601412281
Claire and Amédée Maratier Institute for the Study of Blindness and Visual Disorders, Tel Aviv University
PubMed
39956648
DOI
10.1111/ceo.14504
Knihovny.cz E-zdroje
- Klíčová slova
- SLC38A8, FHONDA syndrome, glutamine‐glutamate cycle, phototransduction, retinal function,
- MeSH
- elektroretinografie MeSH
- glutamin metabolismus MeSH
- kyselina glutamová metabolismus MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nemoci retiny * genetika metabolismus patofyziologie MeSH
- regulace genové exprese * fyziologie MeSH
- retina * metabolismus MeSH
- transportní systém aminokyselin y+ * genetika MeSH
- zrakové dráhy * metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glutamin MeSH
- kyselina glutamová MeSH
- transportní systém aminokyselin y+ * MeSH
BACKGROUND: This study investigates the role of the SLC38A8 gene. SLC38A8 facilitates glutamine influx, which converts to glutamate in the visual pathway. Mutations in SLC38A8 are associated with FHONDA syndrome, a subtype of foveal hypoplasia with congenital nystagmus and optic-nerve-decussation defects without pigmentation leading to severe vision loss. METHODS: In vivo and in vitro methods were conducted using retinal cell lines overexpressing SLC38A8, and Slc38a8/Slc38a7 gene-edited mice to evaluate visual function and physiological changes. Statistical analyses included two-way ANOVA, multiple regression, and ANCOVA. RESULTS: In vitro, SLC38A8 overexpression influenced retinal gene expression, light detection, and visual perception, as well as glutamine and glutamate dynamics. In Y79SNAT8-OE cells, glutamate levels were significantly higher under light conditions compared to dark conditions at 12 h (3.4 ± 0.16 nmol/μl vs. 3.9 ± 0.17 nmol/μl, p = 0.0011) and 17 h (3.6 ± 0.22 nmol/μl vs. 4.5 ± 0.24 nmol/μl, p = 0.0001), a pattern not observed in control cells. SLC38A8 expression also increased significantly (RQ = 2.1 ± 0.11, p < 0.05) in Y79 cells under glutamine deprivation. In vivo, Slc38a8-truncated gene mice exhibited altered testicular morphology, with significantly reduced volume (70.9 ± 5.1 mm3 vs. 85.5 ± 6.7 mm3, p = 0.023), and reduced length (4.8 ± 0.2 mm vs. 5.4 ± 0.4 mm, p = 0.0169), alongside degenerative changes in germinal epithelium, and elevated liver enzyme. Despite normal eye morphology, retinal thickness, and visual evoked potentials, electroretinogram and behavioural tests indicated enhanced scotopic responsiveness with significant increases in a-wave (162.98 ± 14.1 μv vs. 133.9 ± 36.9 μv, p = 1.5e-07) and b-wave amplitudes (274.82 ± 25.2 μv vs. 199.9 ± 56.1 μv, p = 3.02e-09). CONCLUSIONS: Our findings underscore SLC38A8 role in retinal function and glutamine-glutamate metabolism, with clinical implications for FHONDA and potential future dietary intervention targeting glutamine or glutamate.
Clinical Laboratory Division Shamir Medical Centre Tzrifin Israel
Department of Ophthalmology Shamir Medical Centre Tzrifin Israel
Edmond J Safra Centre of Bioinformatics Tel Aviv University Tel Aviv Israel
Faculty of Medicine Tel Aviv University Tel Aviv Israel
Matlow Ophthalmo Genetic Laboratory Department of Ophthalmology Shamir Medical Centre Tzrifin Israel
Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
Zobrazit více v PubMed
M. Al‐Araimi, B. Pal, J. A. Poulter, et al., “A New Recessively Inherited Disorder Composed of Foveal Hypoplasia, Optic Nerve Decussation Defects and Anterior Segment Dysgenesis Maps to Chromosome 16q23.3–24.1,” Molecular Vision 19 (2013): 2165–2172.
J. A. Poulter, M. Al‐Araimi, I. Conte, et al., “Recessive Mutations in SLC38A8 Cause Foveal Hypoplasia and Optic Nerve Misrouting Without Albinism,” American Journal of Human Genetics 93, no. 6 (2013): 1143–1150.
Y. Perez, L. Gradstein, H. Flusser, et al., “Isolated Foveal Hypoplasia With Secondary Nystagmus and Low Vision Is Associated With a Homozygous SLC38A8 Mutation,” European Journal of Human Genetics 22, no. 5 (2014): 703–706.
C. Weiner, I. Hecht, Y. Rotenstreich, et al., “The Pathogenicity of SLC38A8 in Five Families With Foveal Hypoplasia and Congenital Nystagmus,” Experimental Eye Research 193 (2020): 107958.
D. Sharon, T. Ben‐Yosef, N. Goldenberg‐Cohen, et al., “A Nationwide Genetic Analysis of Inherited Retinal Diseases in Israel as Assessed by the Israeli Inherited Retinal Disease Consortium (IIRDC),” Human Mutation 41, no. 1 (2019): 140–149, https://onlinelibrary.wiley.com/doi/abs/10.1002/humu.23903.
B. J. Fenner, T. E. Tan, A. V. Barathi, et al., “Gene‐Based Therapeutics for Inherited Retinal Diseases,” Frontiers in Genetics 12 (2022): 794805, https://www.frontiersin.org/articles/10.3389/fgene.2021.794805/full.
K. H. Nguyen, B. C. Patel, and P. Tadi, “Anatomy, Head and Neck: Eye Retina,” in StatPearls (StatPearls Publishing, 2023), http://www.ncbi.nlm.nih.gov/books/NBK542332/.
Hedges V, Introduction to Neuroscience (Michigan State University, 2022).
R. Tzekov, L. Stein, and S. Kaushal, “Protein Misfolding and Retinal Degeneration,” Cold Spring Harbor Perspectives in Biology 3, no. 11 (2011): a007492, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3220361/.
M. G. A. Hägglund, S. V. Hellsten, S. Bagchi, et al., “Transport of l‐Glutamine, l‐Alanine, l‐Arginine and l‐Histidine by the Neuron‐Specific Slc38a8 (SNAT8) in CNS,” Journal of Molecular Biology 427, no. 6 (2015): 1495–1512.
R. Bakker, E. L. Wagstaff, C. C. Kruijt, et al., “The Retinal Pigmentation Pathway in Human Albinism: Not So Black and White,” Progress in Retinal and Eye Research 91 (2022): 101091, https://linkinghub.elsevier.com/retrieve/pii/S1350946222000519.
C. C. Kruijt, L. Gradstein, A. A. Bergen, et al., “The Phenotypic and Mutational Spectrum of the FHONDA Syndrome and Oculocutaneous Albinism: Similarities and Differences,” Investigative Ophthalmology & Visual Science 63, no. 1 (2022): 19, https://doi.org/10.1167/iovs.63.1.19.
H. J. Kuht, J. Han, G. D. E. Maconachie, et al., “SLC38A8 Mutations Result in Arrested Retinal Development With Loss of Cone Photoreceptor Specialization,” Human Molecular Genetics 29, no. 18 (2020): 2989–3002, https://academic.oup.com/hmg/article/29/18/2989/5879703.
Y. D. Bhutia and V. Ganapathy, “Glutamine Transporters in Mammalian Cells and Their Functions in Physiology and Cancer,” Biochimica et Biophysica Acta (BBA) ‐ Molecular Cell Research 1863, no. 10 (2016): 2531–2539, https://linkinghub.elsevier.com/retrieve/pii/S0167488915004383.
S. V. Hellsten, R. Tripathi, M. M. Ceder, and R. Fredriksson, “Nutritional Stress Induced by Amino Acid Starvation Results in Changes for Slc38 Transporters in Immortalized Hypothalamic Neuronal Cells and Primary Cortex Cells,” Frontiers in Molecular Biosciences 5 (2018): 45, https://www.frontiersin.org/articles/10.3389/fmolb.2018.00045.
S. V. Hellsten, E. Lekholm, T. Ahmad, and R. Fredriksson, “The Gene Expression of Numerous SLC Transporters Is Altered in the Immortalized Hypothalamic Cell Line N25/2 Following Amino Acid Starvation,” FEBS Open Bio 7, no. 2 (2017): 249–264.
Y. Zhou, T. Eid, B. Hassel, and N. C. Danbolt, “Novel Aspects of Glutamine Synthetase in Ammonia Homeostasis,” Neurochemistry International 140 (2020): 104809.
A. Guardia, A. Fernández, D. Seruggia, et al., “A Slc38a8 Mouse Model of FHONDA Syndrome Faithfully Recapitulates the Visual Deficits of Albinism Without Pigmentation Defects,” Investigative Ophthalmology & Visual Science 64, no. 13 (2023): 32, https://doi.org/10.1167/iovs.64.13.32.
M. Takeda, M. Haga, H. Yamada, et al., “Ionotropic Glutamate Receptors Expressed in Human Retinoblastoma Y79 Cells,” Neuroscience Letters 294, no. 2 (2000): 97–100, https://linkinghub.elsevier.com/retrieve/pii/S0304394000015469.
H. Akiyama, T. Tanaka, H. Doi, et al., “Visible Light Exposure Induces VEGF Gene Expression Through Activation of Retinoic Acid Receptor‐α in Retinoblastoma Y79 Cells,” American Journal of Physiology‐Cell Physiology 288, no. 4 (2005): C913–C920, https://www.physiology.org/doi/10.1152/ajpcell.00116.2004.
E. Ferrada and G. Superti‐Furga, “A Structure and Evolutionary‐Based Classification of Solute Carriers,” iScience 25, no. 10 (2022): 105096, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508557/.
C. Weiner, I. Hecht, A. Kotlyar, et al., “Association of Variants in TMEM45A With Keratoglobus,” JAMA Ophthalmology 139, no. 10 (2021): 1089–1095, https://doi.org/10.1001/jamaophthalmol.2021.3172.
M. J. M. F. Reijnders and R. M. Waterhouse, “Summary Visualizations of Gene Ontology Terms With GO‐Figure!,” Frontiers in Bioinformatics 1 (2021): 638255.
M. Kanehisa and S. Goto, “KEGG: Kyoto Encyclopedia of Genes and Genomes,” Nucleic Acids Research 28, no. 1 (2000): 27–30.
M. Kanehisa, M. Furumichi, Y. Sato, M. Kawashima, and M. Ishiguro‐Watanabe, “KEGG for Taxonomy‐Based Analysis of Pathways and Genomes,” Nucleic Acids Research 51, no. D1 (2023): D587–D592.
J. Lindovsky, M. Palkova, V. Symkina, M. J. Raishbrook, J. Prochazka, and R. Sedlacek, “OCT and ERG Techniques in High‐Throughput Phenotyping of Mouse Vision,” Genes 14, no. 2 (2023): 294, https://www.mdpi.com/2073‐4425/14/2/294.
J. M. Chee, L. Lanoue, D. Clary, et al., “Genome‐Wide Screening Reveals the Genetic Basis of Mammalian Embryonic Eye Development,” BMC Biology 21, no. 1 (2023): 22, https://bmcbiol.biomedcentral.com/articles/10.1186/s12915‐022‐01475‐0.
R. C. McFall, W. Sery, and M. Makadon, “Characterization of a New Continuous Cell Line Derived From a Human Retinoblastoma,” Cancer Research 37, no. 9 (1977): 1003–1010.
M. Kanehisa, “Toward Understanding the Origin and Evolution of Cellular Organisms,” Protein Science 28, no. 11 (2019): 1947–1951.
V. Connaughton, “Glutamate and Glutamate Receptors in the Vertebrate Retina,” in Webvision: The Organization of the Retina and Visual System, ed. H. Kolb , E. Fernandez , and R. Nelson (University of Utah Health Sciences Center, 1995), http://www.ncbi.nlm.nih.gov/books/NBK11526/.
S. K. Kang, N. A. Hawkins, and J. A. Kearney, “C57BL/6J and C57BL/6N Substrains Differentially Influence Phenotype Severity in the Scn1a +/− Mouse Model of Dravet Syndrome,” Epilepsia Open 4, no. 1 (2019): 164–169, https://doi.org/10.1002/epi4.12287.
K. Mekada and A. Yoshiki, “Substrains Matter in Phenotyping of C57BL/6 Mice,” Experimental Animals 70, no. 2 (2021): 145–160, https://www.jstage.jst.go.jp/article/expanim/70/2/70_20‐0158/_article.
K. A. Tsantilas, W. M. Cleghorn, C. M. Bisbach, et al., “An Analysis of Metabolic Changes in the Retina and Retinal Pigment Epithelium of Aging Mice,” Investigative Ophthalmology & Visual Science 62, no. 14 (2021): 20, https://doi.org/10.1167/iovs.62.14.20.
T. S. Aleman, A. V. Cideciyan, G. K. Aguirre, et al., “Human CRB1‐Associated Retinal Degeneration: Comparison With the rd8 Crb1‐Mutant Mouse Model,” Investigative Ophthalmology & Visual Science 52, no. 9 (2011): 6898–6910, https://doi.org/10.1167/iovs.11‐7701.