Chronic DSS-Induced Colitis Exacerbates Parkinson's Disease Phenotype and Its Pathological Features Following Intragastric Rotenone Exposure
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39974653
PubMed Central
PMC11833723
DOI
10.1021/acsptsci.4c00286
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Background: Parkinson's disease (PD) is intricately linked to gastrointestinal inflammation and the presence of neurotoxins in the gut, integrating α-syn pathologic alterations and subsequent neurodegeneration into the brain. Objectives: This study aimed to explore the enduring impact of dextran sodium sulfate (DSS)-mediated colitis on the vulnerability of central dopaminergic neurons to subsequent rotenone exposure. Methods: To induce chronic colitis, 10-month-old C57BL/6 mice were pre-exposed to 3 cycles of 1 week of 1% (w/v) DSS administration in drinking water followed by 2 weeks of regular drinking water. After colitis induction, animals received a low dose of intragastric rotenone for the next 8 weeks, followed by testing for Parkinsonian behavior and GI phenotypes of inflammation. At the end of the 17th week, colon, brain stem, and midbrain tissue were isolated and analyzed for α-syn, inflammatory markers, and dopaminergic neuronal loss. Gut microbial composition was assessed by 16S rRNA sequencing analysis. Results: We found that chronic rotenone administration in the presence of preexisting colitis led to a further increase in colonic pro-inflammatory mediator expressions, α-syn expression, and reduced colonic tight junction protein expressions. We also found early impairment of GI functions and worsened grip strength in rotenone-exposed colitic mice. Furthermore, α-syn pathology specific to the colitic mice exposed to rotenone showed dopaminergic neurons degeneration and astroglial activation in substantia nigra and striatum, including regions of the brain stem, i.e., dorsal motor of the vagus and locus coeruleus. Finally, the result of 16S rRNA gene sequencing analysis indicated that colitic mice, after being exposed to rotenone, exhibited a discernible trend in their microbiota composition (Catenibacterium, Turicibactor, and clostridium sensue stricto 1), linking it to the development of PD. Conclusions: These findings indicate that prolonged low-dose rotenone exposure, combined with an early inflammatory intestinal milieu, provides a preconditioning effect on α-syn pathology and exerts neurodegeneration in the intragastric rotenone PD mouse model.
Department of Physiology Faculty of Medicine Masaryk University Brno 62500 Czech Republic
RECETOX Faculty of Science Masaryk University Brno 62500 Czech Republic
See more in PubMed
Travagli R. A.; Browning K. N.; Camilleri M. Parkinson disease and the gut: new insights into pathogenesis and clinical relevance. Nat. Rev. Gastroenterol. Hepatol. 2020, 17 (11), 673–685. 10.1038/s41575-020-0339-z. PubMed DOI
Khairnar A.; Ruda-Kucerova J.; Drazanova E.; Szabó N.; Latta P.; Arab A.; Hutter-Paier B.; Havas D.; Windisch M.; Sulcova A.; Starcuk Z. Jr; Király A.; Rektorova I. Late-stage α-synuclein accumulation in TNWT-61 mouse model of Parkinson’s disease detected by diffusion kurtosis imaging. J. Neurochem. 2016, 136 (6), 1259–1269. 10.1111/jnc.13500. PubMed DOI
Parekh P.; Sharma N.; Gadepalli A.; Shahane A.; Sharma M.; Khairnar A. A Cleaning Crew: The Pursuit of Autophagy in Parkinson’s Disease. ACS Chem. Neurosci. 2019, 10 (9), 3914–3926. 10.1021/acschemneuro.9b00244. PubMed DOI
Scheperjans F.; Derkinderen P.; Borghammer P. The Gut and Parkinson’s Disease: Hype or Hope?. J. Parkinson’s Dis. 2018, 8 (s1), S31–S39. 10.3233/JPD-181477. PubMed DOI PMC
Fasano A.; Visanji N. P.; Liu L. W.; Lang A. E.; Pfeiffer R. F. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol. 2015, 14 (6), 625–639. 10.1016/S1474-4422(15)00007-1. PubMed DOI
Devos D.; Lebouvier T.; Lardeux B.; Biraud M.; Rouaud T.; Pouclet H.; Coron E.; Bruley des Varannes S.; Naveilhan P.; Nguyen J. M.; Neunlist M.; Derkinderen P. Colonic inflammation in Parkinson’s disease. Neurobiol Dis. 2013, 50, 42–48. 10.1016/j.nbd.2012.09.007. PubMed DOI
Braak H.; Rüb U.; Gai W. P.; Del Tredici K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 2003, 110 (5), 517–536. 10.1007/s00702-002-0808-2. PubMed DOI
Manfredsson F. P.; Luk K. C.; Benskey M. J.; Gezer A.; Garcia J.; Kuhn N. C.; Sandoval I. M.; Patterson J. R.; O’Mara A.; Yonkers R.; Kordower J. H. Induction of alpha-synuclein pathology in the enteric nervous system of the rat and non-human primate results in gastrointestinal dysmotility and transient CNS pathology. Neurobiol. Dis. 2018, 112, 106–118. 10.1016/j.nbd.2018.01.008. PubMed DOI PMC
Sacino A. N.; Brooks M.; Thomas M. A.; McKinney A. B.; Lee S.; Regenhardt R. W.; McGarvey N. H.; Ayers J. I.; Notterpek L.; Borchelt D. R.; Golde T. E.; Giasson B. I. Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (29), 10732–10737. 10.1073/pnas.1321785111. PubMed DOI PMC
George S.; Rey N. L.; Reichenbach N.; Steiner J. A.; Brundin P. α-Synuclein: the long distance runner. Brain Pathol. 2013, 23 (3), 350–357. 10.1111/bpa.12046. PubMed DOI PMC
Svensson E.; Horváth-Puhó E.; Thomsen R. W.; Djurhuus J. C.; Pedersen L.; Borghammer P.; Sørensen H. T. Vagotomy and subsequent risk of Parkinson’s disease. Ann. Neurol. 2015, 78 (4), 522–529. 10.1002/ana.24448. PubMed DOI
Peter I.; Dubinsky M.; Bressman S.; Park A.; Lu C.; Chen N.; Wang A. Anti-Tumor Necrosis Factor Therapy and Incidence of Parkinson Disease Among Patients With Inflammatory Bowel Disease. JAMA Neurol. 2018, 75 (8), 939–946. 10.1001/jamaneurol.2018.0605. PubMed DOI PMC
Zhu Y.; Yuan M.; Liu Y.; Yang F.; Chen W. Z.; Xu Z. Z.; Xiang Z. B.; Xu R. S. Association between inflammatory bowel diseases and Parkinson’s disease: systematic review and meta-analysis. Neural Regen. Res. 2022, 17 (2), 344–353. 10.4103/1673-5374.317981. PubMed DOI PMC
Ananthakrishnan A. N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 2015, 12 (4), 205–217. 10.1038/nrgastro.2015.34. PubMed DOI
Stolzenberg E.; Berry D.; Yang D.; Lee E. Y.; Kroemer A.; Kaufman S.; Wong G. C. L.; Oppenheim J. J.; Sen S.; Fishbein T.; Bax A.; Harris B.; Barbut D.; Zasloff M. A. A Role for Neuronal Alpha-Synuclein in Gastrointestinal Immunity. J. Innate Immun. 2017, 9 (5), 456–463. 10.1159/000477990. PubMed DOI PMC
Erratum in: J Innate Immun. 2018; Vol. 10 (1), , p 82.10.1159/000485168. PubMed DOI PMC
Prigent A.; Chapelet G.; De Guilhem de Lataillade A.; Oullier T.; Durieu E.; Bourreille A.; Duchalais E.; Hardonnière K.; Neunlist M.; Noble W.; Kerdine-Römer S.; Derkinderen P.; Rolli-Derkinderen M. Tau accumulates in Crohn’s disease gut. FASEB J. 2020, 34 (7), 9285–9296. 10.1096/fj.202000414R. PubMed DOI
Guan Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res. 2019, 2019, 724723810.1155/2019/7247238. PubMed DOI PMC
Lin C. H.; Lin H. Y.; Ho E. P.; Ke Y. C.; Cheng M. F.; Shiue C. Y.; Wu C. H.; Liao P. H.; Hsu A. Y.; Chu L. A.; Liu Y. D.; Lin Y. H.; Tai Y. C.; Shun C. T.; Chiu H. M.; Wu M. S. Mild Chronic Colitis Triggers Parkinsonism in LRRK2Mutant Mice Through Activating TNF-α Pathway. Mov. Disord. 2022, 37 (4), 745–757. 10.1002/mds.28890. PubMed DOI
Kim J. J.; Shajib M. S.; Manocha M. M.; Khan W. I. Investigating intestinal inflammation in DSS-induced model of IBD. J. Visualized Exp. 2012, (60), 3678.10.3791/3678-v. PubMed DOI PMC
Hor J. W.; Lim S. Y.; Khor E. S.; Chong K. K.; Song S. L.; Ibrahim N. M.; Teh C. S. J.; Chong C. W.; Hilmi I. N.; Tan A. H. Fecal Calprotectin in Parkinson’s Disease and Multiple System Atrophy. J. Mov. Disord. 2022, 15 (2), 106–114. 10.14802/jmd.21085. PubMed DOI PMC
Bohnen N. I.; Yarnall A. J.; Weil R. S.; Moro E.; Moehle M. S.; Borghammer P.; Bedard M. A.; Albin R. L. Cholinergic system changes in Parkinson’s disease: emerging therapeutic approaches. Lancet Neurol. 2022, 21 (4), 381–392. 10.1016/S1474-4422(21)00377-X. PubMed DOI PMC
Uchiyama M.; Isse K.; Tanaka K.; Yokota N.; Hamamoto M.; Aida S.; Ito Y.; Yoshimura M.; Okawa M. Incidental Lewy body disease in a patient with REM sleep behavior disorder. Neurology 1995, 45 (4), 709–712. 10.1212/WNL.45.4.709. PubMed DOI
Knudsen K.; Fedorova T. D.; Hansen A. K.; Sommerauer M.; Otto M.; Svendsen K. B.; Nahimi A.; Stokholm M. G.; Pavese N.; Beier C. P.; Brooks D. J.; Borghammer P. In-vivo staging of pathology in REM sleep behaviour disorder: a multimodality imaging case-control study. Lancet Neurol. 2018, 17 (7), 618–628. 10.1016/S1474-4422(18)30162-5. PubMed DOI
Tansey M. G.; McCoy M. K.; Frank-Cannon T. C. Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp. Neurol. 2007, 208 (1), 1–25. 10.1016/j.expneurol.2007.07.004. PubMed DOI PMC
Sharma N.; Soni R.; Sharma M.; Chatterjee S.; Parihar N.; Mukarram M.; Kale R.; Sayyed A. A.; Behera S. K.; Khairnar A. Chlorogenic Acid: a Polyphenol from Coffee Rendered Neuroprotection Against Rotenone-Induced Parkinson’s Disease by GLP-1 Secretion. Mol. Neurobiol. 2022, 59 (11), 6834–6856. 10.1007/s12035-022-03005-z. PubMed DOI
Colombo E.; Farina C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol. 2016, 37 (9), 608–620. 10.1016/j.it.2016.06.006. PubMed DOI
Wan Q. Y.; Zhao R.; Wu X. T. Older patients with IBD might have higher risk of Parkinson’s disease. Gut 2020, 69 (1), 193–194. 10.1136/gutjnl-2018-317103. PubMed DOI
Pan-Montojo F.; Anichtchik O.; Dening Y.; Knels L.; Pursche S.; Jung R.; Jackson S.; Gille G.; Spillantini M. G.; Reichmann H.; Funk R. H. Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 2010, 5 (1), e876210.1371/journal.pone.0008762. PubMed DOI PMC
Okayasu I.; Hatakeyama S.; Yamada M.; Ohkusa T.; Inagaki Y.; Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 1990, 98 (3), 694–702. 10.1016/0016-5085(90)90290-H. PubMed DOI
Gaudio E.; Taddei G.; Vetuschi A.; Sferra R.; Frieri G.; Ricciardi G.; Caprilli R. Dextran sulfate sodium (DSS) colitis in rats: clinical, structural, and ultrastructural aspects. Dig. Dis. Sci. 1999, 44 (7), 1458–1475. 10.1023/A:1026620322859. PubMed DOI
Dodiya H. B.; Forsyth C. B.; Voigt R. M.; Engen P. A.; Patel J.; Shaikh M.; Green S. J.; Naqib A.; Roy A.; Kordower J. H.; Pahan K.; Shannon K. M.; Keshavarzian A. Chronic stress-induced gut dysfunction exacerbates Parkinson’s disease phenotype and pathology in a rotenone-induced mouse model of Parkinson’s disease. Neurobiol Dis. 2020, 135, 10435210.1016/j.nbd.2018.12.012. PubMed DOI
Zhao Z.; Ning J.; Bao X. Q.; Shang M.; Ma J.; Li G.; Zhang D. Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. Microbiome 2021, 9 (1), 22610.1186/s40168-021-01107-9. PubMed DOI PMC
Boyen G. B. T. v.; Reinshagen M.; Steinkamp M.; Adler G.; Kirsch J. Gut inflammation modulated by the enteric nervous system and neurotrophic factors. Scand. J. Gastroenterol. 2002, 37 (6), 621–625. 10.1080/00365520212498. PubMed DOI
Neunlist M.; Van Landeghem L.; Bourreille A.; Savidge T. Neuro-glial crosstalk in inflammatory bowel disease. J. Intern. Med. 2008, 263 (6), 577–583. 10.1111/j.1365-2796.2008.01963.x. PubMed DOI
Sala G.; Arosio A.; Stefanoni G.; Melchionda L.; Riva C.; Marinig D.; Brighina L.; Ferrarese C. Rotenone upregulates alpha-synuclein and myocyte enhancer factor 2D independently from lysosomal degradation inhibition. Biomed. Res. Int. 2013, 2013, 84672510.1155/2013/846725. PubMed DOI PMC
Wang R.; Ren H.; Kaznacheyeva E.; Lu X.; Wang G. Association of Glial Activation and α-Synuclein Pathology in Parkinson’s Disease. Neurosci. Bull. 2023, 39 (3), 479–490. 10.1007/s12264-022-00957-z. PubMed DOI PMC
Li Y. H.; Adam R.; Colombel J. F.; Bian Z. X. A characterization of pro-inflammatory cytokines in dextran sulfate sodium-induced chronic relapsing colitis mice model. Int. Immunopharmacol. 2018, 60, 194–201. 10.1016/j.intimp.2018.05.001. PubMed DOI
Pan-Montojo F.; Schwarz M.; Winkler C.; Arnhold M.; O’Sullivan G. A.; Pal A.; Said J.; Marsico G.; Verbavatz J. M.; Rodrigo-Angulo M.; Gille G.; Funk R. H.; Reichmann H. Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci. Rep. 2012, 2, 89810.1038/srep00898. PubMed DOI PMC
Weinshenker D. Long Road to Ruin: Noradrenergic Dysfunction in Neurodegenerative Disease. Trends Neurosci. 2018, 41 (4), 211–223. 10.1016/j.tins.2018.01.010. PubMed DOI PMC
Keren N. I.; Taheri S.; Vazey E. M.; Morgan P. S.; Granholm A. C.; Aston-Jones G. S.; Eckert M. A. Histologic validation of locus coeruleus MRI contrast in post-mortem tissue. NeuroImage 2015, 113, 235–245. 10.1016/j.neuroimage.2015.03.020. PubMed DOI PMC
Chen X.; Huddleston D. E.; Langley J.; Ahn S.; Barnum C. J.; Factor S. A.; Levey A. I.; Hu X. Simultaneous imaging of locus coeruleus and substantia nigra with a quantitative neuromelanin MRI approach. Magn Reson Imaging 2014, 32 (10), 1301–1306. 10.1016/j.mri.2014.07.003. PubMed DOI
Lee M. K.; Stirling W.; Xu Y.; Xu X.; Qui D.; Mandir A. S.; Dawson T. M.; Copeland N. G.; Jenkins N. A.; Price D. L. Human α-synuclein-harboring familial Parkinson’s disease-linked Ala-53 → Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (13), 8968–8973. 10.1073/pnas.132197599. PubMed DOI PMC
Dawson T. M.; Ko H. S.; Dawson V. L. Genetic animal models of Parkinson’s disease. Neuron 2010, 66 (5), 646–661. 10.1016/j.neuron.2010.04.034. PubMed DOI PMC
Masliah E.; Rockenstein E.; Veinbergs I.; Mallory M.; Hashimoto M.; Takeda A.; Sagara Y.; Sisk A.; Mucke L. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 2000, 287 (5456), 1265–1269. 10.1126/science.287.5456.1265. PubMed DOI
Gil-Martinez A. L.; Cuenca-Bermejo L.; Gonzalez-Cuello A. M.; Sanchez-Rodrigo C.; Parrado A.; Vyas S.; Fernandez-Villalba E.; Herrero M. T. Identification of differentially expressed genes profiles in a combined mouse model of Parkinsonism and colitis. Sci. Rep. 2020, 10 (1), 1314710.1038/s41598-020-69695-4. PubMed DOI PMC
Shen B.; Wang J.; Guo Y.; Gu T.; Shen Z.; Zhou C.; Li B.; Xu X.; Li F.; Zhang Q.; Cai X.; Dong H.; Lu L. Dextran Sulfate Sodium Salt-Induced Colitis Aggravates Gut Microbiota Dysbiosis and Liver Injury in Mice With Non-alcoholic Steatohepatitis. Front. Microbiol. 2021, 12, 75629910.3389/fmicb.2021.756299. PubMed DOI PMC
Gao B.; Bian X.; Mahbub R.; Lu K. Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions. Environ. Health Perspect. 2017, 125 (2), 198–206. 10.1289/EHP202. PubMed DOI PMC
Sampson T. R.; Debelius J. W.; Thron T.; Janssen S.; Shastri G. G.; Ilhan Z. E.; Challis C.; Schretter C. E.; Rocha S.; Gradinaru V.; Chesselet M. F.; Keshavarzian A.; Shannon K. M.; Krajmalnik-Brown R.; Wittung-Stafshede P.; Knight R.; Mazmanian S. K. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell 2016, 167 (6), 1469–1480.e12. 10.1016/j.cell.2016.11.018. PubMed DOI PMC
Choi J. G.; Huh E.; Kim N.; Kim D. H.; Oh M. S. High-throughput 16S rRNA gene sequencing reveals that 6-hydroxydopamine affects gut microbial environment. PLoS One 2019, 14 (8), e0217194.10.1371/journal.pone.0217194. PubMed DOI PMC
Keshavarzian A.; Green S. J.; Engen P. A.; Voigt R. M.; Naqib A.; Forsyth C. B.; Mutlu E.; Shannon K. M. Colonic bacterial composition in Parkinson’s disease. Mov. Disord. 2015, 30 (10), 1351–1360. 10.1002/mds.26307. PubMed DOI
Perez-Pardo P.; Dodiya H. B.; Engen P. A.; Forsyth C. B.; Huschens A. M.; Shaikh M.; Voigt R. M.; Naqib A.; Green S. J.; Kordower J. H.; Shannon K. M.; Garssen J.; Kraneveld A. D.; Keshavarzian A. Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut 2019, 68 (5), 829–843. 10.1136/gutjnl-2018-316844. PubMed DOI
Liu X.; Du Z. R.; Wang X.; Luk K. H.; Chan C. H.; Cao X.; Zhao Q.; Zhao F.; Wong W. T.; Wong K. H.; Dong X. L. Colonic Dopaminergic Neurons Changed Reversely With Those in the Midbrain via Gut Microbiota-Mediated Autophagy in a Chronic Parkinson’s Disease Mice Model. Front. Aging Neurosci. 2021, 13, 64962710.3389/fnagi.2021.649627. PubMed DOI PMC
Bravo J. A.; Forsythe P.; Chew M. V.; Escaravage E.; Savignac H. M.; Dinan T. G.; Bienenstock J.; Cryan J. F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U.S.A. 2011, 108 (38), 16050–16055. 10.1073/pnas.1102999108. PubMed DOI PMC
Johnson M. E.; Stringer A.; Bobrovskaya L. Rotenone induces gastrointestinal pathology and microbiota alterations in a rat model of Parkinson’s disease. Neurotoxicology 2018, 65, 174–185. 10.1016/j.neuro.2018.02.013. PubMed DOI
Zhu Y.; Huan F.; Wang J.; Xie X.; Yu G.; Wang X.; Jiang L.; Gao R.; Xiao H.; Ding H.; Wang J. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Induced Parkinson’s Disease in Mouse: Potential Association between Neurotransmitter Disturbance and Gut Microbiota Dysbiosis. ACS Chem. Neurosci. 2020, 11 (20), 3366–3376. 10.1021/acschemneuro.0c00475. PubMed DOI
Peng Y.; Yan Y.; Wan P.; Chen D.; Ding Y.; Ran L.; Mi J.; Lu L.; Zhang Z.; Li X.; Zeng X.; Cao Y. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Radical Biol. Med. 2019, 136, 96–108. 10.1016/j.freeradbiomed.2019.04.005. PubMed DOI
Kim Y. K.; inventor; MD Healthcare Inc, assignee . Nano-vesicle derived from catenibacterium bacteria and use thereof. United States patent US12,018,337. 2024. Jun 25 (accessed 2024–10–04).
Jin M.; Li J.; Liu F.; Lyu N.; Wang K.; Wang L.; Liang S.; Tao H.; Zhu B.; Alkasir R. Analysis of the Gut Microflora in Patients With Parkinson’s Disease. Front. Neurosci. 2019, 13, 1184.10.3389/fnins.2019.01184. PubMed DOI PMC
Samba-Mondonga M.; Constante M.; Fragoso G.; Calvé A.; Santos M. M. Curcumin induces mild anemia in a DSS-induced colitis mouse model maintained on an iron-sufficient diet. PLoS One 2019, 14 (4), e020867710.1371/journal.pone.0208677. PubMed DOI PMC
Chassaing B.; Aitken J. D.; Malleshappa M.; Vijay-Kumar M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 2014, 104, 15.25.1–15.25.14. 10.1002/0471142735.im1525s104. PubMed DOI PMC
Sharma M.; Kaur J.; Rakshe S.; Sharma N.; Khunt D.; Khairnar A. Intranasal Exposure to Low-Dose Rotenone Induced Alpha-Synuclein Accumulation and Parkinson’s Like Symptoms Without Loss of Dopaminergic Neurons. Neurotox. Res. 2022, 40 (3), 909–910. 10.1007/s12640-022-00497-4. PubMed DOI
Khairnar A.; Ruda-Kucerova J.; Arab A.; Hadjistyllis C.; Sejnoha Minsterova A.; Shang Q.; Chovsepian A.; Drazanova E.; Szabó N.; Starcuk Z. Jr; Rektorova I.; Pan-Montojo F. Diffusion kurtosis imaging detects the time-dependent progress of pathological changes in the oral rotenone mouse model of Parkinson’s disease. J. Neurochem. 2021, 158 (3), 779–797. 10.1111/jnc.15449. PubMed DOI
Fazio L. D.; Cavazza E.; Spisni E.; Strillacci A.; Centanni M.; Candela M.; Praticò C.; Campieri M.; Ricci C.; Valerii M. C. Longitudinal analysis of inflammation and microbiota dynamics in a model of mild chronic dextran sulfate sodium-induced colitis in mice. World J. Gastroenterol. 2014, 20 (8), 2051–2061. 10.3748/wjg.v20.i8.2051. PubMed DOI PMC
Lyle W. G.; Curtman L. J.; Marshall J. T. The catalytic reactions of blood: I. A study of some of the factors involved in the benzidine test for occult blood. J. Biol. Chem. 1914, 19 (4), 445–457. 10.1016/S0021-9258(18)88281-3. DOI
Kuo Y. M.; Li Z.; Jiao Y.; Gaborit N.; Pani A. K.; Orrison B. M.; Bruneau B. G.; Giasson B. I.; Smeyne R. J.; Gershon M. D.; Nussbaum R. L. Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated α-synuclein gene mutations precede central nervous system changes. Hum. Mol. Genet. 2010, 19 (9), 1633–1650. 10.1093/hmg/ddq038. PubMed DOI PMC
Greene J. G.; Noorian A. R.; Srinivasan S. Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson’s disease. Exp. Neurol. 2009, 218 (1), 154–161. 10.1016/j.expneurol.2009.04.023. PubMed DOI PMC
Paxinos G.; Franklin K. B.. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates; Academic Press, 2019.
Lu Y.; Kim N. M.; Jiang Y. W.; Zhang H.; Zheng D.; Zhu F. X.; Liang R.; Li B.; Xu H. X. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br. J. Pharmacol. 2018, 175 (7), 1085–1099. 10.1111/bph.14150. PubMed DOI PMC
Liao A. P.; Petrof E. O.; Kuppireddi S.; Zhao Y.; Xia Y.; Claud E. C.; Sun J. Salmonella type III effector AvrA stabilizes cell tight junctions to inhibit inflammation in intestinal epithelial cells. PLoS One 2008, 3 (6), e2369.10.1371/journal.pone.0002369. PubMed DOI PMC
Khairnar A.; Plumitallo A.; Frau L.; Schintu N.; Morelli M. Caffeine enhances astroglia and microglia reactivity induced by 3,4-methylenedioxymethamphetamine (’ecstasy’) in mouse brain. Neurotox. Res. 2010, 17 (4), 435–439. 10.1007/s12640-009-9125-y. PubMed DOI
Parkhe A.; Parekh P.; Nalla L. V.; Sharma N.; Sharma M.; Gadepalli A.; Kate A.; Khairnar A. Protective effect of alpha mangostin on rotenone induced toxicity in rat model of Parkinson’s disease. Neurosci. Lett. 2020, 716, 13465210.1016/j.neulet.2019.134652. PubMed DOI
Parekh P.; Sharma N.; Sharma M.; Gadepalli A.; Sayyed A. A.; Chatterjee S.; Kate A.; Khairnar A. AMPK-dependent autophagy activation and alpha-Synuclein clearance: a putative mechanism behind alpha-mangostin’s neuroprotection in a rotenone-induced mouse model of Parkinson’s disease. Metab Brain Dis. 2022, 37 (8), 2853–2870. 10.1007/s11011-022-01087-1. PubMed DOI
Team R. C.R: A language and environment for statistical computing, 2013.
Gentleman R.; Carey V.; Huber W.; Hahne F.. Genefilter: methods for filtering genes from high-throughput experiments. R package version 1.66.0. https://bioconductor.org/packages/release/bioc/htmL/genefilter.html. 2019. (accessed 2024–10–04).
van den Boogaart K. G.; Tolosana R.; Bren M.. compositions: Compositional data analysis, http://www.r-project.org, R package version 1.01–1, 2009. (accessed 2024–10–04).
Wickham H., Data analysis. In ggplot2; 2016, Springer, p 189–201.
Kassambara A., ggpubr:’ggplot2’Based Publication Ready Plots. R package version 0.4. 0. Computer software]. https://cran-r-project.org/web/packages/ggpubr/indes.html, 2020. (accessed 2024–10–04).
Murray M. H.; Blume J. D. FDRestimation: Flexible False Discovery Rate Computation in R. F1000Research 2021, 10, 441.10.12688/f1000research.52999.1. PubMed DOI PMC
Gu Z.; Eils R.; Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32 (18), 2847–2849. 10.1093/bioinformatics/btw313. PubMed DOI
Ip C. W.; Cheong D.; Volkmann J. Stereological Estimation of Dopaminergic Neuron Number in the Mouse Substantia Nigra Using the Optical Fractionator and Standard Microscopy Equipment. J. Visualized Exp. 2017, (127), 56103.10.3791/56103-v. PubMed DOI PMC
Sharma M.; Sharma N.; Khairnar A. Intranasal Rotenone Induces Alpha-Synuclein Accumulation, Neuroinflammation and Dopaminergic Neurodegeneration in Middle-Aged Mice. Neurochem. Res. 2023, 48 (5), 1543–1560. 10.1007/s11064-022-03847-y. PubMed DOI
Miyazaki I.; Isooka N.; Imafuku F.; Sun J.; Kikuoka R.; Furukawa C.; Asanuma M. Chronic Systemic Exposure to Low-Dose Rotenone Induced Central and Peripheral Neuropathology and Motor Deficits in Mice: Reproducible Animal Model of Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21 (9), 3254.10.3390/ijms21093254. PubMed DOI PMC
Sharma M.; Malim F. M.; Goswami A.; Sharma N.; Juvvalapalli S. S.; Chatterjee S.; Kate A. S.; Khairnar A. Neuroprotective Effect of Swertiamarin in a Rotenone Model of Parkinson’s Disease: Role of Neuroinflammation and Alpha-Synuclein Accumulation. ACS Pharmacol. Transl. Sci. 2023, 6 (1), 40–51. 10.1021/acsptsci.2c00120. PubMed DOI PMC
Sharma N.; Sharma M.; Thakkar D.; Kumar H.; Smetanova S.; Buresova L.; Andrla P.; Khairnar A.. Intragastric administration of low-dose rotenone post-colitis exacerbates damage to the nigrostriatal dopaminergic system in Parkinson’s disease: The pace accelerates even more. bioRxiv, 22 Dec 202210.1101/2022.12.22.521569 (accessed on 11-Nov-2024). DOI
Engen P. A.; Dodiya H. B.; Naqib A.; Forsyth C. B.; Green S. J.; Voigt R. M.; Kordower J. H.; Mutlu E. A.; Shannon K. M.; Keshavarzian A. The Potential Role of Gut-Derived Inflammation in Multiple System Atrophy. J. Parkinson’s Dis. 2017, 7 (2), 331–346. 10.3233/JPD-160991. PubMed DOI