Synthesis of novel quinoline-thiazolobenzimidazolone hybrids as anticancer agents through caspase-dependent apoptosis
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
PubMed
40008604
PubMed Central
PMC11901420
DOI
10.1080/17568919.2025.2470112
Knihovny.cz E-resources
- Keywords
- Caspase-3, Quinoline, Thiazolobenzimidazole, cytotoxic activity, epoxide ring opening, hybrid compounds, molecular docking,
- MeSH
- Apoptosis * drug effects MeSH
- Benzimidazoles * chemistry pharmacology chemical synthesis MeSH
- Quinolines * chemistry pharmacology MeSH
- Caspases * metabolism MeSH
- Humans MeSH
- Molecular Structure MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents * pharmacology chemical synthesis chemistry MeSH
- Drug Screening Assays, Antitumor MeSH
- Molecular Docking Simulation MeSH
- Thiazoles * chemistry pharmacology MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- benzimidazolone MeSH Browser
- Benzimidazoles * MeSH
- Quinolines * MeSH
- Caspases * MeSH
- Antineoplastic Agents * MeSH
- quinoline MeSH Browser
- Thiazoles * MeSH
AIM: This work explores the synthesis of new bi-heterocyclic hybrid compounds based on quinoline ring and investigates their potential as anticancer agents. MATERIALS & METHODS: The novel fused quinoline-thiazolo[3,2-a] benzimidazole-3(2 h)one hybrids were prepared by regioselective nucleophilic ring opening of the corresponding quinolinyl-oxiranes. In vitro cytotoxic activity was evaluated against human lung (A549) and gastric (AGS) cancer cell lines. RESULTS: Global results showed that all tested compounds have promising inhibitory properties. Compounds 17 and 18 bearing two methoxy groups on the quinoline ring have exhibited remarkable and interesting activities. The investigation of the cell death process showed that these compounds activated a caspase-dependent apoptosis pathway. Results were further supported by molecular docking studies. CONCLUSION: Both compounds exhibited good drug-like characteristics, which make them promising drug candidates.
Faculty of Pharmacy Charles University Hradec Králové Czech Republic
LAQV REQUIMTE and Department of Chemistry University of Aveiro Aveiro Portugal
See more in PubMed
World Health Organization . Cancer fact sheet [internet]. Geneva: World Health Organization; [updated2021. May 12 [cited 2023 Jun 23]. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492 PubMed DOI
Yin W, Wang J, Jiang L, et al. Cancer and stem cells. Exp Biol Med (Maywood). 2021;246(16):1791–1801. doi: 10.1177/15353702211005390 PubMed DOI PMC
Partridge AH, Burstein HJ, Winer EP.. Side effects of chemotherapy and combined chemohormonal therapy in women with early-stage breast cancer. J Natl Cancer Inst Monogr. 2001;2001(30):135–142. doi: 10.1093/oxfordjournals.jncimonographs.a003451 PubMed DOI
Pérez-Herrero E, Fernández-Medarde A.. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79. doi: 10.1016/j.ejpb.2015.03.018 PubMed DOI
Deiters A, Martin SF. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem Rev. 2004;104(5):2199–2238. doi: 10.1021/cr0200872 PubMed DOI
Thansandote P, Lautens M. Construction of nitrogen-containing heterocycles by C-H bond functionalization. Chem A Eur J. 2009;15(24):5874–5883. doi: 10.1002/chem.200900281 PubMed DOI
Martins P, Jesus J, Santos S, et al. Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules. 2015;20(9):16852–16891. doi: 10.3390/molecules200916852 PubMed DOI PMC
Heravi MM, Zadsirjan V. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Adv. 2020;10(72):44247–44311. doi: 10.1039/D0RA09198G PubMed DOI PMC
Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem. 2014;57(24):10257–10274. doi: 10.1021/jm501100b PubMed DOI
Kumar GS, Poornachandra Y, Gunda SK, et al. Synthesis of novel hetero ring fused pyridine derivatives; their anticancer activity, CoMFA and CoMSIA studies. Bioorg Med Chem Lett. 2018;28(13):2328–2337. doi: 10.1016/j.bmcl.2018.04.031 PubMed DOI
Ahmed EY, Elserwy WS, El-Mansy MF, et al. Angiokinase inhibition of VEGFR-2, PDGFR and FGFR and cell growth inhibition in lung cancer: design, synthesis, biological evaluation and molecular docking of novel azaheterocyclic coumarin derivatives. Bioorg Med Chem Lett. 2021;48:128258. doi: 10.1016/j.bmcl.2021.128258 PubMed DOI
Gao F, Zhang X, Wang T, et al. Quinolone hybrids and their anti-cancer activities: an overview. Eur J Med Chem. 2019;165:59–79. doi: 10.1016/j.ejmech.2019.01.017 PubMed DOI
Allam M, Bhavani AKD, Mudiraj A, et al. Synthesis of pyrazolo[3,4-d]pyrimidin-4(5H)-ones tethered to 1,2,3-triazoles and their evaluation as potential anticancer agents. Eur J Med Chem. 2018;156:43–52. doi: 10.1016/j.ejmech.2018.06.055 PubMed DOI
Yang J, Zhou S, Ji L, et al. Synthesis and structure-activity relationship of 4-azaheterocycle benzenesulfonamide derivatives as new microtubule-targeting agents. Bioorg Med Chem Lett. 2014;24(21):5055–5058. doi: 10.1016/j.bmcl.2014.09.016 PubMed DOI
Roszczenko P, Holota S, Szewczyk OK, et al. 4-thiazolidinone-bearing hybrid molecules in anticancer drug design. Int J Mol Sci. 2022;23(21):13135. doi: 10.3390/ijms232113135 PubMed DOI PMC
Skóra B, Lewińska A, Kryshchyshyn-Dylevych A, et al. Evaluation of anticancer and antibacterial activity of four 4-thiazolidinone-based derivatives. Molecules. 2022;27(3):894–911. doi: 10.3390/molecules27030894 PubMed DOI PMC
Kenchappa R, Bodke YD, Telkar S, et al. Antifungal and anthelmintic activity of novel benzofuran derivatives containing thiazolo benzimidazole nucleus: an in vitro evaluation. J Chem Biol. 2016;10(1):11–23. doi: 10.1007/s12154-016-0160-x PubMed DOI PMC
Abdel-Aziz HA, Gamal-Eldeen AM, Hamdy NA, et al. Immunomodulatory and anticancer activities of some novel 2-substituted-6-bromo-3-methylthiazolo[3,2-a]benzimidazole derivatives. Arch Pharm. 2009;342(4):230–237. doi: 10.1002/ardp.200800189 PubMed DOI
Hu J, Wang Y, Wei X, et al. Synthesis and biological evaluation of novel thiazolidinone derivatives as potential anti-inflammatory agents. Eur J Med Chem. 2013;64:292–301. doi: 10.1016/j.ejmech.2013.04.010 PubMed DOI
Chaturvedi RN, Pendem K, Patel VP, et al. Design, synthesis, molecular docking, and in vitro antidiabetic activity of novel PPARγ agonist. Monatsh Chem. 2018;149(11):2069–2084. doi: 10.1007/s00706-018-2207-x DOI
Mavrova AT, Yancheva D, Anastassova N, et al. Synthesis, electronic properties, antioxidant and antibacterial activity of some new benzimidazoles. Bioorg Med Chem. 2015;23(19):6317–6326. doi: 10.1016/j.bmc.2015.08.029 PubMed DOI
El-Kerdawy MM, Ghaly MA, Darwish SA, et al. New benzimidazothiazole derivatives as anti-inflammatory, antitumor active agents: synthesis, in-vitro and in-vivo screening and molecular modeling studies. Bioorg Chem. 2019;83:250–261. doi: 10.1016/j.bioorg.2018.10.048 PubMed DOI
Eldehna WM, El Hassab MA, Abo-Ashour MF, et al. Development of isatin-thiazolo[3,2-a]benzimidazole hybrids as novel CDK2 inhibitors with potent in vitro apoptotic anti-proliferative activity: synthesis, biological and molecular dynamics investigations. Bioorg Chem. 2021;110:104748. doi: 10.1016/j.bioorg.2021.104748 PubMed DOI
Alkhaldi AAM, Al-Sanea MM, Nocentini A, et al. 3-Methylthiazolo[3,2-a]benzimidazole-benzenesulfonamide conjugates as novel carbonic anhydrase inhibitors endowed with anticancer activity: design, synthesis, biological and molecular modeling studies. Eur J Med Chem. 2020;207:112745. doi: 10.1016/j.ejmech.2020.112745 PubMed DOI
El-Naggar M, Eldehna WM, Almahli H, et al. Novel thiazolidinone/thiazolo[3,2-a]benzimidazolone-isatin conjugates as apoptotic anti-proliferative agents towards breast cancer: one-pot synthesis and in vitro biological evaluation. Molecules. 2018;23(6):1420. doi: 10.3390/molecules23061420 PubMed DOI PMC
Mavrova AT, Wesselinova D, Anichina K. Synthesis of some novel 2-substituted-[1, 3] thiazolo [3, 2-a] benzimidazol-3 (2H)-ones as potent cytostatic agents. J Chem Technol Metall. 2016;51(6):660–666.
Roy D, Anas M, Manhas A, et al. Synthesis, biological evaluation, structure − activity relationship studies of quinoline-imidazole derivatives as potent antimalarial agents. Bioorg Chem. 2022;121:105671. doi: 10.1016/j.bioorg.2022.105671 PubMed DOI
Dassonville-Klimpt A, Schneider J, Damiani C, et al. Design, synthesis, and characterization of novel aminoalcohol quinolines with strong in vitro antimalarial activity. Eur J Med Chem. 2022;228:113981. doi: 10.1016/j.ejmech.2021.113981 PubMed DOI
Dorababu A. Recent update on antibacterial and antifungal activity of quinoline scaffolds. Arch Pharm. 2021;354(3):2000232. doi: 10.1002/ardp.202000232 PubMed DOI
Diaconu D, Antoci V, Mangalagiu V, et al. Quinoline–imidazole/benzimidazole derivatives as dual-/multi-targeting hybrids inhibitors with anticancer and antimicrobial activity. Sci Rep. 2022;12(1):16988. doi: 10.1038/s41598-022-21435-6 PubMed DOI PMC
El Gadali K, Rafya M, El Mansouri A, et al. Synthesis, structural characterization and antibacterial activity evaluation of novel quinolone-1,2,3-triazole-benzimidazole hybrids. J Mol Struct. 2023;1282:13517915. doi: 10.1016/j.molstruc.2023.135179 DOI
Singh VK, Kumari P, Som A, et al. Design, synthesis and antimicrobial activity of novel quinoline derivatives: an in silico and in vitro study. J Biomol Struct Dyn. 2024;42(13):6904–6924. doi: 10.1080/07391102.2023.2236716 PubMed DOI
Ghanim AM, Rezq S, Ibrahim TS, et al. Novel 1,2,4-triazine-quinoline hybrids: the privileged scaffolds as potent multi-target inhibitors of lps-induced inflammatory response via dual COX-2 and 15-LOX inhibition. Eur J Med Chem. 2021;219:113457. doi: 10.1016/j.ejmech.2021.113457 PubMed DOI PMC
Damena T, Alem MB, Zeleke D, et al. Novel Zinc(II) and Copper(II) complexes of 2-((2-Hydroxyethyl)amino)quinoline-3-carbaldehyde for antibacterial and antioxidant activities: a combined experimental, DFT, and docking studies. ACS Omega. 2022;7(30):26336–26352. doi: 10.1021/acsomega.2c02205 PubMed DOI PMC
Moodley R, Mashaba C, Rakodi GH, et al. New quinoline-urea-benzothiazole hybrids as promising antitubercular agents: synthesis, in vitro antitubercular activity, cytotoxicity studies, and in silico ADME profiling. Pharmaceuticals. 2022;15(5):576. doi: 10.3390/ph15050576 PubMed DOI PMC
Zhu J, Wang LN, Cai R, et al. Design, synthesis, evaluation and molecular modeling study of 4-N-phenylaminoquinolines for alzheimer disease treatment. Bioorg Med Chem Lett. 2019;29(11):1325–1329. doi: 10.1016/j.bmcl.2019.03.050 PubMed DOI
Pinz MP, Dos Reis AS, Vogt AG, et al. Current advances of pharmacological properties of 7-chloro-4-(phenylselanyl) quinoline: prevention of cognitive deficit and anxiety in Alzheimer’s disease model. Biomed Pharmacother. 2018;105:1006–1014. doi: 10.1016/j.biopha.2018.06.049 PubMed DOI
Lauria A, La Monica G, Bono A, et al. Quinoline anticancer agents active on DNA and DNA-interacting proteins: from classical to emerging therapeutic targets. Eur J Med Chem. 2021;220:113555. doi: 10.1016/j.ejmech.2021.113555 PubMed DOI
Bindu PJ, Mahadevan KM, Satyanarayan ND, et al. Synthesis and DNA cleavage studies of novel quinoline oxime esters. Bioorg Med Chem Lett. 2012;22(2):898–900. doi: 10.1016/j.bmcl.2011.12.037 PubMed DOI
Martorana A, La Monica G, Lauria A. Quinoline-based molecules targeting c-met, EGF, and VEGF receptors and the proteins involved in related carcinogenic pathways. Molecules. 2020;25(18):4279. doi: 10.3390/molecules25184279 PubMed DOI PMC
He R, Xu B, Ping L, et al. Structural optimization towards promising β-methyl-4-acrylamido quinoline derivatives as PI3K/mTOR dual inhibitors for anti-cancer therapy: the in vitro and in vivo biological evaluation. Eur J Med Chem. 2021;214:113249. doi: 10.1016/j.ejmech.2021.113249 PubMed DOI
Ibrahim TS, Hawwas MM, Malebari AM, et al. Potent quinoline-containing combretastatin A-4 analogues: design, synthesis, antiproliferative, and anti-tubulin activity. Pharmaceuticals. 2020;13(11):393. doi: 10.3390/ph13110393 PubMed DOI PMC
Afzal O, Kumar S, Haider MR, et al. A review on anticancer potential of bioactive heterocycle quinoline. Eur J Med Chem. 2015;97:871–910. doi: 10.1016/j.ejmech.2014.07.044 PubMed DOI
Bérubé G. An overview of molecular hybrids in drug discovery. Expert Opin Drug Discov. 2016;11(3):281–305. doi: 10.1517/17460441.2016.1135125 PubMed DOI
Ivasiv V, Albertini C, Gonçalves AE, et al. Molecular hybridization as a tool for designing multitarget drug candidates for complex diseases. Curr Top Med Chem. 2019;19(19):1694–1711. doi: 10.2174/1568026619666190619115735 PubMed DOI
Chen S, Xie J, Ye R, et al. Structure-aware dual-target drug design through collaborative learning of pharmacophore combination and molecular simulation. Chem Sci. 2024;15:10366–10380. doi: 10.1039/d4sc00094c PubMed DOI PMC
de Sena Murteira Pinheiro P, Franco LS, Montagnoli TL, et al. Molecular hybridization: a powerful tool for multitarget drug discovery. Expert Opin Drug Discov. 2024;19(4):451–470. doi: 10.1080/17460441.2024.2322990 PubMed DOI
Soltan OM, Shoman ME, Abdel-Aziz SA, et al. Molecular hybrids: a five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur J Med Chem. 2021;225:113768. doi: 10.1016/j.ejmech.2021.113768 PubMed DOI
Cao X, Gong Y. Recent developments of hydroxamic acid hybrids as potential anti-breast cancer agents. Future Med Chem. 2024;16(5):469–492. doi: 10.4155/fmc-2023-0284 PubMed DOI
García-Font N, Hayour H, Belfaitah A, et al. Potent anticholinesterasic and neuroprotective pyranotacrines as inhibitors of beta-amyloid aggregation, oxidative stress and tau-phosphorylation for Alzheimer’s disease. Eur J Med Chem. 2016;118:178–192. doi: 10.1016/j.ejmech.2016.04.023 PubMed DOI
Ladraa S, Berrée F, Bouraiou A, et al. Efficient synthesis and X-ray structures of new α-quinolin-3-yl-α-aminonitriles and derivatives. Tetrahedron Lett. 2013;54(8):749–752. doi: 10.1016/j.tetlet.2012.11.032 DOI
Menasra H, Kedjadja A, Debache A, et al. Efficient synthesis of 3-pyrrolylquinolines via an 1,3-dipolar cycloaddition/oxidation sequence. Synth Commun. 2005;35(21):2779–2788. doi: 10.1080/00397910500290425 DOI
Bouraiou A, Debache A, Rhouati S, et al. 1,3-dipolar cycloaddition of stabilized azomethine ylides to alkenyl quinolines: an efficient route to polyfunctionalized 3-pyrrolidinylquinoline derivatives. J Heterocycl Chem. 2008;45(2):329–333. doi: 10.1002/jhet.5570450206 DOI
Benzerka S, Bouraiou A, Bouacida S, et al. Synthesis of new 3-heteroaryl-2-phenylquinolines and their pharmacological activity as antimicrobial agents. Lett Org Chem. 2013;10(2):94–99. doi: 10.2174/1570178611310020005 DOI
Bouria H, Alliouche H, Chouiter MI, et al. Synthesis, characterization of new α-quinolin-3-yl-α-(aminoamides, aminoesters) and bi-heterocyclic aromatic systems from gem-dicyanoepoxides and their pharmacological activity as antioxidant and antifungal agents. J Heterocycl Chem. 2023;60(10):1778–1792. doi: 10.1002/jhet.4720 DOI
Alliouche H, Bouria H, Bensegueni R, et al. Synthesis, spectroscopic characterizations, DFT calculations and molecular docking studies of new quinoline-oxirane/piperidine/morpholine hybrids from quinoline gem‑dicyanoepoxide. J Mol Struct. 2024;1297:137002. doi: 10.1016/j.molstruc.2023.137002 DOI
Olim P, Pereira RB, Fernandes MJG, et al. Structural modification of naturally occurring phenolics as a strategy for developing cytotoxic molecules towards cancer cells. Arch Pharm. 2023;356(12):2300294. doi: 10.1002/ardp.202300294 PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019 PubMed DOI PMC
Teixeira C, Pereira RB, Pinto NFS, et al. Eugenol β-amino/β-alkoxy alcohols with selective anticancer activity. Int J Mol Sci. 2022;23(7):3759. doi: 10.3390/ijms23073759 PubMed DOI PMC
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31(2):455–461. doi: 10.1002/jcc.21334 PubMed DOI PMC
BIOVIA . Dassault systemes, discovery studio modeling environment, release 2017. San Diego (CA): Dassault Systemes; 2017.
Greg L, Paolo T, Brian K, et al. rdkit/rdkit: 2022_09_1 (Q3 2022) Release (Release_2022_09_1). Zenodo. doi: 10.5281/zenodo.7235579 DOI
Meth-Cohn O, Taylor DL. The reverse vilsmeier approach to the synthesis of quinolines, quinolinium salts and quinolones. Tetrahedron. 1995;51(47):12869–12882. doi: 10.1016/0040-4020(95)00729-r DOI
Tôth J, Blaskô G, Dancsô A, et al. Synthesis of new quinoline derivatives. Synth Commun. 2006;36(23):3581–3589. doi: 10.1080/00397910600943568 DOI
Fioraventi S, Pellacani L, Tardella PA, et al. Parallel solution-phase synthesis of acrylonitrile scaffolds carrying L-α-amino acidic or dglycosyl residues. J Comb Chem. 2006;8(6):808–811. doi: 10.1021/cc060029k PubMed DOI
Vitale I, Pietrocola F, Guilbaud E, et al. Apoptotic cell death in disease—current understanding of the NCCD 2023. Cell Death Differ. 2023;30(5):1097–1154. doi: 10.1038/s41418-023-01153-w PubMed DOI PMC