Computational metabolomics reveals overlooked chemodiversity of alkaloid scaffolds in Piper fimbriulatum
Language English Country Great Britain, England Media print
Document type Journal Article
Grant support
21-11563M
Czech Science Foundation (GA CR)
891397
H2020 Marie Sklodowska-Curie Actions
CZ.02.01.01/00/22_010/0002733
European Regional Development Fund
101130799
H2020 Marie Skłodowska-Curie Actions
PubMed
40052447
PubMed Central
PMC11886945
DOI
10.1111/tpj.70086
Knihovny.cz E-resources
- Keywords
- Piper fimbriulatum, Piperaceae, Wikidata, alkaloids, angiosperms, computational metabolomics, mass spectrometry, technical advance,
- MeSH
- Alkaloids * metabolism MeSH
- Chromatography, Liquid MeSH
- Metabolomics * MeSH
- Myrmecophytes MeSH
- Piper * metabolism chemistry genetics MeSH
- Tandem Mass Spectrometry * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Alkaloids * MeSH
Plant specialized metabolites play key roles in diverse physiological processes and ecological interactions. Identifying structurally novel metabolites, as well as discovering known compounds in new species, is often crucial for answering broader biological questions. The Piper genus (Piperaceae family) is known for its special phytochemistry and has been extensively studied over the past decades. Here, we investigated the alkaloid diversity of Piper fimbriulatum, a myrmecophytic plant native to Central America, using a metabolomics workflow that combines untargeted LC-MS/MS analysis with a range of recently developed computational tools. Specifically, we leverage open MS/MS spectral libraries and metabolomics data repositories for metabolite annotation, guiding isolation efforts toward structurally new compounds (i.e., dereplication). As a result, we identified several alkaloids belonging to five different classes and isolated one novel seco-benzylisoquinoline alkaloid featuring a linear quaternary amine moiety which we named fimbriulatumine. Notably, many of the identified compounds were never reported in Piperaceae plants. Our findings expand the known alkaloid diversity of this family and demonstrate the value of revisiting well-studied plant families using state-of-the-art computational metabolomics workflows to uncover previously overlooked chemodiversity. To contextualize our findings within a broader biological context, we employed a workflow for automated mining of literature reports of the identified alkaloid scaffolds and mapped the results onto the angiosperm tree of life. By doing so, we highlight the remarkable alkaloid diversity within the Piper genus and provide a framework for generating hypotheses on the biosynthetic evolution of these specialized metabolites. Many of the computational tools and data resources used in this study remain underutilized within the plant science community. This manuscript demonstrates their potential through a practical application and aims to promote broader accessibility to untargeted metabolomics approaches.
1st Faculty of Medicine Charles University Kateřinská 1660 32 121 08 Prague Czech Republic
Prague Botanical Garden Trojská 800 196 171 00 Prague Czech Republic
University of Chemistry and Technology Technická 5 166 28 Prague Czech Republic
See more in PubMed
Aboul‐Maaty, N.A.‐F. & Oraby, H.A.‐S. (2019) Extraction of high‐quality genomic DNA from different plant orders applying a modified CTAB‐based method. Bulletin of the National Research Centre, 43(1), 25.
Beniddir, M.A. , Kang, K.B. , Genta‐Jouve, G. , Huber, F. , Rogers, S. & van der Hooft, J.J.J. (2021) Advances in decomposing complex metabolite mixtures using substructure‐ and network‐based computational metabolomics approaches. Natural Product Reports, 38(11), 1967–1993. PubMed PMC
Bittremieux, W. , Chen, C. , Dorrestein, P.C. , Schymanski, E.L. , Schulze, T. , Neumann, S. et al. (2020) Universal MS/MS visualization and retrieval with the metabolomics spectrum resolver web service. bioRxiv. Available from: 10.1101/2020.05.09.086066 DOI
Bittremieux, W. , Wang, M. & Dorrestein, P.C. (2022) The critical role that spectral libraries play in capturing the metabolomics community knowledge. Metabolomics: Official Journal of the Metabolomic Society, 18(12), 94. PubMed PMC
Böcker, S. & Dührkop, K. (2016) Fragmentation trees reloaded. Journal of Cheminformatics, 8(1), 5. PubMed PMC
Böcker, S. , Letzel, M.C. , Lipták, Z. & Pervukhin, A. (2009) SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics, 25(2), 218–224. PubMed PMC
Camacho, C. , Coulouris, G. , Avagyan, V. , Ma, N. , Papadopoulos, J. , Bealer, K. et al. (2009) BLAST+: architecture and applications. BMC Bioinformatics, 10(1), 421. PubMed PMC
Carbone, F. , Djamshidian, A. , Seppi, K. & Poewe, W. (2019) Apomorphine for Parkinson's disease: efficacy and safety of current and new formulations. CNS Drugs, 33(9), 905–918. PubMed PMC
Chambers, M.C. , Maclean, B. , Burke, R. , Amodei, D. , Ruderman, D.L. , Neumann, S. et al. (2012) A cross‐platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30(10), 918–920. PubMed PMC
Chaturvedi, A.K. , Luqman, S. , Dubey, V. , Thakur, J.P. , Saikia, D. , Chanotiya, C.S. et al. (2013) Inhibition of Cathepsin D protease activity by Punica granatum fruit Peel extracts, isolates, and semisynthetic analogs. Medicinal Chemistry Research: An International Journal for Rapid Communications on Design and Mechanisms of Action of Biologically Active Agents, 22(8), 3953–3958.
Conde, J. , Pumroy, R.A. , Baker, C. , Rodrigues, T. , Guerreiro, A. , Sousa, B.B. et al. (2021) Allosteric antagonist modulation of TRPV2 by piperlongumine impairs glioblastoma progression. ACS Central Science, 7(5), 868–881. PubMed PMC
da Silva Mendes, J.W. , Cunha, W.E.M. , Filho, R.B. , de Carvalho, N.K.G. & da Costa, J.G.M. (2023) 13C NMR spectroscopic data of aporphine alkaloids. The Alkaloids. Chemistry and Biology, 89, 39–171. PubMed
Dahmy, S. , Bohlmann, F. , Sarg, T. , Ateya, A. & Farrag, N. (1985) New guaianolides from Centaurea aegyptica . Planta Medica, 51(2), 176–177.
Dührkop, K. , Fleischauer, M. , Ludwig, M. , Aksenov, A.A. , Melnik, A.V. , Meusel, M. et al. (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nature Methods, 16(4), 299–302. PubMed
Dührkop, K. , Nothias, L.‐F. , Fleischauer, M. , Reher, R. , Ludwig, M. , Hoffmann, M.A. et al. (2021) Systematic classification of unknown metabolites using high‐resolution fragmentation mass spectra. Nature Biotechnology, 39(4), 462–471. PubMed
Dührkop, K. , Shen, H. , Meusel, M. , Rousu, J. & Böcker, S. (2015) Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proceedings of the National Academy of Sciences of the United States of America, 112(41), 12580–12585. PubMed PMC
Elya, B. , Forestrania, R.C. , Ropi, M. , Kosela, S. , Awang, K. , Omar, H. et al. (2014) The new alkaloids from Antidesma cuspidatum M.A. Available from: https://acgpubs.org/doc/2018080915074048‐RNP‐1310‐448.pdf [Accessed 26th November 2024]
Gomes, P.W.P. , Mannochio‐Russo, H. , Schmid, R. , Zuffa, S. , Damiani, T. , Quiros‐Guerrero, L.‐M. et al. (2024) plantMASST—community‐driven chemotaxonomic digitization of plants. bioRxiv.org: The Preprint Server for Biology, May. Available from: 10.1101/2024.05.13.593988 DOI
Gómez‐Calvario, V. & Rios, M.Y. (2019) 1H and 13C NMR data, occurrence, biosynthesis, and biological activity of piper amides. Magnetic Resonance in Chemistry: MRC, 57(12), 994–1070. PubMed
Gutierrez, M.P. , Rosa, A.M. , Gonzalez, N. & Hoyo‐Vadillo, C. (2013) Alkaloids from piper: a review of its phytochemistry and pharmacology. Mini Reviews in Medicinal Chemistry, 13(2), 163–193. PubMed
Heuckeroth, S. , Damiani, T. , Smirnov, A. , Mokshyna, O. , Brungs, C. , Korf, A. et al. (2024) Reproducible mass spectrometry data processing and compound annotation in MZmine 3. Nature Protocols, 19(9), 2597–2641. PubMed
Huang, R. , O'Donnell, A.J. , Barboline, J.J. & Barkman, T.J. (2016) Convergent evolution of caffeine in plants by co‐option of exapted ancestral enzymes. Proceedings of the National Academy of Sciences of the United States of America, 113(38), 10613–10618. PubMed PMC
Hurtley, A.E. , Lu, Z. & Yoon, T.P. (2014) [2 + 2] cycloaddition of 1,3‐dienes by visible light photocatalysis. Angewandte Chemie, 53(34), 8991–8994. PubMed PMC
Jäckel, L. , Schnabel, A. , Stellmach, H. , Klauß, U. , Matschi, S. , Hause, G. et al. (2022) The terminal enzymatic step in piperine biosynthesis is Co‐localized with the product piperine in specialized cells of black pepper (Piper nigrum L.). The Plant Journal: For Cell and Molecular Biology, 111(3), 731–747. PubMed
Jaramillo, M.A. , Callejas, R. , Davidson, C. , Smith, J.F. , Stevens, A.C. & Tepe, E.J. (2008) A phylogeny of the tropical genus piper using ITS and the chloroplast intron psbJpetA. Systematic Botany, 33(4), 647–660.
Jarmusch, A.K. , Aron, A.T. , Petras, D. , Phelan, V.V. , Bittremieux, W. , Acharya, D.D. et al. (2022) A universal language for finding mass spectrometry data patterns. bioRxiv. Available from: 10.1101/2022.08.06.503000 DOI
Jarmusch, S.A. , van der Hooft, J.J.J. , Dorrestein, P.C. & Jarmusch, A.K. (2021) Advancements in capturing and mining mass spectrometry data are transforming natural products research. Natural Product Reports, 38(11), 2066–2082. PubMed PMC
Jung, Y. , Choi, S.Y. , Choi, J.W. , Cho, C.Y. , Lee, D.K. , Park, J. et al. (2024) Identification of novel dimers and chemical profiling of acid amide alkaloids in Piper nigrum . Food Chemistry, 450, 139199. PubMed
Kim, H.W. , Wang, M. , Leber, C.A. , Nothias, L.‐F. , Reher, R. , Kang, K.B. et al. (2021) NPClassifier: a deep neural network‐based structural classification tool for natural products. Journal of Natural Products, 84(11), 2795–2807. PubMed PMC
Kumar, V. , Poonam, P. , Prasad, A.K. & Parmar, V.S. (2004) Naturally occurring aristolactams, aristolochic acids and dioxoaporphines and their biological activities. ChemInform, 35(11), 565–583. Available from: 10.1002/chin.200411269 PubMed DOI
Lee, K.‐H. , Chuah, C.‐H. & Goh, S.‐H. (1997) Seco‐benzyltetrahydroisoquinolines from Polyalthia insignis (annonaceae). Tetrahedron Letters, 38(7), 1253–1256.
Letunic, I. & Bork, P. (2024) Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research, 52(W1), W78–W82. PubMed PMC
Liscombe, D.K. , Macleod, B.P. , Loukanina, N. , Nandi, O.I. & Facchini, P.J. (2005) Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry, 66(11), 1374–1393. PubMed
Ludwig, M. , Nothias, L.‐F. , Dührkop, K. , Koester, I. , Fleischauer, M. , Hoffmann, M.A. et al. (2020) Database‐independent molecular formula annotation using Gibbs sampling through ZODIAC. Nature Machine Intelligence, 2(10), 629–641. Available from: 10.1038/s42256-020-00234-6 DOI
Mayer, V. , Schaber, D. & Hadacek, F. (2008) Volatiles of myrmecophytic piper plants signal stem tissue damage to inhabiting pheidole ant‐partners. The Journal of Ecology, 96(5), 962–970.
Mongia, M. , Yasaka, T.M. , Liu, Y. , Guler, M. , Lu, L. , Bhagwat, A. et al. (2024) Fast mass spectrometry search and clustering of untargeted metabolomics data. Nature Biotechnology, 42(11), 1672–1677. Available from: 10.1038/s41587-023-01985-4 PubMed DOI
Mundina, M. , Vila, R. , Tomi, F. , Gupta, M.P. , Adzet, T. , Casanova, J. et al. (1998) Leaf essential oils of three Panamanian piper species. Phytochemistry, 47(7), 1277–1282.
Mutabdžija, L. , Myoli, A. , de Jonge, N.F. , Damiani, T. , Schmid, R. , van der Hooft, J.J.J. et al. (2024) Studying plant specialized metabolites using computational metabolomics strategies. Methods in Molecular Biology, 2788, 97–136. PubMed
Nguyen, T.B. & Al‐Mourabit, A. (2016) Remarkably high homoselectivity in [2 + 2] photodimerization of trans‐cinnamic acids in multicomponent systems. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 15(9), 1115–1119. PubMed
Nothias, L.‐F. , Petras, D. , Schmid, R. , Dührkop, K. , Rainer, J. , Sarvepalli, A. et al. (2020) Feature‐based molecular networking in the GNPS analysis environment. Nature Methods, 17(9), 905–908. PubMed PMC
Parmar, V.S. , Jain, S.C. , Bisht, K.S. , Jain, R. , Taneja, P. , Jha, A. et al. (1997) Phytochemistry of the genus piper. Phytochemistry, 46(4), 597–673.
Petras, D. , Phelan, V.V. , Acharya, D. , Allen, A.E. , Aron, A.T. , Bandeira, N. et al. (2022) GNPS dashboard: collaborative exploration of mass spectrometry data in the web browser. Nature Methods, 19(2), 134–136. PubMed PMC
Rao, V.R. , Puppala Muthenna, G.S. , Akileshwari, C. , Babu, K.H. , Suresh, G. , Babu, K.S. et al. (2012) Synthesis and biological evaluation of new piplartine analogues as potent aldose reductase inhibitors (ARIs). European Journal of Medicinal Chemistry, 57(November), 344–361. PubMed PMC
Rutz, A. , Sorokina, M. , Galgonek, J. , Mietchen, D. , Willighagen, E. , Gaudry, A. et al. (2022) The LOTUS initiative for open knowledge management in natural products research. eLife, 11, e70780. Available from: 10.7554/eLife.70780 PubMed DOI PMC
Salehi, B. , Zakaria, Z.A. , Gyawali, R. , Ibrahim, S.A. , Rajkovic, J. , Shinwari, Z.K. et al. (2019) Piper species: a comprehensive review on their phytochemistry, biological activities and applications. Molecules, 24(7), 1364. PubMed PMC
Schmid, R. , Heuckeroth, S. , Korf, A. , Smirnov, A. , Myers, O. , Dyrlund, T.S. et al. (2023) Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nature Biotechnology, 41(4), 447–449. PubMed PMC
Schnabel, A. , Athmer, B. , Manke, K. , Schumacher, F. , Cotinguiba, F. & Vogt, T. (2021) Identification and characterization of Piperine synthase from black pepper, Piper nigrum L. Communications Biology, 4(1), 445. PubMed PMC
Shahneh, M.R.Z. , Strobel, M. , Vitale, G.A. , Geibel, C. , El Abiead, Y. , Garg, N. et al. (2024) ModiFinder: tandem mass spectral alignment enables structural modification site localization. Journal of the American Society for Mass Spectrometry, 35(11), 2564–2578. Available from: 10.1021/jasms.4c00061 PubMed DOI PMC
Shannon, P. , Markiel, A. , Ozier, O. , Baliga, N.S. , Wang, J.T. , Ramage, D. et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. PubMed PMC
Simmonds, S.E. , Smith, J.F. , Davidson, C. & Buerki, S. (2021) Phylogenetics and comparative plastome genomics of two of the largest genera of angiosperms, piper and peperomia (Piperaceae). Molecular Phylogenetics and Evolution, 163(107229), 107229. PubMed
Singh, S.K. , Ashok, P.K. , Olsen, C.E. , Jha, A. , Jain, S.C. , Parmar, V.S. et al. (1996) Neolignans and alkaloids from piper Argyrophylum. Phytochemistry, 43(6), 1355–1360.
Szőke, É. , Lemberkovics, É. & Kursinszki, L. (2013) Alkaloids derived from lysine: piperidine alkaloids. In: Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Berlin Heidelberg: Springer, pp. 303–341.
Tian, Y. , Kong, L. , Li, Q. , Wang, Y. , Wang, Y. , An, Z. et al. (2024) Structural diversity, evolutionary origin, and metabolic engineering of plant specialized benzylisoquinoline alkaloids. Natural Product Reports, 41(11), 1787–1810. Available from: 10.1039/d4np00029c PubMed DOI
Tsugawa, H. , Rai, A. , Saito, K. & Nakabayashi, R. (2021) Metabolomics and complementary techniques to investigate the plant phytochemical cosmos. Natural Product Reports, 38(10), 1729–1759. PubMed
Wang, F.‐X. , Zhu, N. , Zhou, F. & Lin, D.‐X. (2021) Natural aporphine alkaloids with potential to impact metabolic syndrome. Molecules, 26(20), 6117. PubMed PMC
Wang, M. , Carver, J.J. , Phelan, V.V. , Sanchez, L.M. , Garg, N. , Peng, Y. et al. (2016) Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nature Biotechnology, 34(8), 828–837. PubMed PMC
Wang, M. , Jarmusch, A.K. , Vargas, F. , Aksenov, A.A. , Gauglitz, J.M. , Weldon, K. et al. (2020) Mass spectrometry searches using MASST. Nature Biotechnology, 38(1), 23–26. Available from: 10.1038/s41587-019-0375-9 PubMed DOI PMC
Ware, I. , Franke, K. , Frolov, A. , Bureiko, K. , Kysil, E. , Yahayu, M. et al. (2024) Comparative metabolite analysis of Piper sarmentosum organs approached by LC‐MS‐based metabolic profiling. Natural Products and Bioprospecting, 14(1), 30. PubMed PMC
Watrous, J. , Roach, P. , Alexandrov, T. , Heath, B.S. , Yang, J.Y. , Kersten, R.D. et al. (2012) Mass spectral molecular networking of living microbial colonies. Proceedings of the National Academy of Sciences of the United States of America, 109(26), 10150. PubMed PMC
Weaver, K.M. , Luker, R.G. & Neale, M.E. (1984) Rapid quality control procedure for the determination of Scoville heat units and the detection of chillies in black pepper, via high‐performance liquid chromatography. Journal of Chromatography A, 301, 288–291.
Wolfender, J.‐L. , Litaudon, M. , Touboul, D. & Queiroz, E.F. (2019) Innovative omics‐based approaches for prioritisation and targeted isolation of natural products—new strategies for drug discovery. Natural Product Reports, 36(6), 855–868. PubMed
Wu, Y. , Min, X. , Zhuang, C. , Li, J. , Yu, Z. , Dong, G. et al. (2014) Design, synthesis and biological activity of piperlongumine derivatives as selective anticancer agents. European Journal of Medicinal Chemistry, 82, 545–551. Available from: 10.1016/j.ejmech.2014.05.070 PubMed DOI
Wu, Z. , Deng, X. , Hu, Q. , Xiao, X. , Jiang, J. , Ma, X. et al. (2021) Houttuynia cordata Thunb: an ethnopharmacological review. Frontiers in Pharmacology, 12, 714694. PubMed PMC
Yang, X. , Miao, X. , Dai, L. , Guo, X. , Jenis, J. , Zhang, J. et al. (2024) Isolation, biological activity, and synthesis of Isoquinoline alkaloids. Natural Product Reports, 41(11), 1652–1722. Available from: 10.1039/d4np00023d PubMed DOI
Zhang, L. , Zhang, J.‐H. , Yang, S.‐M. , Tan, C.‐H. , Luo, H.‐F. & Zhu, D.‐Y. (2010) Chemical constituents from the leaves of Aglaia perviridis . Journal of Asian Natural Products Research, 12(3), 215–219. PubMed
Zhou, K. , Han, L. , Li, W. , Liu, S. , Chen, T. , Chen, J. et al. (2024) Pipersarmenoids, new amide alkaloids from Piper sarmentosum . Fitoterapia, 177, 106090. Available from: 10.1016/j.fitote.2024.106090 PubMed DOI
Zhuang, T. , Liang, J.‐Y. , Sun, J.‐B. , Wu, Y. , Huang, L.‐R. & Qu, W. (2014) Secondary metabolites from Saururus Chinensis and their chemotaxonomic significance. Biochemical Systematics and Ecology, 56, 95–98.
Zuntini, A.R. & Carruthers, T. (2024) Phylogenomics and the rise of the angiosperms. Zenodo. Available from: 10.5281/ZENODO.10778206 PubMed DOI PMC
Zuntini, A.R. , Carruthers, T. , Maurin, O. , Bailey, P.C. , Leempoel, K. , Brewer, G.E. et al. (2024) Phylogenomics and the rise of the angiosperms. Nature, 629(8013), 843–850. Available from: 10.1038/s41586-024-07324-0 PubMed DOI PMC