Anaerobic corrosion of steel wire by Geoalkalibacter ferrihydriticus under alkaline autotrophic conditions
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
24-64-00023
Russian Science Foundation (RSF)
Ministry of Science and Higher Education of the Russian Federation (Minobrnauki of Russia)
PubMed
40062872
PubMed Central
PMC12016550
DOI
10.1128/aem.01848-24
Knihovny.cz E-resources
- Keywords
- Geoalkalibacter ferrihydriticus, alkaline environments, direct Fe0-oxidation, iron-cycling anaerobes, microbially induced corrosion, protons reduction, steel,
- MeSH
- Anaerobiosis MeSH
- Autotrophic Processes MeSH
- Hydrogen-Ion Concentration MeSH
- Corrosion MeSH
- Steel * chemistry MeSH
- Oxidation-Reduction MeSH
- Iron * metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Steel * MeSH
- Iron * MeSH
Microbially induced corrosion (MIC), caused by iron-cycling microorganisms that directly uptake electrons from metallic iron, is a serious economic and environmental problem. Iron corrosion is inhibited at pH above 9.0 in the presence of carbonate by the formation of a passivating film, but the possibility of direct oxidation of metallic iron by anaerobic alkaliphiles has not been thoroughly investigated. This bioinduced process may pose a serious environmental hazard under anaerobic alkaline conditions of underground radioactive waste disposal in metal containers with bentonite clays. We used Geoalkalibacter ferrihydriticus, an anaerobic iron-cycling bacterium capable of both dissimilatory iron reduction and anaerobic iron oxidation, as a model organism to investigate the microbial ability to utilize Fe0 from steel wire as an electron donor under anaerobic autotrophic conditions at pH 9.5. During bacterial growth, corrosion of the steel wire was induced and accompanied by intense H2 production and precipitation of a solid phase. Mössbauer spectroscopy revealed that green rust with siderite admixture was the major mineral formed during Fe oxidation. Protons appeared to be the only thermodynamically favorable electron acceptor for G. ferrihydriticus. Their reduction could lead to hydrogen production. Genomic analysis supported the proposal of such a metabolic mode for the organism. Thus, we have shown that MIC can be realized under anaerobic alkaline conditions by iron-cycling microorganisms in the absence of organic substrates. Microbial hydrogen production may facilitate the further development of authigenic microflora, which could further increase corrosion in radioactive waste repositories and reduce the barrier properties of bentonite clays.IMPORTANCEMicrobially induced corrosion (MIC) is a problem with significant economic damage. MIC processes occurring under anaerobic conditions at neutral pH have been actively studied over the last decades. Meanwhile, MIC processes under anaerobic alkaline conditions remain very poorly understood, although they represent a serious environmental problem, as such conditions are characteristic of the geological disposal of nuclear waste stored in metal containers isolated by clays. Our studies of the corrosion of steel by the anaerobic iron-cycling bacterium Geoalkalibacter ferrihydriticus at pH 9.5 in the absence of any organic matter have shown that this process is possible and can be accompanied by the active release of hydrogen. The formation of this gas can trigger the development of an authigenic anaerobic microflora that uses it as an electron donor and can negatively affect the insulating properties of the clay barrier through microbial metabolic activity.
Faculty of Biology Lomonosov Moscow State University Moscow Russian Federation
Faculty of Geology Lomonosov Moscow State University Moscow Russian Federation
Faculty of Mathematics and Physics Charles University Prague Czech Republic
Faculty of Physics Lomonosov Moscow State University Moscow Russian Federation
See more in PubMed
Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F. 2004. Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832. doi:10.1038/nature02321 PubMed DOI
Herrera LK, Videla HA. 2009. Role of iron-reducing bacteria in corrosion and protection of carbon steel. Int Biodeterior Biodegradation 63:891–895. doi:10.1016/j.ibiod.2009.06.003 DOI
Xu D, Gu T, Lovley DR. 2023. Microbially mediated metal corrosion. Nat Rev Microbiol 21:705–718. doi:10.1038/s41579-023-00920-3 PubMed DOI
Beech IB, Sunner J. 2004. Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186. doi:10.1016/j.copbio.2004.05.001 PubMed DOI
Venzlaff H, Enning D, Srinivasan J, Mayrhofer KJJ, Hassel AW, Widdel F, Stratmann M. 2013. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros Sci 66:88–96. doi:10.1016/j.corsci.2012.09.006 DOI
Bryant RD, Laishley EJ. 1990. The role of hydrogenase in anaerobic biocorrosion. Can J Microbiol 36:259–264. doi:10.1139/m90-045 DOI
Landoulsi J, El Kirat K, Richard C, Féron D, Pulvin S. 2008. Enzymatic approach in microbial-influenced corrosion: a review based on stainless steels in natural waters. Environ Sci Technol 42:2233–2242. doi:10.1021/es071830g PubMed DOI
Little B, Wagner P, Mansfeld F. 1992. An overview of microbiologically influenced corrosion. Electrochim Acta 37:2185–2194. doi:10.1016/0013-4686(92)85110-7 DOI
Lee W, Lewandowski Z, Nielsen PH, Hamilton WA. 1995. Role of sulfate‐reducing bacteria in corrosion of mild steel: a review. Biofouling 8:165–194. doi:10.1080/08927019509378271 DOI
Pankhania IP. 1988. Hydrogen metabolism in sulphate‐reducing bacteria and its role in anaerobic corrosion. Biofouling 1:27–47. doi:10.1080/08927018809378094 DOI
Daniels L, Belay N, Rajagopal BS, Weimer PJ. 1987. Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science 237:509–511. doi:10.1126/science.237.4814.509 PubMed DOI
Mori K, Tsurumaru H, Harayama S. 2010. Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities. J Biosci Bioeng 110:426–430. doi:10.1016/j.jbiosc.2010.04.012 PubMed DOI
Palacios PA, Snoeyenbos-West O, Löscher CR, Thamdrup B, Rotaru A-E. 2019. Baltic Sea methanogens compete with acetogens for electrons from metallic iron. ISME J 13:3011–3023. doi:10.1038/s41396-019-0490-0 PubMed DOI PMC
An BA, Kleinbub S, Ozcan O, Koerdt A. 2020. Iron to gas: versatile multiport flow-column revealed extremely high corrosion potential by methanogen-induced microbiologically influenced corrosion (Mi-MIC). Front Microbiol 11:527. doi:10.3389/fmicb.2020.00527 PubMed DOI PMC
Mei N, Tremblay PL, Wu Y, Zhang T. 2024. Proposed mechanisms of electron uptake in metal-corroding methanogens and their potential for CO2 bioconversion applications. Sci Total Environ 923:171384. doi:10.1016/j.scitotenv.2024.171384 PubMed DOI
Suflita JM, Phelps TJ, Little B. 2008. Carbon dioxide corrosion and acetate: a hypothesis on the influence of microorganisms. Corrosion 64:854–859. doi:10.5006/1.3279919 DOI
Mand J, Park HS, Jack TR, Voordouw G. 2014. The role of acetogens in microbially influenced corrosion of steel. Front Microbiol 5:268. doi:10.3389/fmicb.2014.00268 PubMed DOI PMC
Kato S, Yumoto I, Kamagata Y. 2015. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl Environ Microbiol 81:67–73. doi:10.1128/AEM.02767-14 PubMed DOI PMC
Liu B, Li Z, Yang X, Du C, Li X. 2020. Microbiologically influenced corrosion of X80 pipeline steel by nitrate reducing bacteria in artificial Beijing soil. Bioelectrochemistry 135:107551. doi:10.1016/j.bioelechem.2020.107551 PubMed DOI
Kato S. 2016. Microbial extracellular electron transfer and its relevance to iron corrosion. Microb Biotechnol 9:141–148. doi:10.1111/1751-7915.12340 PubMed DOI PMC
Tang H-Y, Holmes DE, Ueki T, Palacios PA, Lovley DR. 2019. Iron corrosion via direct metal-microbe electron transfer. MBio 10:e00303–19. doi:10.1128/mBio.00303-19 PubMed DOI PMC
Shi L, Squier TC, Zachara JM, Fredrickson JK. 2007. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65:12–20. doi:10.1111/j.1365-2958.2007.05783.x PubMed DOI PMC
Wang F, Gu Y, O’Brien JP, Yi SM, Yalcin SE, Srikanth V, Shen C, Vu D, Ing NL, Hochbaum AI, Egelman EH, Malvankar NS. 2019. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 177:361–369. doi:10.1016/j.cell.2019.03.029 PubMed DOI PMC
Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. 2005. Extracellular electron transfer via microbial nanowires. Nature New Biol 435:1098–1101. doi:10.1038/nature03661 PubMed DOI
Reardon EJ. 1995. Anaerobic corrosion of granular iron: measurement and interpretation of hydrogen evolution rates. Environ Sci Technol 29:2936–2945. doi:10.1021/es00012a008 PubMed DOI
Eliyan FF, Alfantazi A. 2014. Investigating the significance of bicarbonate with the corrosion of high-strength steel in CO2-saturated solutions. J of Materi Eng and Perform 23:4082–4088. doi:10.1007/s11665-014-1200-8 DOI
Sorokin DY, Banciu HL, Muyzer G. 2015. Functional microbiology of soda lakes. Curr Opin Microbiol 25:88–96. doi:10.1016/j.mib.2015.05.004 PubMed DOI
Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G. 2014. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18:791–809. doi:10.1007/s00792-014-0670-9 PubMed DOI PMC
Zavarzina DG, Merkel AY, Klyukina AA, Elizarov IM, Pikhtereva VA, Rusakov VS, Chistyakova NI, Ziganshin RH, Maslov AA, Gavrilov SN. 2023. Iron or sulfur respiration-an adaptive choice determining the fitness of a natronophilic bacterium Dethiobacter alkaliphilus in geochemically contrasting environments. Front Microbiol 14:1108245. doi:10.3389/fmicb.2023.1108245 PubMed DOI PMC
Sellin P, Leupin OX. 2013. The use of clay as an engineered barrier in radioactive-waste management — a review. Clays and clay miner 61:477–498. doi:10.1346/CCMN.2013.0610601 DOI
Wang L, Jacques D, De CP. 2007. Effects of an alkaline plume on the boom clay as a potential host formation for geological disposal of radioactive waste. SCK CEN reports(ER-28)
Valcke E, Bleyen N, Mariën A. 2022. The long-term behaviour of Eurobitum bituminised radioactive waste in geological disposal conditions. Integration report-Status December 2014 SCK CEN reports(ER0837)
Necib S, Diomidis N, Keech P, Nakayama M. 2017. Corrosion of carbon steel in clay environments relevant to radioactive waste geological disposals, mont terri rock laboratory (Switzerland). Swiss J Geosci 110:329–342. doi:10.1007/s00015-016-0259-7 DOI
Smith SL, Rizoulis A, West JM, Lloyd JR. 2016. The microbial ecology of a hyper-alkaline spring, and impacts of an alkali-tolerant community during sandstone batch and column experiments representative of a geological disposal facility for intermediate-level radioactive waste. Geomicrobiol J 33:455–467. doi:10.1080/01490451.2015.1049677 DOI
Rafrafi Y, Durban N, Bertron A, Albrecht A, Robinet J-C, Erable B. 2017. Use of a continuous-flow bioreactor to evaluate nitrate reduction rate of halomonas desiderata in cementitious environment relevant to nuclear waste deep repository. Biochem Eng J 125:161–170. doi:10.1016/j.bej.2017.05.016 DOI
Safonov AV, Babich TL, Sokolova DS, Grouzdev DS, Tourova TP, Poltaraus AB, Zakharova EV, Merkel AY, Novikov AP, Nazina TN. 2018. Microbial community and in situ bioremediation of groundwater by nitrate removal in the zone of a radioactive waste surface repository. Front Microbiol 9:1985. doi:10.3389/fmicb.2018.01985 PubMed DOI PMC
Abramova E, Gavrilov S, Boldyrev K, Dushik V, Klyukina A, Podosokorskaya O, Elizarov I, Grafov O, Shapagina N, Safonov A. 2025. Bioinduced corrosion of carbon and alloyed steel by thermophilic microorganisms in the presence of uranyl ions under anaerobic conditions. J Nuclear Mat 603:155380. doi:10.1016/j.jnucmat.2024.155380 DOI
Lee CT, Qin Z, Odziemkowski M, Shoesmith DW. 2006. The influence of groundwater anions on the impedance behaviour of carbon steel corroding under anoxic conditions. Electrochim Acta 51:1558–1568. doi:10.1016/j.electacta.2005.02.115 DOI
Rajala P, Bomberg M, Vepsäläinen M, Carpén L. 2017. Microbial fouling and corrosion of carbon steel in deep anoxic alkaline groundwater. Biofouling 33:195–209. doi:10.1080/08927014.2017.1285914 PubMed DOI
Zavarzina DG, Chistyakova NI, Shapkin AV, Savenko AV, Zhilina TN, Kevbrin VV, Alekseeva TV, Mardanov AV, Gavrilov SN, Bychkov AYu. 2016. Oxidative biotransformation of biotite and glauconite by alkaliphilic anaerobes: the effect of fe oxidation on the weathering of phyllosilicates. Chem Geol 439:98–109. doi:10.1016/j.chemgeo.2016.06.015 DOI
Zavarzina DG, Gavrilov SN, Chistyakova NI, Antonova AV, Gracheva MA, Merkel AY, Perevalova AA, Chernov MS, Zhilina TN, Bychkov AY, Bonch-Osmolovskaya EA. 2020. Syntrophic growth of alkaliphilic anaerobes controlled by ferric and ferrous minerals transformation coupled to acetogenesis. ISME J 14:425–436. doi:10.1038/s41396-019-0527-4 PubMed DOI PMC
Zavarzina DG, Kolganova TV, Bulygina ES, Kostrikina NA, Turova TP, Zavarzin GA. 2006. Geoalkalibacter ferrihydriticus gen. nov., sp. nov., the first alkaliphilic representative of the family Geobacteraceae, isolated from a soda lake. Mikrobiologiia 75:775–785. PubMed
Kevbrin VV, Zavarzin GA. 1992. The effect of sulfur compounds on growth of halophilic homoacetic bacterium Acetohalobium arabaticum. Microbiology (Reading, Engl) 61:812–817.
Matsnev ME, Rusakov VS. 2014. Study of spatial spin-modulated structures by Mössbauer spectroscopy using SpectrRelax. AIP Conf Proc 1622:40–49. doi:10.1063/1.4898609 DOI
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. doi:10.1186/1471-2105-13-134 PubMed DOI PMC
Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, Merino N. 2020. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front Microbiol 11:37. doi:10.3389/fmicb.2020.00037 PubMed DOI PMC
Zavarzina DG, Maslov AA, Merkel AY, Kharitonova NA, Klyukina AA, Baranovskaya EI, Baydariko EA, Potapov EG, Zayulina KS, Bychkov AY, Chernyh NA, Bonch-Osmolovskaya EA, Gavrilov SN. 2025. Analogs of Precambrian microbial communities formed de novo in Caucasian mineral water aquifers. MBio 16:e0283124. doi:10.1128/mbio.02831-24 PubMed DOI PMC
Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, Cook GM, Morales SE. 2016. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J 10:761–777. doi:10.1038/ismej.2015.153 PubMed DOI PMC
The IUPAC compendium of chemical terminology. 2019. Online version 3.0.1. International union of pure and applied chemistry. Research Triangle Park, NC.
Legrand L, Mazerolles L, Chaussé A. 2004. The oxidation of carbonate green rust into ferric phases:solid-state reaction or transformation via solution. Geochim Cosmochim Acta 68:3497–3507. doi:10.1016/j.gca.2004.02.019 DOI
Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Yu HQ, Fredrickson JK. 2016. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14:651–662. doi:10.1038/nrmicro.2016.93 PubMed DOI
Voet ARD, Noguchi H, Addy C, Zhang KYJ, Tame JRH. 2015. Biomineralization of a cadmium chloride nanocrystal by a designed symmetrical protein. Angew Chem Int Ed 54:9857–9860. doi:10.1002/anie.201503575 PubMed DOI
Shi L, Rosso KM, Clarke TA, Richardson DJ, Zachara JM, Fredrickson JK. 2012. Molecular underpinnings of Fe(III) oxide reduction by Shewanella oneidensis MR-1. Front Microbiol 3:50. doi:10.3389/fmicb.2012.00050 PubMed DOI PMC
Aklujkar M, Coppi MV, Leang C, Kim BC, Chavan MA, Perpetua LA, Giloteaux L, Liu A, Holmes DE. 2013. Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens. Microbiology (Reading, Engl) 159:515–535. doi:10.1099/mic.0.064089-0 PubMed DOI
Inoue K, Leang C, Franks AE, Woodard TL, Nevin KP, Lovley DR. 2011. Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens. Environ Microbiol Rep 3:211–217. doi:10.1111/j.1758-2229.2010.00210.x PubMed DOI
Rollefson JB, Stephen CS, Tien M, Bond DR. 2011. Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in Geobacter sulfurreducens. J Bacteriol 193:1023–1033. doi:10.1128/JB.01092-10 PubMed DOI PMC
Holmes DE, Dang Y, Walker DJF, Lovley DR. 2016. The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Microb Genom 2:e000072. doi:10.1099/mgen.0.000072 PubMed DOI PMC
Gavrilov SN, Zavarzina DG, Elizarov IM, Tikhonova TV, Dergousova NI, Popov VO, Lloyd JR, Knight D, El-Naggar MY, Pirbadian S, Leung KM, Robb FT, Zakhartsev MV, Bretschger O, Bonch-Osmolovskaya EA. 2021. Novel extracellular electron transfer channels in a Gram-positive thermophilic bacterium. Front Microbiol 11:597818. doi:10.3389/fmicb.2020.597818 PubMed DOI PMC
Light SH, Su L, Rivera-Lugo R, Cornejo JA, Louie A, Iavarone AT, Ajo-Franklin CM, Portnoy DA. 2018. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 562:140–144. doi:10.1038/s41586-018-0498-z PubMed DOI PMC
Burgdorf T, van der Linden E, Bernhard M, Yin QY, Back JW, Hartog AF, Muijsers AO, de Koster CG, Albracht SPJ, Friedrich B. 2005. The soluble NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH. J Bacteriol 187:3122–3132. doi:10.1128/JB.187.9.3122-3132.2005 PubMed DOI PMC
Ma K, Adams MW. 2001. Hydrogenases I and II from Pyrococcus furiosus. Methods Enzymol 331:208–216. doi:10.1016/s0076-6879(01)31059-5 PubMed DOI
Higuchi Y, Yagi T, Yasuoka N. 1997. Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Structure 5:1671–1680. doi:10.1016/s0969-2126(97)00313-4 PubMed DOI
Shiraiwa S, So K, Sugimoto Y, Kitazumi Y, Shirai O, Nishikawa K, Higuchi Y, Kano K. 2018. Reactivation of standard [NiFe]-hydrogenase and bioelectrochemical catalysis of proton reduction and hydrogen oxidation in a mediated-electron-transfer system. Bioelectrochemistry 123:156–161. doi:10.1016/j.bioelechem.2018.05.003 PubMed DOI
King F. 2009. Corrosion resistance of austenitic and duplex stainless steels in environments related to UK geological disposal. In Nuclear decommissioning authority. Quintessa Ltd.: Henley-on-Thames, UK.
Zavarzina DG, Kevbrin VV, Zhilina TN, Chistyakova NI, Shapkin AV, Zavarzin GA. 2011. Reduction of synthetic ferrihydrite by a binary anaerobic culture of Anaerobacillus alkalilacustris and Geoalkalibacter ferrihydriticus grown on mannitol at pH 9.5. Microbiology (Reading, Engl) 80:743–757. doi:10.1134/S0026261711060233 PubMed DOI
Badalamenti JP, Krajmalnik-Brown R, Torres CI. 2013. Generation of high current densities by pure cultures of anode-respiring Geoalkalibacter spp. under alkaline and saline conditions in microbial electrochemical cells. MBio 4:e00144-13. doi:10.1128/mBio.00144-13 PubMed DOI PMC
Yoho RA, Popat SC, Rago L, Guisasola A, Torres CI. 2015. Anode biofilms of Geoalkalibacter ferrihydriticus exhibit electrochemical signatures of multiple electron transport pathways. Langmuir 31:12552–12559. doi:10.1021/acs.langmuir.5b02953 PubMed DOI
Yadav S, Singh R, Sundharam SS, Chaudhary S, Krishnamurthi S, Patil SA. 2022. Geoalkalibacter halelectricus SAP-1 sp. nov. possessing extracellular electron transfer and mineral-reducing capabilities from a haloalkaline environment. Environ Microbiol 24:5066–5081. doi:10.1111/1462-2920.16200 PubMed DOI
Cui W, Liu G, Zeng C, Lu Y, Luo H, Zhang R. 2019. Improved hydrogen production in the single-chamber microbial electrolysis cell with inhibition of methanogenesis under alkaline conditions. RSC Adv 9:30207–30215. doi:10.1039/c9ra05483a PubMed DOI PMC
Génin J-MR, Guérin O, Herbillon AJ, Kuzmann E, Mills SJ, Morin G, Ona-Nguema G, Ruby C, Upadhyay C. 2012. Redox topotactic reactions in Fe II − III (oxy)hydroxycarbonate new minerals related to fougèrite in gleysols: “trébeurdenite and mössbauerite”. Hyperfine Interact 204:71–81. doi:10.1007/s10751-011-0500-8 DOI
Gilroy D, Mayne JEO. 1966. The inhibition of the corrosion of iron in alkaline solutions. British Corr J 1:161–165. doi:10.1179/000705966798327876 DOI
Feng J, Jiang M, Li K, Lu Q, Xu S, Wang X, Chen K, Ouyang P. 2020. Direct electron uptake from a cathode using the inward Mtr pathway in Escherichia coli. Bioelectrochemistry 134:107498. doi:10.1016/j.bioelechem.2020.107498 PubMed DOI
Feng J, Lu Q, Li K, Xu S, Wang X, Chen K, Ouyang P. 2020. Construction of an electron transfer mediator pathway for bioelectrosynthesis by Escherichia coli. Front Bioeng Biotechnol 8:590667. doi:10.3389/fbioe.2020.590667 PubMed DOI PMC
Schink B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280. doi:10.1128/mmbr.61.2.262-280.1997 PubMed DOI PMC
Kim YJ, Lee HS, Kim ES, Bae SS, Lim JK, Matsumi R, Lebedinsky AV, Sokolova TG, Kozhevnikova DA, Cha SS, Kim SJ, Kwon KK, Imanaka T, Atomi H, Bonch-Osmolovskaya EA, Lee JH, Kang SG. 2010. Formate-driven growth coupled with H(2) production. Nature 467:352–355. doi:10.1038/nature09375 PubMed DOI
Schoelmerich MC, Müller V. 2020. Energy-converting hydrogenases: the link between H2 metabolism and energy conservation. Cell Mol Life Sci 77:1461–1481. doi:10.1007/s00018-019-03329-5 PubMed DOI PMC
Keffer JL, McAllister SM, Garber AI, Hallahan BJ, Sutherland MC, Rozovsky S, Chan CS. 2021. Iron oxidation by a fused cytochrome-porin common to diverse iron-oxidizing bacteria. MBio 12:e0107421. doi:10.1128/mBio.01074-21 PubMed DOI PMC
Katsyv A, Kumar A, Saura P, Pöverlein MC, Freibert SA, T Stripp S, Jain S, Gamiz-Hernandez AP, Kaila VRI, Müller V, Schuller JM. 2023. Molecular basis of the electron bifurcation mechanism in the [FeFe]-hydrogenase complex HydABC. J Am Chem Soc 145:5696–5709. doi:10.1021/jacs.2c11683 PubMed DOI PMC