Microclimate variability impacts the coexistence of highland and lowland ectotherms
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
55809
Javna Agencija za Raziskovalno Dejavnost RS
J1-2466
Javna Agencija za Raziskovalno Dejavnost RS
P1-0255
Javna Agencija za Raziskovalno Dejavnost RS
PubMed
40108979
PubMed Central
PMC12056348
DOI
10.1111/1365-2656.70030
Knihovny.cz E-resources
- Keywords
- Lacertidae, dynamic energy budget, ectotherms, elevation, life history, microclimate, syntopy,
- MeSH
- Models, Biological MeSH
- Species Specificity MeSH
- Ecosystem * MeSH
- Lizards * physiology MeSH
- Microclimate * MeSH
- Altitude * MeSH
- Reproduction MeSH
- Animals MeSH
- Life History Traits * MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Understanding differences in life-history outcomes under variable abiotic conditions is essential for understanding species coexistence. At middle elevations, a mosaic of available sets of abiotic conditions could allow highland and lowland species of the same ecological guild to overlap. Therefore, these sites are excellent to study the influence of abiotic conditions on life history and, thus, spatial overlap patterns of competing species. To test differences in life-history outcomes, we selected a pair of closely related lacertids, Iberolacerta horvathi and Podarcis muralis, with an overlapping geographical range but a contrasting elevational distribution. To assess how abiotic and biotic factors contribute to the realized niches of both species, we first built dynamic energy budget (DEB) models for each species based on available functional and life-history data. Then, we used a mechanistic modelling framework (NicheMapR) to simulate the microclimatic conditions at 15 study sites across an elevational gradient and performed whole life-cycle simulations for both species to compare egg development times, lifespans, reproductive years, mean yearly basking and foraging times and yearly fecundity in syntopy and allotopy along the elevational gradient. Our simulations show that the variability of abiotic conditions along an elevational gradient affects life-history traits of both species. We found strong effects of species and elevation on life-history outcomes such as longevity, activity and fecundity. We also observed the effects of syntopy/allotopy on egg development times, activity and reproductive output. In addition, we found a significant interplay between elevation and species impacting fecundity where occupying higher elevation habitats resulted in a more pronounced reduction in fecundity in P. muralis. Furthermore, using two different thermal preferences for spring and summer, we show that some physiological and reproductive traits change with seasonal changes in thermal preferences. Based on our simulations, we conclude that the intermediate elevations that harbour the majority of syntopic populations exhibit high environmental variability that is likely facilitating species coexistence. Since our model predictions support that the current elevational distribution of the species is not only affected by abiotic factors, this suggests that past historical contingencies might have also played a significant role. Our study provides a framework using mechanistic models to understand current distribution patterns of two interacting species by comparing life-history differences between species based on responses to changing abiotic conditions along an elevation gradient.
Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
Department of Organisms and Ecosystems Research National Institute of Biology Ljubljana Slovenia
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
See more in PubMed
Adolph, S. C. , & Porter, W. P. (1996). Growth, seasonality, and lizard life histories: Age and size at maturity. Oikos, 77(2), 267. 10.2307/3546065 DOI
Alatalo, R. V. , Gustafsson, L. , Lundberg, A. , & Ulfstrand, S. (1985). Habitat shift of the Willow Tit Parus montanus in the absence of the Marsh Tit Parus palustris. Ornis Scandinavica, 16, 121–128. 10.2307/3676477 DOI
AmPtool . (2022). Software package AmPtool. https://github.com/add‐my‐pet/AmPtool
Anderson, R. O. , Alton, L. A. , White, C. R. , & Chapple, D. G. (2022). Ecophysiology of a small ectotherm tracks environmental variation along an elevational cline. Journal of Biogeography, 49(2), 405–415. 10.1111/jbi.14311 DOI
Angilletta Jr, M. J. , Sears, M. W. , Levy, O. , Youngblood, J. P. , & Van den Brooks, J. M. (2019). Fundamental flaws with the fundamental niche. Integrative and Comparative Biology, 59(4), 1038–1048. 10.1093/icb/icz084 PubMed DOI
Angilletta, M. J. (2009). Thermal adaptation: A theoretical and empirical synthesis. Oxford University Press.
Angilletta, M. J. , Steury, T. D. , & Sears, M. W. (2004). Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life‐history puzzle. Integrative and Comparative Biology, 44(6), 498–509. 10.1093/icb/44.6.498 PubMed DOI
Arribas, O. , & Galán, P. (2005). Reproductive characteristics of the Pyrenean high‐mountain lizards: Iberolacerta aranica (Arribas, 1993), I. Aurelioi (Arribas, 1994) and I. Bonnali (Lantz, 1927). Animal Biology, 55(2), 163–190. 10.1163/1570756053993505 DOI
Arrizabalaga‐Escudero, A. , Clare, E. L. , Salsamendi, E. , Alberdi, A. , Garin, I. , Aihartza, J. , & Goiti, U. (2018). Assessing niche partitioning of co‐occurring sibling bat species by DNA metabarcoding. Molecular Ecology, 27(5), 1273–1283. 10.1111/mec.14508 PubMed DOI
Bastianelli, G. , Wintle, B. A. , Martin, E. H. , Seoane, J. , & Laiolo, P. (2017). Species partitioning in a temperate mountain chain: Segregation by habitat vs. interspecific competition. Ecology and Evolution, 7(8), 2685–2696. 10.1002/ece3.2883 PubMed DOI PMC
Begon, M. , & Townsend, C. R. (2021). Ecology: From individuals to ecosystems (5th ed.). Wiley.
Bennett, J. , Calosi, P. , Clusella‐Trullas, S. , Martínez, B. , Sunday, J. , Algar, A. C. , Araújo, M. B. , Hawkins, B. A. , Keith, S. , Kühn, I. , Rahbek, C. , Rodríguez, L. , Singer, A. , Villalobos, F. , Olalla‐Tárraga, M. Á. , & Morales‐Castilla, I. (2018). GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Scientific Data, 5, 180022. 10.1038/sdata.2018.22 PubMed DOI PMC
Bertness, M. D. , & Callaway, R. (1994). Positive interactions in communities. Trends in Ecology & Evolution, 9(5), 191–193. 10.1016/0169-5347(94)90088-4 PubMed DOI
Bodensteiner, B. L. , Gangloff, E. J. , Kouyoumdjian, L. , Muñoz, M. M. , & Aubret, F. (2021). Thermal–metabolic phenotypes of the lizard Podarcis muralis differ across elevation, but converge in high‐elevation hypoxia. Journal of Experimental Biology, 224(24), jeb243660. 10.1242/jeb.243660 PubMed DOI
Briscoe, N. J. , Elith, J. , Salguero‐Gómez, R. , Lahoz‐Monfort, J. J. , Camac, J. S. , Giljohann, K. M. , Holden, M. H. , Hradsky, B. A. , Kearney, M. R. , McMahon, S. M. , Phillips, B. L. , Regan, T. J. , Rhodes, J. R. , Wintle, B. A. , Yen, J. D. L. , Guillera‐Arroita, G. , & Vesk, P. A. (2019). Forecasting species range dynamics with process‐explicit models: Matching methods to applications. Ecology Letters, 22(11), 1940–1956. 10.1111/ele.13348 PubMed DOI
Briscoe, N. J. , Morris, S. D. , Mathewson, P. D. , Buckley, L. B. , Jusup, M. , Levy, O. , Maclean, I. M. D. , Pincebourde, S. , Riddell, E. A. , Roberts, J. A. , Schouten, R. , Sears, M. W. , & Kearney, M. R. (2023). Mechanistic forecasts of species responses to climate change: The promise of biophysical ecology. Global Change Biology, 29(6), 1451–1470. 10.1111/gcb.16557 PubMed DOI
Brodie, J. F. , Helmy, O. E. , Mohd‐Azlan, J. , Granados, A. , Bernard, H. , Giordano, A. J. , & Zipkin, E. (2018). Models for assessing local‐scale co‐abundance of animal species while accounting for differential detectability and varied responses to the environment. Biotropica, 50, 5–15. 10.1111/btp.12500 DOI
Brown, J. L. , & Carnaval, A. C. (2019). A tale of two niches: Methods, concepts, and evolution. Frontiers of Biogeography, 11(4), e44158. 10.21425/F5FBG44158 DOI
Buckley, L. B. , & Roughgarden, J. (2006). Climate, competition, and the coexistence of Island lizards. Functional Ecology, 20, 315–322. 10.1111/j.1365-2435.2006.01095.x DOI
Cabela, A. , Grillitsch, H. , & Tiedemann, F. (2007). Habitatpräferenzen von Podarcis muralis (Laurenti, 1768) und Iberolacerta horvathi (Méhely, 1904) bei gemeinsamem Vorkommen. Herpetozoa, 19(3/4), 149–160.
Caldwell, A. J. , While, G. M. , & Wapstra, E. (2017). Plasticity of thermoregulatory behaviour in response to the thermal environment by widespread and alpine reptile species. Animal Behaviour, 132, 217–227. 10.1016/j.anbehav.2017.07.025 DOI
Carranza, S. , Arnold, E. N. , & Amat, F. (2004). DNA phylogeny of Lacerta (Iberolacerta) and other lacertine lizards (Reptilia: Lacertidae): Did competition cause long‐term mountain restriction? Systematics and Biodiversity, 2(1), 57–77. 10.1017/S1477200004001355 DOI
Castanet, J. (1994). Age estimation and longevity in reptiles. Gerontology, 40, 174–192. 10.1159/000213586 PubMed DOI
Castanet, J. , & Roche, E. (1981). Détermination de l'âge chez le lézard des murailles, Lacerta muralis (Laurenti, 1768) au moyen de la squelettochronologie. Revue Suisse de Zoologie, 88, 215–226. 10.5962/bhl.part.82365 DOI
Chan, S. F. , Shih, W. K. , Chang, A. Y. , Shen, S. F. , & Chen, I. C. (2019). Contrasting forms of competition set elevational range limits of species. Ecology Letters, 22(10), 1668–1679. 10.1111/ele.13342 PubMed DOI
Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31(1), 343–366. 10.1146/annurev.ecolsys.31.1.343 DOI
Chesson, P. , & Huntly, N. (1997). The roles of harsh and fluctuating conditions in the dynamics of ecological communities. The American Naturalist, 150(5), 519–553. 10.1086/286080 PubMed DOI
Cloyed, C. S. , & Eason, P. K. (2017). Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans. Royal Society Open Science, 4(3), 170060. 10.1098/rsos.170060 PubMed DOI PMC
Clusella‐Trullas, S. , Blackburn, T. M. , & Chown, S. L. (2011). Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. The American Naturalist, 177(6), 738–751. 10.1086/660021 PubMed DOI
Colwell, R. K. , & Lees, D. C. (2000). The mid‐domain effect: Geometric constraints on the geography of species richness. Trends in Ecology & Evolution, 15(2), 70–76. 10.1016/S0169-5347(99)01767-X PubMed DOI
Dajčman, U. , Carretero, M. A. , Megía‐Palma, R. , Perera, A. , & Žagar, A. (2022). Shared haemogregarine infections in competing lacertids. Parasitology, 149(2), 193–202. 10.1017/S0031182021001645 PubMed DOI PMC
Dajčman, U. , Enriquez‐Urzelai, U. , & Žagar, A. (2024). Data for: Microclimate variability impacts the coexistence of highland and lowland ectotherms. Zenodo Digital Repository. 10.5281/zenodo.10830164 PubMed DOI PMC
DEBtool . (2022). Software package DEBtool_M. https://github.com/add‐my‐pet/DEBtool_M
de Carvalho, A. L. G. , de Britto, M. R. , & Fernandes, D. S. (2013). Biogeography of the lizard genus Tropidurus Wied‐Neuwied, 1825 (Squamata: Tropiduridae): Distribution, endemism, and area relationships in South America. PLoS One, 8(3), e59736. 10.1371/journal.pone.0059736 PubMed DOI PMC
De Luca, N. (1989). Taxonomic and biogeographic characteristics of Horvath's rock lizard (Lacerta horvathi Méhely, 1904, Lacertidae, Reptilia) in Yugoslavia. Scopolia, 18, 1–48.
Elton, C. S. (1927). Animal ecology. University of Chicago Press. 10.1046/j.1365-2435.1997.00058.x DOI
Eroğlu, A. İ. , Bülbül, U. , Kurnaz, M. , & Odabaş, Y. (2018). Age and growth of the common wall lizard, Podarcis muralis (Laurenti, 1768). Animal Biology, 68(2), 147–159. 10.1163/15707563-17000019 DOI
Flouris, A. D. , & Piantoni, C. (2014). Links between thermoregulation and aging in endotherms and ectotherms. Temperature, 2(1), 73–85. 10.4161/23328940.2014.989793 PubMed DOI PMC
Galeotti, P. , Sacchi, R. , Pellitteri‐Rosa, D. , Bellati, A. , Cocca, W. , Gentilli, A. , Scali, S. , & Fasola, M. (2013). Colour polymorphism and alternative breeding strategies: Effects of Parent's colour morph on fitness traits in the common wall lizard. Evolutionary Biology, 40(3), 385–394. 10.1007/s11692-012-9222-3 DOI
Gangloff, E. J. , Sorlin, M. , Cordero, G. A. , Souchet, J. , & Aubret, F. (2019). Lizards at the peak: Physiological plasticity does not maintain performance in lizards transplanted to high altitude. Physiological and Biochemical Zoology, 92(2), 189–200. 10.1086/701793 PubMed DOI
Gaston, K. J. (2003). The structure and dynamics of geographic ranges. Oxford University Press.
Gause, G. F. (1934). The struggle for existence. The Williams and Wilkins Company.
Giacometti, D. , Bars‐Closel, M. , Kohlsdorf, T. , de Carvalho, J. E. , & de Cury Barros, F. (2022). Environmental temperature predicts resting metabolic rates in tropidurinae lizards. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 337(9–10), 1039–1052. 10.1002/jez.2656 PubMed DOI
Giacometti, D. , Palaoro, A. V. , Leal, L. C. , & de Barros, F. C. (2024). How seasonality influencesthe thermal biology of lizards with different thermoregulatory strategies: A meta‐analysis. Biological Reviews, 99(2), 409–429. 10.1111/brv.13028 PubMed DOI
Gravel, D. , Guichard, F. , & Hochberg, M. E. (2011). Species coexistence in a variable world. Ecology Letters, 14(8), 828–839. 10.1111/j.1461-0248.2011.01643.x PubMed DOI
Gravel, D. , & Massol, F. (2020). Toward a general theory of metacommunity ecology. In McCann K. S. & Gellner G. (Eds.), Theoretical ecology: Concepts and applications. Oxford University Press. 10.1093/oso/9780198824282.003.0012 DOI
Grigg, J. W. , & Buckley, L. B. (2013). Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography. Biology Letters, 9(2), 20121056. 10.1098/rsbl.2012.1056 PubMed DOI PMC
Grinnell, J. (1917). The niche‐relationships of the California Thrasher. The Auk, 34(4), 427–433. 10.2307/4072271 DOI
Guisan, A. , & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8, 993–1009. 10.1111/j.1461-0248.2005.00792.x PubMed DOI
Hengl, T. , de Mens Jesus, J. , Heuvelink, G. B. , Ruiperez Gonzalez, M. , Kilibarda, M. , Blagotić, A. , Heuvelink, G. B. M. , Shangguan, W. , Wright, M. N. , Geng, X. , Bauer‐Marschallinger, B. , Guevara, M. A. , Vargas, R. , MacMillan, R. A. , Batjes, N. H. , Leenaars, J. G. B. , Ribeiro, E. , Wheeler, I. , Mantel, S. , & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS One, 12(2), e0169748. 10.1371/journal.pone.0169748 PubMed DOI PMC
Herrando‐Pérez, S. , Monasterio, C. , Beukema, W. , Gomes, V. , Ferri‐Yáñez, F. , Vieites, D. R. , Buckley, L. B. , & Araújo, M. B. (2020). Heat tolerance is more variable than cold tolerance across species of Iberian lizards after controlling for intraspecific variation. Functional Ecology, 34, 631–645. 10.1111/1365-2435.13507 DOI
Herzog, S. K. , Kessler, M. , & Bach, K. (2005). The elevational gradient in Andean bird species richness at the local scale: A foothill peak and a high‐elevation plateau. Ecography, 28(2), 209–222. 10.1111/j.0906-7590.2005.03935.x DOI
Hille, S. M. , & Cooper, C. B. (2014). Elevational trends in life histories: Revising the pace‐of‐life framework. Biological Reviews, 90(1), 204–213. 10.1111/brv.12106 PubMed DOI
Hollister, J. , Shah, T. , Robitaille, A. , Beck, M. , & Johnson, M. (2017). elevatr: access elevation data from various APIs. R package version 0.1, 3. U.S. EPA Office of Research and Development.
Hothorn, T. , Bretz, F. , & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346–363. 10.1002/bimj.200810425 PubMed DOI
Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton University Press. PubMed
Huey, R. B. , & Pianka, E. R. (1981). Ecological consequences of foraging mode. Ecology, 62(4), 991–999. 10.2307/1936998 DOI
Hurvich, C. M. , & Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika, 76(2), 297–307. 10.2307/2336663 DOI
Ji, X. , & Brana, F. (2000). Among clutch variation in reproductive output and egg size in the wall lizard (Podarcis muralis) from a lowland population of northern Spain. Journal of Herpetology, 34, 54–60. 10.2307/1565238 DOI
Kalnay, E. , Kanamitsu, M. , Kistler, R. , Collins, W. , Deaven, D. , Gandin, L. , Iredell, M. , Saha, S. , White, G. , Woollen, J. , Zhu, Y. , Chelliah, M. , Ebisuzaki, W. , Higgins, W. , Janowiak, J. , Mo, K. C. , Ropelewski, C. , Wang, J. , Leetmaa, A. , … Joseph, D. (1996). The NCEP/NCAR 40‐year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–471. 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 DOI
Kearney, M. (2012). Metabolic theory, life history and the distribution of a terrestrial ectotherm. Functional Ecology, 26(1), 167–179. 10.1111/j.1365-2435.2011.01917.x DOI
Kearney, M. R. (2019). The fundamental niche concept connects individuals to populations: a comment on Angilletta et al. Integrative and Comparative Biology, 59(6), 1509–1510. 10.1093/icb/icz147 PubMed DOI
Kearney, M. , & Porter, W. (2009). Mechanistic niche modelling: Combining physiological and spatial data to predict species' ranges. Ecology Letters, 12(4), 334–350. 10.1111/j.1461-0248.2008.01277.x PubMed DOI
Kearney, M. R. , & Porter, W. P. (2017). NicheMapR–an R package for biophysical modelling: The microclimate model. Ecography, 40(5), 664–674. 10.1111/ecog.02360 DOI
Kearney, M. R. , Gillingham, P. K. , Bramer, I. , Duffy, J. P. , & Maclean, I. M. D. (2019). A method for computing hourly, historical, terrain‐corrected microclimate anywhere on earth. Methods in Ecology and Evolution, 11(1), 38–43. 10.1111/2041-210x.13330 DOI
Kearney, M. R. , & Porter, W. P. (2019). NicheMapR – An R package for biophysical modelling: The ectotherm and Dynamic Energy Budget models. Ecography, 43(1), 85–96. 10.1111/ecog.04680 DOI
Kemp, M. U. , Van Loon, E. E. , Shamoun‐Baranes, J. , & Bouten, W. (2012). RNCEP: Global weather and climate data at your fingertips. Methods in Ecology and Evolution, 3(1), 65–70. 10.1111/j.2041-210X.2011.00138.x DOI
Kooijman, B. (2009). Dynamic energy budget theory for metabolic organisation (3rd ed.). Cambridge University Press. 10.1017/CBO9780511805400 DOI
Krofel, M. , Cafuta, V. , Planinc, G. , Sopotnik, M. , Šalamun, A. , Tome, S. , Vamberger, M. , & Žagar, A. (2009). Razširjenost plazilcev v Sloveniji: pregled podatkov, zbranih do leta 2009. Natura Sloveniae, 11(2), 61–99. 10.14720/ns.11.2.61-99 DOI
Lapini, L. , Dall'Asta, A. , Luiselli, L. , & Nardi, P. (2004). Lacerto horvathi in Italy: A review with new data on distribution, spacing strategy and territoriality (Reptilia, Lacertidae). Bollettino di Zoologia, 71(S2), 145–151.
Lika, K. , Kearney, M. R. , Freitas, V. , van der Veer, H. W. , van der Meer, J. , Wijsman, J. W. , Pecquerie, L. , & Kooijman, S. A. (2011). The “covariation method” for estimating the parameters of the standard dynamic energy budget model I: Philosophy and approach. Journal of Sea Research, 66(4), 270–277. 10.1016/J.SEARES.2011.07.010 DOI
Ljubisavljević, K. , Glasnović, P. , Kalan, K. , & Kryštufek, B. (2012). Female reproductive characteristics of the Horvath's rock lizard (Iberolacerta horvathi) from Slovenia. Archives of Biological Sciences, 64(2), 639–645.
MacArthur, R. H. (1958). Population ecology of some warblers of northeastern coniferous forests. Ecology, 39(4), 599–619. 10.2307/1931600 DOI
MacArthur, R. H. (1984). Geographical ecology: Patterns in the distribution of species. Princeton University Press.
Maclean, I. M. , Mosedale, J. R. , & Bennie, J. J. (2019). Microclima: An r package for modelling meso‐and microclimate. Methods in Ecology and Evolution, 10(2), 280–290. 10.1111/2041-210X.13093 DOI
Maestre, F. T. , Callaway, R. M. , Valladares, F. , & Lortie, C. J. (2009). Refining the stress‐gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology, 97(2), 199–205. 10.1111/j.1365-2745.2008.01476.x DOI
Marn, N. , Hudina, S. , Haberle, I. , Dobrović, A. , & Klanjšček, T. (2022). Physiological performance of native and invasive crayfish species in a changing environment: Insights from dynamic energy budget models. Conservation Physiology, 10(1), coac031. 10.1093/conphys/coac031 PubMed DOI PMC
Marques, G. M. , Augustine, S. , Lika, K. , Pecquerie, L. , Domingos, T. , & Kooijman, S. A. (2018). The AmP project: Comparing species on the basis of dynamic energy budget parameters. PLoS Computational Biology, 14(5), e1006100. 10.1371/journal.pcbi.1006100 PubMed DOI PMC
Mathies, T. , & Andrews, R. M. (1997). Influence of pregnancy on the thermal biology of the lizard, Scleroporus jarrovi: Why do pregnant females exhibit low body temperatures? Functional Ecology, 11(4), 498–507. http://www.jstor.org/stable/2390385
Mazerolle, M. J. (2023). AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c) (Version 2.3.3) [R package]. Comprehensive R Archive Network (CRAN). https://cran.r‐project.org/package=AICcmodavg
McCain, C. M. (2005). Elevational gradients in diversity of small mammals. Ecology, 86(2), 366–372. https://www.jstor.org/stable/3450957
Means, D. B. (1975). Competitive exclusion along a habitat gradient between two species of salamanders (Desmognathus) in western Florida. Journal of Biogeography, 2(4), 253–263. 10.2307/3037999 DOI
Meiri, S. , Bauer, A. M. , Chirio, L. , Colli, G. R. , Das, I. , Doan, T. M. , Feldman, A. , Herrera, F. , Novosolov, M. , Pafilis, P. , Pincheira‐Donoso, D. , Powney, G. , Torres‐Carvajal, O. , Uetz, P. , & Van Damme, R. (2013). Are lizards feeling the heat? A tale of ecology and evolution under two temperatures. Global Ecology and Biogeography, 22(7), 834–845. 10.1111/geb.12053 DOI
Meter, B. , Starostová, Z. , Kubička, L. , & Kratochvíl, L. (2020). The limits of the energetical perspective: Life‐history decisions in lizard growth. Evolutionary Ecology, 34, 469–481. 10.1007/s10682-020-10054-0 DOI
Meyer, A. V. , Sakairi, Y. , Kearney, M. R. , & Buckley, L. B. (2023). A guide and tools for selecting and accessing microclimate data for mechanistic niche modeling. Ecosphere, 14(4), e4506. 10.1002/ecs2.4506 DOI
Monasterio, C. , Shoo, L. P. , Salvador, A. , Siliceo, I. , & Díaz, J. A. (2011). Thermal constraints on embryonic development as a proximate cause for elevational range limits in two Mediterranean lacertid lizards. Ecography, 34(6), 1030–1039. 10.1111/j.1600-0587.2011.06905.x DOI
Navas, C. A. (2002). Herpetological diversity along Andean elevational gradients: Links with physiological ecology and evolutionary physiology. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 133(3), 469–485. 10.1016/S1095-6433(02)00207-6 PubMed DOI
Nisbet, R. M. , Muller, E. B. , Lika, K. , & Kooijman, S. A. L. M. (2000). From molecules to ecosystems through dynamic energy budget models. Journal of Animal Ecology, 69(6), 913–926. 10.1111/j.1365-2656.2000.00448.x DOI
Osojnik, N. , Žagar, A. , Carretero, M. A. , García‐Muñoz, E. , & Vrezec, A. (2013). Ecophysiological dissimilarities of two sympatric lizards. Herpetologica, 69(4), 445–454. 10.1655/HERPETOLOGICA-D-13-00014 DOI
Pearson, O. P. , & Bradford, D. F. (1976). Thermoregulation of lizards and toads at high altitudes in Peru. Copeia, 1976(1), 155–170. 10.2307/1443786 DOI
Perry, C. , Sarraude, T. , Billet, M. , Minot, E. , Gangloff, E. J. , & Aubret, F. (2024). Sex‐dependent shifts in body size and condition along replicated elevational gradients in a montane colonising ectotherm, the common wall lizard (Podarcis muralis). Oecologia, 206, 335–346. 10.1007/s00442-024-05634-8 PubMed DOI
Pianka, E. R. (1973). The structure of lizard communities. Annual Review of Ecology and Systematics, 4, 53–74. 10.1146/annurev.es.04.110173.000413 DOI
Pianka, E. R. (1981). Competition and niche theory. In May R. & Mclean A. (Eds.), Theoretical ecology: Principles and applications (2nd ed., pp. 167–196). Oxford Press.
Plasman, M. , Bautista, A. , McCue, M. D. , & de la Díaz Vega‐Pérez, A. H. (2020). Resting metabolic rates increase with elevation in a mountain‐dwelling lizard. Integrative Zoology, 15(5), 363–374. 10.1111/1749-4877.12434 PubMed DOI
Pollock, L. J. , Tingley, R. , Morris, W. K. , Golding, N. , O'Hara, R. B. , Parris, K. M. , Vesk, P. A. , & McCarthy, M. A. (2014). Understanding co‐occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution, 5(5), 397–406. 10.1111/2041-210X.12180 DOI
Rassati, G. (2010). Contributo alla conoscenza della distribuzione della Lucertola di Horvath Iberolacerta horvathi e della Lucertola dei muri Podarcis muralis in Friuli Venezia Giulia e in Veneto. Atti del museo civico di storia naturale di Trieste, 54(2009), 133–146.
R Core Team . (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/
Reif, J. , Reifová, R. , Skoracka, A. , & Kuczyński, L. (2018). Competition‐driven niche segregation on a landscape scale: Evidence for escaping from syntopy towards allotopy in two coexisting sibling passerine species. Journal of Animal Ecology, 87(3), 774–789. 10.1111/1365-2656.12808 PubMed DOI
Sacchi, R. , Pellitteri‐Rosa, D. , Capelli, A. , Ghitti, M. , Di Paoli, A. , Bellati, A. , Galeotti, P. , Pupin, F. , & Fasola, M. (2012). Studying the reproductive biology of the common wall lizard using ultrasonography. Journal of Zoology, 287(4), 301–310. 10.1111/j.1469-7998.2012.00917.x DOI
Santillán, V. , Quitián, M. , Tinoco, B. A. , Zárate, E. , Schleuning, M. , Böhning‐Gaese, K. , & Neuschulz, E. L. (2018). Spatio‐temporal variation in bird assemblages is associated with fluctuations in temperature and precipitation along a tropical elevational gradient. PLoS One, 13(5), e0196179. 10.1371/journal.pone.0196179 PubMed DOI PMC
Schwarzkopf, L. , Caley, M. J. , & Kearney, M. R. (2016). One lump or two? Explaining a major latitudinal transition in reproductive allocation in a viviparous lizard. Functional Ecology, 30(8), 1373–1383. 10.1111/1365-2435.12622 DOI
Sears, M. W. , & Angilletta, M. J. (2004). Body size clines in Sceloporus lizards: Proximate mechanisms and demographic constraints. Integrative and Comparative Biology, 44, 433–442. 10.1093/icb/44.6.433 PubMed DOI
Senior, A. F. , Atkins, Z. S. , Clemann, N. , Gardner, M. G. , Schroder, M. , While, G. M. , Wong, B. M. , & Chapple, D. G. (2019). Variation in thermal biology of three closely related lizard species along an elevation gradient. Biological Journal of the Linnean Society, 127(2), 278–291. 10.1093/biolinnean/blz046 DOI
Shine, R. (2005). Life‐history evolution in reptiles. Annual Review of Ecology, Evolution, and Systematics, 36, 23–46. https://www.jstor.org/stable/30033795
Sillero, N. , Campos, J. , Bonardi, A. , Corti, C. , Creemers, R. , Crochet, P. , Crnobrnja Isailović, J. , Denoël, M. , Ficetola, G. F. , Gonçalves, J. , Kuzmin, S. , Lymberakis, P. , de Pous, P. , Rodríguez, A. , Sindaco, R. , Speybroeck, J. , Toxopeus, B. , Vieites, D. R. , & Vences, M. (2014). Updated distribution and biogeography of amphibians and reptiles of Europe. Amphibia‐Reptilia, 35(1), 1–31. 10.1163/15685381-00002935 DOI
Sindaco, R. , Doria, G. , Razzetti, E. , & Bernini, F. (2006). Atlante degli Anfibi e dei Rettili d'Italia/atlas of Italian amphibians and reptiles. Societas Herpetologica Italica.
Smith, G. R. , & Ballinger, R. E. (1994). Temperature relationships in the high‐altitude viviparous lizard, Sceloporus jarrovi. American Midland Naturalist, 131(1), 181–189. 10.2307/2426621 DOI
Somero, G. N. , Lockwood, B. N. , & Tomanek, L. (2017). Biochemical adaptation: Response to environmental challenges from life's origins to the Anthropocene. Sinauer Associates, Incorporated Publishers.
Speybroeck, J. , Beukema, W. , Bok, B. , & Van Der Voort, J. (2016). Field guide to the amphibians and reptiles of Britain and Europe. Bloomsbury Publishing.
Sunday, J. M. , Bates, A. E. , Kearney, M. R. , Colwell, R. K. , Dulvy, N. K. , Longino, J. T. , & Huey, R. B. (2014). Thermal‐safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America, 111(15), 5610–5615. 10.1073/pnas.1316145111 PubMed DOI PMC
Tang, J. , & Zhou, S. (2011). The importance of niche differentiation for coexistence on large scales. Journal of Theoretical Biology, 273(1), 32–36. 10.1016/j.jtbi.2010.12.025 PubMed DOI
Tannerfeldt, M. , Elmhagen, B. , & Angerbjörn, A. (2002). Exclusion by interference competition? The relationship between red and arctic foxes. Oecologia, 132(2), 213–220. 10.1007/s00442-002-0967-8 PubMed DOI
The MathWorks Inc . (2022). Optimization Toolbox version: 9.4 (R2022b). The MathWorks Inc. https://www.mathworks.com
Tieleman, B. I. , Williams, J. B. , & Bloomer, P. (2003). Adaptation of metabolism and evaporative water loss along an aridity gradient. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1511), 207–214. 10.1098/rspb.2002.2205 PubMed DOI PMC
Tokeshi, M. (2009). Species coexistence: Ecological and evolutionary perspectives. John Wiley & Sons.
van der Meer, J. (2006). An introduction to dynamic energy budget (DEB) models with special emphasis on parameter estimation. Journal of Sea Research, 56(2), 85–102. 10.1016/j.seares.2006.03.001 DOI
Vrezec, A. , & Tome, D. (2004). Altitudinal segregation between Ural Owl Strix uralensis and Tawny Owl S. aluco: Evidence for competitive exclusion in raptorial birds. Bird Study, 51(3), 264–269. 10.1080/00063650409461362 DOI
Watkins, J. E., Jr. , Cardelús, C. , Colwell, R. K. , & Moran, R. C. (2006). Species richness and distribution of ferns along an elevational gradient in Costa Rica. American Journal of Botany, 93(1), 73–83. 10.3732/ajb.93.1.73 DOI
Wickham, H. , Averick, M. , Bryan, J. , Chang, W. , McGowan, L. D. , François, R. , Grolemund, G. , Hayes, A. , Henry, L. , Hester, J. , Kuhn, M. , Pedersen, T. L. , Miller, E. , Bache, S. M. , Müller, K. , Ooms, J. , Robinson, D. , Seidel, D. P. , Spinu, V. , … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. 10.21105/joss.01686 DOI
Wiens, J. J. , & Donoghue, M. J. (2004). Historical biogeography, ecology and species richness. Trends in Ecology & Evolution, 19(12), 639–644. 10.1016/j.tree.2004.09.011 PubMed DOI
Vitt, L. J. , & Caldwell, J. P. (2013). Herpetology: An introductory biology of amphibians and reptiles (4th ed., p. 776). Academic Press.
Žagar, A. (2008). The lowest altitudinal record of Horvath's Rock Lizard (Iberolacerta horvathi) in Slovenia. Natura Sloveniae, 10(2), 59–61. 10.14720/ns.10.2.59-61 DOI
Žagar, A. (2016). Altitudinal distribution and habitat use of the common wall lizard Podarcis muralis (Linnaeus, 1768) and the Horvath's rock lizard Iberolacerta horvathi (Méhely, 1904) in the Kočevsko region (S Slovenia). Natura Sloveniae, 18(2), 47–62.
Žagar, A. , Bitenc, K. , Vrezec, A. , & Carretero, M. A. (2015). Predators as mediators: Differential antipredator behavior in competitive lizard species in a multi‐predator environment. Zoologischer Anzeiger‐A Journal of Comparative Zoology, 259, 31–40. 10.1016/j.jcz.2015.10.002 DOI
Žagar, A. , Carretero, M. A. , Osojnik, N. , Sillero, N. , & Vrezec, A. (2015). A place in the sun: Interspecific interference affects thermoregulation in coexisting lizards. Behavioral Ecology and Sociobiology, 69, 1127–1137. 10.1007/s00265-015-1927-8 DOI
Žagar, A. , Carretero, M. A. , Vrezec, A. , Drašler, K. , & Kaliontzopoulou, A. (2017). Towards a functional understanding of species coexistence: Ecomorphological variation in relation to whole‐organism performance in two sympatric lizards. Functional Ecology, 31(9), 1780–1791. 10.1111/1365-2435.12878 DOI
Žagar, A. , Gomes, V. , & Sillero, N. (2023). Selected microhabitat and surface temperatures of two sympatric lizard species. Acta Oecologica, 118, 103887.
Žagar, A. , Kos, I. , & Vrezec, A. (2013). Habitat segregation patterns of reptiles in Northern Dinaric Mountains (Slovenia). Amphibia‐Reptilia, 34(2), 263–268. 10.1163/15685381-00002889 DOI
Žagar, A. , Planinc, G. , & Krofel, M. (2007). Records of Horvath's Rock Lizard (Iberolacerta horvathi) from the Notranjsko podolje region (central Slovenia). Natura Sloveniae, 9(2), 43–44. 10.14720/ns.9.2.43-44 DOI
Žagar, A. , Simčič, T. , Carretero, M. A. , & Vrezec, A. (2015). The role of metabolism in understanding the altitudinal segregation pattern of two potentially interacting lizards. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 179, 1–6. 10.1016/j.cbpa.2014.08.018 PubMed DOI
Zamora‐Camacho, F. J. , Reguera, S. , Moreno‐Rueda, G. , & Pleguezuelos, J. M. (2013). Patterns of seasonal activity in a Mediterranean lizard along 2200 m altitudinal gradient. Journal of Thermal Biology, 38, 64–69. 10.1016/j.jtherbio.2012.11.002 DOI
Microclimate variability impacts the coexistence of highland and lowland ectotherms