Large asymmetric anomalous Nernst effect in the antiferromagnet SrIr0.8Sn0.2O3

. 2025 Mar 25 ; 16 (1) : 2888. [epub] 20250325

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40133261
Odkazy

PubMed 40133261
PubMed Central PMC11937396
DOI 10.1038/s41467-025-58020-0
PII: 10.1038/s41467-025-58020-0
Knihovny.cz E-zdroje

A large anomalous Nernst effect is essential for thermoelectric energy-harvesting in the transverse geometry without external magnetic field. It's often connected with anomalous Hall effect, especially when electronic Berry curvature is believed to be the driving force. This approach implicitly assumes the same symmetry for the Nernst and Hall coefficients, which is however not necessarily true. Here we report a large anomalous Nernst effect in antiferromagnetic SrIr0.8Sn0.2O3 that defies the antisymmetric constraint on the anomalous Hall effect imposed by the Onsager reciprocal relation. The observed spontaneous Nernst thermopower quickly reaches the sub-μV/K level below the Néel transition around 250 K, which is comparable with many topological antiferromagnetic semimetals and far excels other magnetic oxides. Our analysis indicates that the coexistence of significant symmetric and antisymmetric contributions plays a key role, pointing to the importance of extracting both contributions and a new pathway to enhanced anomalous Nernst effect for transverse thermoelectrics.

Zobrazit více v PubMed

Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater.7, 105–114 (2008). PubMed

Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science321, 1457–1461 (2008). PubMed

Zhu, T. et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater.29, 1605884 (2017). PubMed

Müchler, L., Casper, F., Yan, B., Chadov, S. & Felser, C. Topological insulators and thermoelectric materials. Phys. status solidi (RRL) – Rapid Res. Lett.7, 91–100 (2013).

Pei, Y., Wang, H. & Snyder, G. J. Band engineering of thermoelectric materials. Adv. Mater.24, 6125–6135 (2012). PubMed

Shi, X.-L., Zou, J. & Chen, Z.-G. Advanced thermoelectric design: From materials and structures to devices. Chem. Rev.120, 7399–7515 (2020). PubMed

Behnia, K. & Aubin, H. Nernst effect in metals and superconductors: a review of concepts and experiments. Rep. Prog. Phys.79, 046502 (2016). PubMed

Mizuguchi, M. & Nakatsuji, S. Energy-harvesting materials based on the anomalous nernst effect. Sci. Technol. Adv. Mater.20, 262–275 (2019). PubMed PMC

Washwell, E. R., Hawkins, S. R. & Cuff, K. F. The Nernst detector: Fast therml rdiation detection. Appl. Phys. Lett.17, 164–166 (2003).

Goldsmid, H. J., Knittel, T., Savvides, N. & Uher, C. Measurement of heat flow by means of the Nernst effect. J. Phys. E: Sci. Instrum.5, 313 (1972).

He, B. et al. Large magnon-induced anomalous Nernst conductivity in single-crystal MnBi. Joule5, 3057–3067 (2021). PubMed PMC

Guin, S. N. et al. Zero-field Nernst effect in a ferromagnetic kagome-lattice Weyl-Semimetal Co3Sn2S2. Adv. Mater.31, 1806622 (2019). PubMed

Sakai, A. et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature581, 53–57 (2020). PubMed

Xu, L. et al. Finite-temperature violation of the anomalous transverse Wiedemann-Franz law. Sci. Adv.6, eaaz3522 (2020). PubMed PMC

Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys.13, 1085–1090 (2017).

You, Y. et al. Anomalous Nernst effect in an antiperovskite antiferromagnet. Phys. Rev. Appl.18, 024007 (2022).

Pan, Y. et al. Giant anomalous Nernst signal in the antiferromagnet YbMnBi2. Nat. Mater.21, 203–209 (2022). PubMed PMC

Zhou, X. et al. Giant anomalous Nernst effect in noncollinear antiferromagnetic Mn-based antiperovskite nitrides. Phys. Rev. Mater.4, 024408 (2020).

Noky, J., Zhang, Y., Gooth, J., Felser, C. & Sun, Y. Giant anomalous Hall and Nernst effect in magnetic cubic Heusler compounds. npj Comput. Mater.6, 77 (2020).

Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol.11, 231–241 (2016). PubMed

Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys.90, 015005 (2018).

Xiao, D., Yao, Y., Fang, Z. & Niu, Q. Berry-phase effect in anomalous thermoelectric transport. Phys. Rev. Lett.97, 026603 (2006). PubMed

Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys.82, 1539–1592 (2010).

Casimir, H. B. G. On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys.17, 343–350 (1945).

Onsager, L. Reciprocal relations in irreversible processes. i. Phys. Rev.37, 405–426 (1931).

Cracknell, A. & Haar, D. Magnetismin Crystalline Materials: Applications of the Theory of Groups of Cambiant Symmetry (Elsevier Science, 2016). https://books.google.com/books?id=_u5PDAAAQBAJ

Moon, S. J. et al. Dimensionality-controlled insulator-metal transition and correlated metallic state in 5d transition metal oxides Srn+1IrnO3n+1 (n = 1, 2, and ∞). Phys. Rev. Lett.101, 226402 (2008). PubMed

Zeb, M. A. & Kee, H.-Y. Interplay between spin-orbit coupling and Hubbard interaction in SrIrO3 and related Pbnm perovskite oxides. Phys. Rev. B86, 085149 (2012).

Carter, J.-M., Shankar, V. V., Zeb, M. A. & Kee, H.-Y. Semimetal and topological insulator in perovskite iridates. Phys. Rev. B85, 115105 (2012).

Nie, Y. F. et al. Interplay of spin-orbit interactions, dimensionality, and octahedral rotations in semimetallic SrIrO3. Phys. Rev. Lett.114, 016401 (2015). PubMed

Cui, Q. et al. Slater insulator in iridate perovskites with strong spin-orbit coupling. Phys. Rev. Lett.117, 176603 (2016). PubMed

Fujioka, J., Okawa, T., Masuko, M., Yamamoto, A. & Tokura, Y. Charge dynamics and metal–insulator transition in perovskite [Image: see text]. J. Phys. Soc. Jpn.87, 123706 (2018).

Yang, J. et al. Epitaxial growth and antiferromagnetism of Sn-substituted perovskite iridate [Image: see text]. Phys. Rev. Mater.3, 124411 (2019).

Negishi, M., Hiraoka, N., Nishio-Hamane, D. & Takagi, H. Contrasted Sn substitution effects on Dirac line node semimetals SrIrO3 and CaIrO3. APL Mater.710.1063/1.5129235 (2019).

Lupascu, A. et al. Tuning magnetic coupling in Sr2IrO4 thin films with epitaxial strain. Phys. Rev. Lett.112, 147201 (2014). PubMed

Yang, J. et al. Strain-Modulated Slater-Mott Crossover of Pseudospin-Half Square-Lattice in (SrIrO3)1/(SrTiO3)1 Superlattices. Phys. Rev. Lett.124, 177601 (2020). PubMed

Yang, J. et al. Quasi-two-dimensional anomalous Hall Mott insulator of topologically engineered Jeff = 1/2 electrons. Phys. Rev. X12, 031015 (2022).

Jeong, S. G., Oh, J. Y., Hao, L., Liu, J. & Choi, W. S. Correlated quantum phenomena of spin–orbit coupled perovskite oxide heterostructures: Cases of SrRuO3 and SrIrO3 based artificial superlattices. Adv. Funct. Mater.33, 2301770 (2023).

Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys.78, 17–85 (2006).

Hanasaki, N. et al. Anomalous Nernst effects in pyrochlore molybdates with spin chirality. Phys. Rev. Lett.100, 106601 (2008). PubMed

Ramos, R. et al. Anomalous Nernst effect of Fe3O4 single crystal. Phys. Rev. B90, 054422 (2014).

Kan, D. & Shimakawa, Y. Strain effect on thermoelectric properties of SrRuO3 epitaxial thin films. Appl. Phys. Lett.115, 022403 (2019).

Soroka, M. et al. Anomalous Nernst effect in the ceramic and thin film samples of La0.7Sr0.3CoO3 perovskite. Phys. Rev. Mater.5, 035401 (2021).

Mukherjee, M., Srivastava, A. & Singh, A. K. Recent advances in designing thermoelectric materials. J. Mater. Chem. C.10, 12524–12555 (2022).

Zhou, W. & Sakuraba, Y. Heat flux sensing by anomalous Nernst effect in Fe–Al thin films on a flexible substrate. Appl. Phys. Express13, 043001 (2020).

Tanaka, H. et al. Roll-to-roll printing of anomalous Nernst thermopile for direct sensing of perpendicular heat flux. Adv. Mater.35, 2303416 (2023). PubMed

Guan, Y., Han, H., Li, F., Li, G. & Parkin, S. S. Ionic gating for tuning electronic and magnetic properties. Annu. Rev. Mater. Res.53, 25–51 (2023).

Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett.119, 187204 (2017). PubMed

Yang, G. et al. The role of spin in thermoelectricity. Nat. Rev. Phys.5, 466–482 (2023).

Nan, T. et al. Anisotropic spin-orbit torque generation in epitaxial SrIrO3 by symmetry design. Proc. Natl Acad. Sci.116, 16186–16191 (2019). PubMed PMC

Patri, A. S., Hwang, K., Lee, H.-W. & Kim, Y. B. Theory of large intrinsic spin Hall effect in iridate semimetals. Sci. Rep.8, 8052 (2018). PubMed PMC

Koepernik, K. & Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B59, 1743–1757 (1999).

Zhang, Y. et al. Different types of spin currents in the comprehensive materials database of nonmagnetic spin Hall effect. npj Comput. Mater.7, 167 (2021).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...