Kapelodiniopsis flava n. g., n. sp. (Dinophyceae), a new katodinioid with haptophyte-derived plastids of multiple origins: Implications for the plastid integration process
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
LQ200962204
The Czech Academy of Sciences, Lumina Quaeruntur fellowship
19KK0160
Japan Society for the Promotion of Science
21K15150
Japan Society for the Promotion of Science
PubMed
40214180
DOI
10.1111/jeu.13082
Knihovny.cz E-zdroje
- Klíčová slova
- Katodinium, culture, endosymbiosis, kleptoplastidy, molecular phylogeny, plastid membranes, plastid replacement, relic plastid, taxonomy, ultrastructure,
- MeSH
- Dinoflagellata * genetika klasifikace ultrastruktura izolace a purifikace MeSH
- fylogeneze MeSH
- Haptophyta * genetika ultrastruktura MeSH
- plastidy * genetika ultrastruktura MeSH
- protozoální DNA genetika chemie MeSH
- ribozomální DNA genetika chemie MeSH
- RNA ribozomální 18S genetika MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Japonsko MeSH
- Názvy látek
- protozoální DNA MeSH
- ribozomální DNA MeSH
- RNA ribozomální 18S MeSH
An autotrophic unarmored dinoflagellate species with haptophyte-derived plastids, Kapelodiniopsis flava n. g., n. sp., was described as a sister taxon of Kapelodinium vestifici, which was formerly well characterized by its low-positioned cingulum and heterotrophic nature. The isolates from several Japanese coastal locations were observed using light microscopy, scanning and transmission electron microscopy, and their phylogeny was inferred from nuclear-encoded rRNA genes and multiple plastid-encoded genes. To date of this publication, a representative culture of Ks. flava has grown autotrophically for 98 months in the absence of prey or organic matter. This dinoflagellate lacked nonplastid haptophyte cell components (e.g. nucleus or mitochondria). In the host dinoflagellate phylogeny, Ks. flava was distantly related to the other two dinoflagellate lineages known to be associated with haptophyte-derived plastids, thus representing the third of such lineage. Plastid origins differed among Ks. flava strains (>99.8% 18S rRNA gene identity), with plastids being derived from at least three haptophytes and an especially strong genetic similarity to two distantly related extant haptophytes (>99.9% 16S rRNA gene identity). This indicates that Ks. flava recently integrated plastids from multiple haptophyte lineages to an extent that allows the host to replicate the plastids without other haptophyte components.
Zobrazit více v PubMed
Archibald, J.M. (2007) Nucleomorph genomes: structure, function, origin and evolution. BioEssays, 29, 392–402.
Archibald, J.M. (2015) Gene transfer in complex cells. Nature, 524, 423–424.
Benico, G., Takahashi, K., Lum, W.M. & Iwataki, M. (2019) Morphological variation, ultrastructure, pigment composition and phylogeny of the star‐shaped dinoflagellate Asterodinium gracile (Kareniaceae, Dinophyceae). Phycologia, 58, 405–418.
Benico, G., Takahashi, K., Lum, W.M., Yñiguez, A.T. & Iwataki, M. (2020) The harmful unarmored dinoflagellate Karlodinium in Japan and Philippines, with reference to ultrastructure and micropredation of Karlodinium azanzae sp. nov. (Kareniaceae, Dinophyceae). Journal of Phycology, 56, 1264–1282.
Bergholtz, T., Daugbjerg, N., Moestrup, Ø. & Fernández‐Tejedor, M. (2006) On the identity of Karlodinium veneficum and description of Karlodinium armiger sp. nov. (Dinophyceae), based on light and electron microscopy, nuclear‐encoded LSU rDNA, and pigment composition. Journal of Phycology, 42, 170–193.
Bodył, A. (2018) Did some red alga‐derived plastids evolve via kleptoplastidy? A hypothesis. Biological Reviews, 93, 201–222.
Bolte, K., Bullmann, L., Hempel, F., Bozarth, A., Zauner, S. & Maier, U.‐G. (2009) Protein targeting into secondary plastids. The Journal of Eukaryotic Microbiology, 56, 9–15.
Boutrup, P.V., Moestrup, Ø., Tillmann, U. & Daugbjerg, N. (2016) Katodinium glaucum (Dinophyceae) revisited: proposal of new genus, family and order based on ultrastructure and phylogeny. Phycologia, 55, 147–164.
Burki, F. (2017) The convoluted evolution of eukaryotes with complex plastids. Advances in Botanical Research, 84, 1–30.
Čalasan, A.Ž., Kretschmann, J. & Gottschling, M. (2018) Absence of co‐phylogeny indicates repeated diatom capture in dinophytes hosting a tertiary endosymbiont. Organisms, Diversity and Evolution, 18, 29–38.
Cavalier‐Smith, T. (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. The Journal of Eukaryotic Microbiology, 46, 347–366.
Cavalier‐Smith, T. (2000) Membrane heredity and early chloroplast evolution. Trends in Plant Science, 5, 174–182.
Cavalier‐Smith, T. (2018) Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. Protoplasma, 255, 297–357.
Clark, K.B., Jensen, K.R. & Stirts, H.M. (1990) Survey for functional kleptoplasty among west atlantic Ascoglossa (=Sacoglossa) (Mollusca: Opisthobranchia). The Veliger, 33, 339–345.
Conrad, W. (1926) Recherches sur les Flagellates de nos eaux saumâtres. Ie Partie: Dinoflagellates. Archiv für Protistenkunde, 55, 63–100.
Cooney, E.C., Holt, C.C., Hehenberger, E., Adams, J.A., Leander, B.S. & Keeling, P.J. (2024) Investigation of heterotrophs reveals new insights in dinoflagellate evolution. Molecular Phylogenetics and Evolution, 196, 108086.
Daugbjerg, N., Hansen, G., Larsen, J. & Moestrup, Ø. (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia, 39, 302–317.
de Salas, M.F., Bolch, C.J.S., Botes, L., Nash, G., Wright, S.W. & Hallegraeff, G.M. (2003) Takayama gen. Nov. (Gymnodiniales, Dinophyceae), a new genus of unarmored dinoflagellates with sigmoid apical grooves, including the description of two new species. Journal of Phycology, 39, 1233–1246.
de Salas, M.F., Bolch, C.J.S. & Hallegraeff, G.M. (2005) Karlodinium australe sp. nov. (Gymnodiniales, Dinophyceae), a new potentially ichthyotoxic unarmoured dinoflagellate from lagoonal habitats of south‐eastern Australia. Phycologia, 44, 640–650.
Delwiche, C.F. (1999) Tracing the thread of plastid diversity through the tapestry of life. The American Naturalist, 154, S164–S177.
Delwiche, C.F., Kuhsel, M. & Palmer, J.D. (1995) Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. Molecular Phylogenetics and Evolution, 4, 110–128.
Dodge, J.D. (1968) The fine structure of chloroplasts and pyrenoids in some marine dinoflagellates. Journal of Cell Science, 3, 41–48.
Dodge, J.D. (1972) The ultrastructure of the dinoflagellate pusule: a unique osmo‐regulatory organelle. Protoplasma, 75, 285–302.
Douglas, S.E., Murphy, C.A., Spencer, D.F. & Gray, M.W. (1991) Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature, 350, 148–151.
Durand, M. & Berkaloff, C. (1985) Pigment composition and chloroplast organization of Gambierdiscus toxicus Adachi and Fukuyo (Dinophyceae). Phycologia, 24, 217–223.
Egeland, E.S., Garrido, J.L., Clementson, L., Andresen, K., Thomas, C.S., Zapata, M. et al. (2012) Data sheets aiding identification of phytoplankton carotenoids and chlorophylls. In: Roy, S., Llewellyn, C.A., Egeland, E.S. & Johnsen, G. (Eds.) Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. UK: Cambridge University Press, pp. 665–822.
Eschbach, S., Speth, V., Hansmann, P. & Sitte, P. (1990) Freeze‐fracture study of the single membrane between host cell and endocytobiont in the dinoflagellates Glenodinium foliaceum and Peridinium balticum. Journal of Phycology, 26, 324–328.
Figueroa, R.I., Bravo, I., Fraga, S., Garces, E. & Llaveria, G. (2009) The life history and cell cycle of Kryptoperidinium foliaceum, a dinoflagellate with two eukaryotic nuclei. Protist, 160, 285–300.
Fott, B. (1957) Taxonomie drobnohledné flory nasich vod. Preslia, 29, 278–319.
Fuchs, B.M., Glockner, F.O., Wulf, J. & Amann, R. (2000) Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Applied and Environmental Microbiology, 66, 3603–3607.
Garcia‐Cuetos, L., Moestrup, Ø., Hansen, P.J. & Daugbjerg, N. (2010) The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not kleptochloroplasts. Harmful Algae, 9, 25–38.
Gardiner, W.E., Rushing, A.E. & Dawes, C.J. (1989) Ultrastructural observations of Gyrodinium estuariale (Dinophyceae). Journal of Phycology, 25, 178–183.
Gavelis, G.S., White, R.A., Suttle, C.A., Keeling, P.J. & Leander, B.S. (2015) Single‐cell transcriptomics using spliced leader PCR: evidence for multiple losses of photosynthesis in polykrikoid dinoflagellates. BMC Genomics, 16, 528.
Gibbs, S.P. (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Annals of the New York Academy of Sciences, 361, 193–208.
Gómez, F., Takayama, H., Moreira, D. & López, P. (2016) Unarmoured dinoflagellates with a small hyposome: Torodinium and Lebouridinium gen. Nov. for Katodinium glaucum (Gymnodiniales, Dinophyceae). European Journal of Phycology, 51, 226–241.
Gornik, S.G., Febrimarsa, Cassin, A.M., MacRae, J.I., Ramaprasad, A., Rchiad, Z. et al. (2015) Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proceedings. National Academy of Sciences. United States of America, 112, 5767–5772.
Gould, S.B., Maier, U.‐G. & Martin, W.F. (2015) Protein import and the origin of red complex plastids. Current Biology, 25, R515–R521.
Gould, S.B., Waller, R.F. & McFadden, G.I. (2008) Plastid evolution. Annual Review of Plant Biology, 59, 491–517.
Gu, H., Luo, Z., Zhang, X., Xu, B. & Fang, Q. (2013) Morphology, ultrastructure and phylogeny of Takayama xiamenensis sp. nov. (Gymnodiniales, Dinophyceae) from the East China Sea. Phycologia, 52, 256–265.
Hackett, J.D., Anderson, D.M., Erdner, D.L. & Bhattacharya, D. (2004) Dinoflagellates: a remarkable evolutionary experiment. American Journal of Botany, 91, 1523–1534.
Hackett, J.D., Maranda, L., Yoon, H.S. & Bhattacharya, D. (2003) Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae). Journal of Phycology, 39, 440–448.
Hansen, G., Daugbjerg, N. & Henriksen, P. (2000) Comparative study of Gymnodinium mikimotoi and Gymnodinium aureolum, comb. nov. (= Gyrodinium aureolum) based on morphology, pigment composition, and molecular data. Journal of Phycology, 36, 394–410.
Hansen, G., Daugbjerg, N. & Henriksen, P. (2007) Baldinia anauniensis gen. Et sp. nov.: a 'new' dinoflagellate from Lake Tovel, N. Italy. Phycologia, 46, 86–108.
Hansen, P.J., Ojamäe, K., Berge, T., Trampe, E.C.L., Nielsen, L.T., Lips, I. et al. (2016) Photoregulation in a kleptochloroplastidic dinoflagellate, Dinophysis acuta. Frontiers in Microbiology, 7, 785.
Hasebe, M. & Iwatsuki, K. (1990) Adiantum capillus‐veneris chloroplast DNA clone bank: as useful heterologous probes in the systematics of the leptosporangiate ferns. American Fern Journal, 80, 20–25.
Hawes, C.R. (1979) Ultrastructural aspects of the symbiosis between algal chloroplasts and Elysia viridis. The New Phytologist, 83, 445–450.
Hehenberger, E., Imanian, B., Burki, F. & Keeling, P.J. (2014) Evidence for the retention of two evolutionary distinct plastids in dinoflagellates with diatom endosymbionts. Genome Biology and Evolution, 6, 2321–2334.
Hoppenrath, M. & Leander, B.S. (2007) Morphology and phylogeny of the pseudocolonial dinoflagellates Polykrikos lebourae and Polykrikos herdmanae n. sp. Protist, 158, 209–227.
Imanian, B. & Keeling, P.J. (2014) Horizontal gene transfer and redundancy of tryptophan biosynthetic enzymes in dinotoms. Genome Biology and Evolution, 6, 333–343.
Janouškovec, J., Gavelis, G.S., Burki, F., Dinh, D., Bachvaroff, T.R., Gornik, S.G. et al. (2017) Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proceedings. National Academy of Sciences. United States of America, 114, E171–E180.
Jeffrey, S.W. & Vesk, M. (1976) Further evidence for a membrane‐bound endosymbiont within the dinoflagellate Peridinium foliaceum. Journal of Phycology, 12, 450–455.
Jeffrey, S.W., Wright, S.W. & Zapata, M. (2012) Microalgal classes and their signature pigments. In: Roy, S., Llewellyn, C.A., Egeland, E.S. & Johnsen, G. (Eds.) Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. UK: Cambridge University Press, pp. 3–77.
Johnson, M.D. & Beaudoin, D.J. (2019) The genetic diversity of plastids associated with mixotrophic oligotrich ciliates. Limnology and Oceanography, 64, 2187–2201.
Johnson, M.D., Oldach, D., Delwiche, C.F. & Stoecker, D.K. (2007) Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature, 445, 426–428.
Johnson, P.W., Donaghay, P.L., Small, E.B. & Sieburth, J.M. (1995) Ultrastructure and ecology of Perispira ovum (Ciliophora, Litostomatea)—an aerobic, planktonic ciliate that sequesters the chloroplasts, mitochondria, and paramylon of Euglena proxima in a micro‐oxic habitat. The Journal of Eukaryotic Microbiology, 42, 323–335.
Karnkowska, A., Yubuki, N., Maruyama, M., Yamaguchi, A., Kashiyama, Y., Suzaki, T. et al. (2023) Euglenozoan kleptoplasty illuminates the early evolution of photoendosymbiosis. Proceedings. National Academy of Sciences. United States of America, 120, e2220100120.
Kim, M., Nam, S.W., Shin, W., Coats, D.W. & Park, M.G. (2012) Dinophysis caudata (Dinophyceae) sequesters and retains plastids from the mixotrophic ciliate prey Mesodinium rubrum. Journal of Phycology, 48, 569–579.
Kite, G.C. & Dodge, J.D. (1985) Structural organization of plastid DNA in two anomalously pigmented dinoflagellates. Journal of Phycology, 21, 50–56.
Kite, G.C. & Dodge, J.D. (1988) Cell and chloroplast ultrastructure in Gyrodinium aureolum and Gymnodinium galatheanum. Two marine dinoflagellates containing an unusual carotenoid. Sarsia, 73, 131–138.
Kofoid, C.A. & Swezy, O. (1921) The free‐living unarmoured Dinoflagellata. Memoirs of the University of California, 5, 1–562.
Koike, K., Sekiguchi, H., Kobiyama, A., Takishita, K., Kawachi, M., Koike, K. et al. (2005) A novel type of kleptoplastidy in Dinophysis (Dinophyceae): presence of haptophyte‐type plastid in Dinophysis mitra. Protist, 156, 225–237.
Larkum, A.W., Lockhart, P.J. & Howe, C.J. (2007) Shopping for plastids. Trends in Plant Science, 12, 189–195.
Laval‐Peuto, M. & Febvre, M. (1986) On plastid symbiosis in Tontonia appendiculariformis (Ciliophora, Oligotrichina). Biosystems, 19, 137–158.
Leadbeater, B. & Dodge, J.D. (1966) The fine structure of Woloszynskia micra sp. nov., a new marine dinoflagellate. British Phycological Bulletin, 3, 1–17.
Lebour, M.V. (1917) The peridiniales of Plymouth sound from the region beyond the breakwater. Journal of the Marine Biological Association of the UK, 11, 183–200.
Lebour, M.V. (1925) The dinoflagellates of northern seas. Plymouth, UK: Mayflower Press, pp. 1–250.
Lewis, W.H., Paris, G., Beedessee, G., Kořený, L., Flores, V., Dendooven, T. et al. (2024) Plastid translocon recycling in dinoflagellates demonstrates the portability of complex plastids between hosts. Current Biology, 34, 5494–5506.e3.
Lü, S., Chao, A., Liang, Q., Cen, J., Wang, J., Jiang, T. et al. (2023) Is the dinoflagellate Takayama xiamenensis a synonym of Takayama acrotrocha (Kareniaceae, Dinophyceae)? Journal of Oceanology and Limnology, 40, 2146–2163.
Lucas, I.A.N. & Vesk, M. (1990) The fine structure of two photosynthetic species of Dinophysis (Dinophysiales, Dinophyceae). Journal of Phycology, 26, 345–357.
Luo, Z., Wang, L., Chan, L., Lu, S. & Gu, H. (2018) Karlodinium zhouanum, a new dinoflagellate species from China, and molecular phylogeny of Karenia digitata and Karenia longicanalis (Gymnodiniales, Dinophyceae). Phycologia, 57, 401–412.
Macasev, D., Newbigin, E., Whelan, J. & Lithgow, T. (2000) How do plant mitochondria avoid importing chloroplast proteins? Components of the import apparatus Tom20 and Tom22 from arabidopsis differ from their fungal counterparts. Plant Physiology, 123, 811–816.
Mackiewicz, P. & Gagat, P. (2014) Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies. Are we close to a consensus? Acta Societatis Botanicorum Poloniae, 83, 263–280.
Mathur, V., Salomaki, E.D., Wakeman, K.C., Na, I.A., Kwong, W.K., Kolisko, M. et al. (2023) Reconstruction of plastid proteomes of apicomplexans and close relatives reveals the major evolutionary outcomes of cryptic plastids. Molecular Biology and Evolution, 40, msad002.
Melkonian, M. (1996) Phylogeny of photosynthetic protists and their plastids. Verhandlungen der Deutschen Zoologischen Gesellschaft, 89, 71–96.
Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A. et al. (2020) IQ‐TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530–1534.
Minnhagen, S. & Janson, S. (2006) Genetic analyses of Dinophysis spp. support kleptoplastidy. FEMS Microbiology Ecology, 57, 47–54.
Moestrup, Ø. & Daugbjerg, N. (2007) On dinoflagellate phylogeny and classification. In: Brodie, J. & Lewis, J. (Eds.) Unravelling the algae: the past, present, and future of algae systematics, Vol. 75. London: CRC, pp. 215–230.
Moestrup, Ø., Hakanen, P., Hansen, G., Daugbjerg, N. & Ellegaard, M. (2014) On Levanderina fissa gen. & comb. nov. (Dinophyceae) (syn. Gymnodinium fissum, Gyrodinium instriatum, Gyr. Uncatenum), a dinoflagellate with a very unusual sulcus. Phycologia, 53, 265–292.
Moestrup, Ø. & Thomsen, H.A. (1986) Ultrastructure and reconstruction of the flagellar apparatus in Chrysochromulina apheles sp. nov. (Prymnesiophyceae = Haptophyceae). Canadian Journal of Botany, 64, 593–610.
Moog, D. & Maier, U.G. (2017) Cellular compartmentation follows rules: the Schnepf theorem, its consequences and exceptions. BioEssays, 39, 1700030.
Neefs, J.M., Peer, Y., Rijk, P., Goris, A. & Wachter, R. (1991) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Research, 19, 3025–3049.
Nézan, E., Siano, R., Boulben, S., Six, C., Bilien, G., Cheze, K. et al. (2014) Genetic diversity of the harmful family Kareniaceae (Gymnodiniales, Dinophyceae) in France, with the description of Karlodinium gentienii sp. nov.: a new potentially toxic dinoflagellate. Harmful Algae, 40, 75–91.
Nishibe, Y., Takahashi, K., Sato, M., Kodama, T., Kakehi, S., Saito, H. et al. (2017) Phytoplankton community structure, as derived from pigment signatures, in the Kuroshio extension and adjacent regions in winter and spring. Journal of Oceanography, 73, 463–478.
Nishitani, G., Nagai, S., Hayakawa, S., Kosaka, Y., Sakurada, K., Kamiyama, T. et al. (2012) Multiple plastids collected by the dinoflagellate Dinophysis mitra through kleptoplastidy. Applied and Environmental Microbiology, 78, 813–821.
Obornik, M. (2019) Endosymbiotic evolution of algae, secondary heterotrophy and parasitism. Biomolecules, 9, 266.
Okamoto, N. & Inouye, I. (2005) The katablepharids are a distant sister group of the cryptophyta: a proposal for Katablepharidophyta divisio nova/Kathablepharida phylum novum based on SSU rDNA and beta‐tubulin phylogeny. Protist, 156, 163–179.
Onuma, R. & Horiguchi, T. (2015) Kleptochloroplast enlargement, karyoklepty and the distribution of the cryptomonad nucleus in Nusuttodinium (= Gymnodinium) aeruginosum (Dinophyceae). Protist, 166, 177–195.
Paulsen, O. (1908) Peridiniales. In: Brandt, K. & Apstein, C. (Eds.) Nordisches Plankton: Botanischer Teil. Leipzig: Lipsius and Tischer, pp. 1–124.
Ponce‐Toledo, R.I., López‐García, P. & Moreira, D. (2019) Horizontal and endosymbiotic gene transfer in early plastid evolution. The New Phytologist, 224, 618–624.
Proctor, L.M. (1997) Advances in the study of marine viruses. Microscopy Research and Technique, 37, 136–161.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S. et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.
Rumpho, M.E., Summer, E.J., Green, B.J., Fox, T.C. & Manhart, J.R. (2001) Mollusc/algal chloroplast symbiosis: how can isolated chloroplasts continue to function for months in the cytosol of a sea slug in the absence of an algal nucleus? Zoology, 104, 303–312.
Rumpho, M.E., Worful, J.M., Lee, J., Kannan, K., Tyler, M.S., Bhattacharya, D. et al. (2008) Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proceedings. National Academy of Sciences. United States of America, 105, 17867–17871.
Rusterholz, P.M., Hansen, P.J. & Daugbjerg, N. (2017) Evolutionary transition towards permanent chloroplasts?—division of kleptochloroplasts in starved cells of two species of Dinophysis (Dinophyceae). PLoS One, 12, e0177512.
Saldarriaga, J.F., Taylor, F.J.R., Keeling, P.J. & Cavalier‐Smith, T. (2001) Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. Journal of Molecular Evolution, 53, 204–213.
Sato, N. (2020) Complex origins of chloroplast membranes with photosynthetic machineries: multiple transfers of genes from divergent organisms at different times or a single endosymbiotic event? Journal of Plant Research, 133, 15–33.
Schnepf, E. (1964) Zur Feinstruktur von Geosiphon pyriforme—Ein versuch zur Deutung cytoplasmatischer Membranen und Kompartimente. Archiv für Mikrobiologie, 49, 112–131.
Schnepf, E. (1992) From parasitism to symbiosis: the dinoflagellate example. In: Reisser, W. (Ed.) Algae and symbioses algae and symbioses: plants, animals, fungi, viruses, interactions explored. Bristol: Biopress Limited, pp. 699–710.
Schnepf, E. & Elbrächter, M. (1988) Cryptophycean‐like double membrane‐bound chloroplast in the dinoflagellate, Dinophysis Ehrenb.: evolutionary, phylogenetic and toxicological implications. Botanica Acta: Journal of the German Botanical Society, 101, 196–203.
Schnepf, E. & Elbrächter, M. (1999) Dinophyte chloroplasts and phylogeny‐a review. Grana, 38, 81–97.
Schütt, F. (1895) Die Peridineen der Plankton‐Expedition. Ergebnisse der Plankton‐Expedition der Humboldt‐Stiftung, 4, 1–170.
Sharma, M., Bennewitz, B. & Klosgen, R.B. (2018) Rather rule than exception? How to evaluate the relevance of dual protein targeting to mitochondria and chloroplasts. Photosynthesis Research, 138, 335–343.
Simon, N., Campbell, L., Örnolfsdottir, E., Groben, R., Guillou, L., Lange, M. et al. (2000) Oligonucleotide probes for the identification of three algal groups by dot blot and fluorescent whole‐cell hybridization. The Journal of Eukaryotic Microbiology, 47, 76–84.
Smith, D.R., Arrigo, K.R., Alderkamp, A.C. & Allen, A.E. (2014) Massive difference in synonymous substitution rates among mitochondrial, plastid, and nuclear genes of Phaeocystis algae. Molecular Phylogenetics and Evolution, 71, 36–40.
Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics, 30, 1312–1313.
Steidinger, K.A., Truby, E.W. & Dawes, C.J. (1978) Ultrastructure of the red tide dinoflagellate Gymnodinium breve. I. General description. Journal of Phycology, 14, 72–79.
Takahashi, K., Benico, G., Lum, W.M. & Iwataki, M. (2019) Gertia stigmatica gen. et sp. nov. (Kareniaceae, Dinophyceae), a new marine unarmored dinoflagellate possessing the peridinin‐type chloroplast with an eyespot. Protist, 170, 125680.
Takahashi, K., Lum, W.M., Benico, G., Uchida, H., Ozawa, M., Oikawa, H. et al. (2021) Toxigenic strains of Azadinium poporum (Amphidomataceae, Dinophyceae) from Japan and Vietnam, with first reports of A. poporum (ribotype a) and A. Trinitatum in Asian Pacific. Phycological Research, 69, 175–187.
Takahashi, K., Moestrup, Ø., Jordan, R.W. & Iwataki, M. (2015) Two new freshwater woloszynskioids Asulcocephalium miricentonis gen. Et sp. nov. and Leiocephalium pseudosanguineum gen. et sp. nov. (suessiaceae, dinophyceae) lacking an apical furrow apparatus. Protist, 166, 638–658.
Takahashi, K., Moestrup, Ø., Wada, M., Ishimatsu, A., Nguyen, V.N., Fukuyo, Y. et al. (2017) Dactylodinium pterobelotum gen. et sp. nov., a new marine woloszynskioid dinoflagellate positioned between the two families Borghiellaceae and Suessiaceae. Journal of Phycology, 53, 1223–1240.
Takano, Y. & Horiguchi, T. (2004) Surface ultrastructure and molecular phylogenetics of four unarmored heterotrophic dinoflagellates, including the type species of the genus Gyrodinium (Dinophyceae). Phycological Research, 52, 107–116.
Takayama, H. (1985) Apical grooves of unarmored dinofiagellates. Bulletin of the Plankton Society of Japan, 32, 129–140.
Takishita, K., Kolke, K., Maruyama, T. & Ogata, T. (2002) Molecular evidence for plastid robbery (kleptoplastidy) in Dinophysis, a dinoflagellate causing diarrhetic shellfish poisoning. Protist, 153, 293–302.
Takishita, K., Nakano, K. & Uchida, A. (2000) Origin of the plastid in the anomalously pigmented dinoflagellate Gymnodinium mikimotoi (Gymnodiniales, Dinophyta) as inferred from phylogenetic analysis based on the gene encoding the large subunit of form I‐type RuBisCO. Phycological Research, 48, 85–89.
Tarutani, K., Nagasaki, K., Itakura, S. & Yamaguchi, M. (2001) Isolation of a virus infecting the novel shellfish‐killing dinoflagellate Heterocapsa circularisquama. Aquatic Microbial Ecology, 23, 103–111.
Teira, E., Reinthaler, T., Pernthaler, A., Pernthaler, J. & Herndl, G.J. (2004) Combining catalyzed reporter deposition‐fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean. Applied and Environmental Microbiology, 70, 4411–4414.
Tillmann, U., Wietkamp, S., Kretschmann, J., Chacon, J. & Gottschling, M. (2023) Spatial fragmentation in the distribution of diatom endosymbionts from the taxonomically clarified dinophyte Kryptoperidinium triquetrum (= Kryptoperidinium foliaceum, Peridiniales). Scientific Reports, 13, 8593.
Tsuchiya, M., Toyofuku, T., Uematsu, K., Brüchert, V., Collen, J., Yamamoto, H. et al. (2015) Cytologic and genetic characteristics of endobiotic bacteria and kleptoplasts of Virgulinella fragilis (foraminifera). The Journal of Eukaryotic Microbiology, 62, 454–469.
Vanclová, A.M.G.N., Nef, C., Füssy, Z., Vancl, A., Liu, F.H., Bowler, C. et al. (2024) New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates. EMBO Reports, 25, 1859–1885.
Wägele, H., Deusch, O., Händeler, K., Martin, R., Schmitt, V., Christa, G. et al. (2011) Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobranchus ocellatus does not entail lateral transfer of algal nuclear genes. Molecular Biology and Evolution, 28, 699–706.
Wakeman, K.C., Yamaguchi, A. & Horiguchi, T. (2018) Molecular phylogeny and morphology of Haplozoon ezoense n. sp. (Dinophyceae): a parasitic dinoflagellate with ultrastructural evidence of remnant non‐photosynthetic plastids. Protist, 169, 333–350.
Waller, R.F. & Kořený, L. (2017) Plastid complexity in dinoflagellates: a picture of gains, losses, replacements and revisions. Advances in Botanical Research, 84, 105–143.
Wetherbee, R., Jackson, C.J., Repetti, S.I., Clementson, L.A., Costa, J.F., van de Meene, A. et al. (2019) The golden paradox—a new heterokont lineage with chloroplasts surrounded by two membranes. Journal of Phycology, 55, 257–278.
Whatley, J.M. & Whatley, F.R. (1981) Chloroplast evolution. The New Phytologist, 87, 233–247.
Wisecaver, J.H. & Hackett, J.D. (2010) Transcriptome analysis reveals nuclear‐encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata. BMC Genomics, 11, 366.
Wulff, A. (1919) Ueber das Kleinplankton der Barentssee. Wiss. Meeresunter. Abt Helgoland, 1, 95–124.
Yamada, N., Sym, S.D. & Horiguchi, T. (2017) Identification of highly divergent diatom‐derived chloroplasts in dinoflagellates, including a description of Durinskia kwazulunatalensis sp. nov. (Peridiniales, Dinophyceae). Molecular Biology and Evolution, 34, 1335–1351.