• This record comes from PubMed

Advances in using non-thermal plasmas for healthier crop production: toward pesticide and chemical fertilizer-free agriculture

. 2025 Apr 13 ; 261 (5) : 109. [epub] 20250413

Language English Country Germany Media electronic

Document type Journal Article, Review

Links

PubMed 40221954
DOI 10.1007/s00425-025-04682-5
PII: 10.1007/s00425-025-04682-5
Knihovny.cz E-resources

There is an urgent need for sustainable agriculture. Non-thermal plasma seed treatment offers a promising alternative by enhancing germination, nutrient uptake, and disease resistance, and reducing reliance on pesticides and fertilizers. There is an urgent need to transform agricultural practices to meet the challenges of sustainable food production amidst global population growth and environmental degradation. Traditional crop production methods heavily rely on pesticides and synthetic fertilizers, which pose significant risks to human health, disrupt ecosystems, and contribute to environmental pollution. Moreover, these methods are increasingly unsustainable due to rising costs and diminishing effectiveness, evolving pest resistance, and climate change impacts. Recently, non-thermal plasma (NTP) technology has emerged as a promising alternative for seed treatment in agriculture. NTP uses low-temperature plasma to modify seed surfaces, enhancing germination, vigor, and overall plant growth. Studies have demonstrated that NTP treatment improves nutrient uptake, increases disease resistance, and reduces the reliance on chemical inputs (pesticides and fertilizers), thereby promoting pesticide and chemical fertilizer-free agriculture. This paper explores recent research advancements in NTP seed treatment and its potential applications in sustainable agriculture. By exploring the mechanisms underlying the NTP effects on seed physiology, the paper provides a comprehensive understanding of how this technology can contribute to sustainable crop production. Furthermore, the paper discusses the strengths, weaknesses, opportunities, and challenges associated with the potential large-scale use of low-temperature plasmas in agriculture, aiming to accelerate the adoption of NTP and its commercialization in the agro-food industries. Overall, the goal of this paper is to highlight the transformative potential of NTP seed treatment in achieving healthier crop production that is environmentally friendly, economically viable, and capable of meeting the food demands of a growing global population.

See more in PubMed

Abedi S, Iranbakhsh A, Oraghi Ardebili Z, Ebadi M (2020) Seed priming with cold plasma improved early growth, flowering, and protection of Cichorium intybus against selenium nanoparticle. J Theor Appl Phys 14:113–119. https://doi.org/10.1007/s40094-020-00371-8 DOI

Abeysingha DN, Dhaliwal HK, Du L et al (2024a) The potential of cold plasma-based seed treatments in legume-rhizobia symbiotic nitrogen fixation: a review. Crops 4:95–114. https://doi.org/10.3390/crops4010008 DOI

Abeysingha DN, Dinesh S, Roopesh MS et al (2024b) The effect of cold plasma seed treatments on nodulation and plant growth in pea (Pisum sativum) and lentil (Lens culinaris). Plasma Process Polym. https://doi.org/10.1002/ppap.202400015 DOI

Aceto D, Ambrico PF, Esposito F (2024) Air cold plasmas as a new tool for nitrogen fixation in agriculture : underlying mechanisms and current experimental insights. Front Phys. https://doi.org/10.3389/fphy.2024.1455481 DOI

Adhikari B, Dhital PR, Ranabhat S, Poudel H (2021) Effect of seed hydro-priming durations on germination and seedling growth of bitter gourd (Momordica charantia). PLoS ONE 16:1–12. https://doi.org/10.1371/journal.pone.0255258 DOI

Afsheen S, Fatima U, Iqbal T et al (2019) Influence of cold plasma treatment on insecticidal properties of wheat seeds against red flour beetles. Plasma Sci Technol. https://doi.org/10.1088/2058-6272/ab19ee DOI

Aggelopoulos CA (2022) Recent advances of cold plasma technology for water and soil remediation: a critical review. Chem Eng J 428:131657. https://doi.org/10.1016/j.cej.2021.131657 DOI

Aggelopoulos CA, Tsakiroglou CD (2021) A new perspective towards in-situ cold plasma remediation of polluted sites: direct generation of micro-discharges within contaminated medium. Chemosphere 266:128969. https://doi.org/10.1016/j.chemosphere.2020.128969 PubMed DOI

Ahn C, Gill J, Ruzic DN (2019) Growth of Plasma-Treated Corn Seeds under Realistic Conditions. Sci Rep 9:1–7. https://doi.org/10.1038/s41598-019-40700-9 DOI

Almarashi JQM (2023) Second grounded electrode non-equilibrium atmospheric pressure argon plasma jet impact on germination of basil (Ocimum basilicum) seeds. J Taibah Univ Sci. https://doi.org/10.1080/16583655.2023.2194847 DOI

Ambrico PF, Šimek M, Ambrico M et al (2020a) On the air atmospheric pressure plasma treatment effect on the physiology, germination and seedlings of basil seeds. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/ab5b1b DOI

Ambrico PF, Šimek M, Rotolo C et al (2020b) Surface dielectric barrier discharge plasma: a suitable measure against fungal plant pathogens. Sci Rep 10:1–17. https://doi.org/10.1038/s41598-020-60461-0 DOI

Anbarasan R, Jaspin S, Bhavadharini B et al (2022) Chlorpyrifos pesticide reduction in soybean using cold plasma and ozone treatments. Lwt 159:113193. https://doi.org/10.1016/j.lwt.2022.113193 DOI

And LRW, Chen JG (2021) N2 fixation by plasma-activated processes. Joule 5:300–315. https://doi.org/10.1016/j.joule.2020.11.009 DOI

Antao DS, Staack DA, Fridman A, Farouk B (2009) Atmospheric pressure dc corona discharges: operating regimes and potential applications. Plasma Sources Sci Technol. https://doi.org/10.1088/0963-0252/18/3/035016 DOI

Attri P, Ishikawa K, Okumura T, Kazunori Koga MS (2020) Plasma agriculture from laboratory to farm : a review. Processes 8:1002. https://doi.org/10.3390/pr8081002 DOI

August J, Dufour T, Bailly C (2023) Release of arabidopsis seed dormancy by cold atmospheric plasma relies on cytoplasmic glass transition. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/ace36e DOI

Bailly C (2019) The signalling roles of reactive oxygen species in the regulation of seed germination and dormancy. Biochem J. https://doi.org/10.1042/BCJ20190159 PubMed DOI

Bárdos L, Baránková H (2010) Cold atmospheric plasma: sources, processes, and applications. Thin Solid Films 518:6705–6713. https://doi.org/10.1016/j.tsf.2010.07.044 DOI

Barjasteh A, Lamichhane P, Dehghani Z et al (2023) Recent progress of non-thermal atmospheric pressure plasma for seed germination and plant development: current scenario and future landscape. J Plant Growth Regul 42:5417–5432. https://doi.org/10.1007/s00344-023-10979-0 DOI

Benabderrahim MA, Bettaieb I, Hannachi H et al (2024) Cold plasma treatment boosts barley germination and seedling vigor: Insights into soluble sugar, starch, and protein modifications. J Cereal Sci 116:1–10. https://doi.org/10.1016/j.jcs.2024.103852 DOI

Bermudez-Aguirre D (2019) Advances in cold plasma applications for food safety and preservation. Academic Press, London, United Kingdom

Bian JY, Guo XY, Lee DH et al (2024) Non-thermal plasma enhances rice seed germination, seedling development, and root growth under low-temperature stress. Appl Biol Chem. https://doi.org/10.1186/s13765-023-00852-9 DOI

Bogdanov T, Tsonev I, Marinova P et al (2018) Microwave plasma torch generated in argon for small berries surface treatment. Appl Sci. https://doi.org/10.3390/app8101870 DOI

Bormashenko E, Grynyov R, Bormashenko Y, Drori E (2012) Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Reports 21(2):1–8. https://doi.org/10.1038/srep00741 DOI

Bormashenko E, Shapira Y, Grynyov R et al (2015) Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). J Exp Bot 66:4013–4021. https://doi.org/10.1093/jxb/erv206 PubMed DOI PMC

Bozhanova V, Marinova P, Videva M et al (2024) Effect of cold plasma on the germination and seedling growth of durum wheat genotypes. Processes. https://doi.org/10.3390/pr12030544 DOI

Brandenburg R (2018) Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Technol 26:053001. https://doi.org/10.1088/1361-6595/aa6426 DOI

Brühl CA, Zaller JG (2019) Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front Environ Sci 7:2013–2016. https://doi.org/10.3389/fenvs.2019.00177 DOI

Burducea I, Burducea C, Mereuta PE, et al (2023) Helium Atmospheric Pressure Plasma Jet Effects on Two Cultivars of Triticum aestivum L. Foods 12. https://doi.org/10.3390/foods12010208

Capitelli M, Ferreira CM, Gordiets BF, Osipov AI (2000) Plasma Kinetics in Atmospheric Gases. SSAOPP 31. http://www.springer.de/phys/

Chang EH, Bae YS, Shin IS et al (2018) Microbial decontamination of onion by corona discharge air plasma during cold storage. J Food Qual. https://doi.org/10.1155/2018/3481806 DOI

Chen FF (2018) Introduction to Plasma Physics and Controlled Fusion. Plenum Press, New York, pp 19–51

Chen H, Yuan D, Wu A et al (2021) Review of low-temperature plasma nitrogen fixation technology. Waste Dispos Sustain Energy 3:201–217. https://doi.org/10.1007/s42768-021-00074-z PubMed DOI PMC

Chen TL, Lai YT, Hsu SY et al (2023) Effect of plasma treatment on ice plant germination and physicochemical surface using dielectric barrier discharge. IEEE Trans Plasma Sci 51:444–450. https://doi.org/10.1109/TPS.2023.3234963 DOI

Cheng H, Li Y, Zheng K et al (2021) Numerical analysis of nitrogen fixation by nanosecond pulse plasma. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/abdf99 DOI

Cherif MM, Assadi I, Khezami L et al (2023) Review on recent applications of cold plasma for safe and sustainable food production: principles, implementation, and application limits. Appl Sci. https://doi.org/10.3390/app13042381 DOI

Cong L, Huang M, Zhang J, Yan W (2021) Effect of dielectric barrier discharge plasma on the degradation of malathion and chlorpyrifos on lettuce. J Sci Food Agric 101:424–432. https://doi.org/10.1002/jsfa.10651 PubMed DOI

Cui D, Yin Y, Wang J et al (2019) Research on the physio-biochemical mechanism of non-thermal plasma-regulated seed germination and early seedling development in arabidopsis. Front Plant Sci 10:1–12. https://doi.org/10.3389/fpls.2019.01322 DOI

Czernichowski A (1994) Gliding arc. Applications to engineering and environment control. Pure Appl Chem 66:1301–1310. https://doi.org/10.1351/pac199466061301 DOI

Dawood N (2020) Effect of RF plasma on moringa seeds germination and growth. J Taibah Univ Sci 14:279–284. https://doi.org/10.1080/16583655.2020.1713570 DOI

de Groot GJJB, Hundt A, Murphy AB et al (2018) Cold plasma treatment for cotton seed germination improvement. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-32692-9 DOI

Degutytė-Fomins L, Paužaitė G, Žūkienė R et al (2020) Relationship between cold plasma treatment-induced changes in radish seed germination and phytohormone balance. Jpn J Appl Phys. https://doi.org/10.7567/1347-4065/ab656c DOI

Desai M, Chandel A, Chauhan OP, Semwal AD (2024) Uses and future prospects of cold plasma in agriculture. Food Humanit 2:100262. https://doi.org/10.1016/j.foohum.2024.100262 DOI

Devika OS, Singh S, Sarkar D et al (2021) Seed priming: a potential supplement in integrated resource management under fragile intensive ecosystems. Front Sustain Food Syst 5:1–11. https://doi.org/10.3389/fsufs.2021.654001 DOI

Dezest M, Bulteau AL, Quinton D et al (2017) Oxidative modification and electrochemical inactivation of Escherichia coli upon cold atmospheric pressure plasma exposure. PLoS ONE 12:1–18. https://doi.org/10.1371/journal.pone.0173618 DOI

Dinescu G, Ionita ER (2008) Radio frequency expanding plasmas at low, intermediate, and atmospheric pressure and their applications. Pure Appl Chem 80:1919–1930. https://doi.org/10.1351/pac200880091919 DOI

Dobrin D, Magureanu M, Mandache NB, Ionita MD (2015) The effect of non-thermal plasma treatment on wheat germination and early growth. Innov Food Sci Emerg Technol 29:255–260. https://doi.org/10.1016/j.ifset.2015.02.006 DOI

Dorraki N, Mahdavi V, Ghomi H, Ghasempour A (2016) Elimination of diazinon insecticide from cucumber surface by atmospheric pressure air-dielectric barrier discharge plasma. Biointerphases. https://doi.org/10.1116/1.4971382 PubMed DOI

Ďurčányová S, Slováková Ľ, Klas M et al (2023) Efficacy comparison of three atmospheric pressure plasma sources for soybean seed treatment: plasma characteristics, seed properties, germination. Plasma Chem Plasma Process 43:1863–1885. https://doi.org/10.1007/s11090-023-10387-y DOI

Fahad S, Bajwa AA, Nazir U et al (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1–16. https://doi.org/10.3389/fpls.2017.01147 DOI

FAO (2021) The State of Food and Agriculture 2021. Making agrifood systems more resilient to shocks and stresses

Fernández A, Noriega E, Thompson A (2013) Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiol 33:24–29. https://doi.org/10.1016/j.fm.2012.08.007 PubMed DOI

Filatova I, Azharonok V, Kadyrov M et al (2011) The effect of plasma treatment of seeds of some grain and legumes on their sowing quality and productivity. Rom Reports Phys 56:139–143

Fischer JJ, Beatty PH, Good AG, Muench DG (2013) Manipulation Of MicroRNA expression to improve nitrogen use efficiency. Plant Sci 210:70–81. https://doi.org/10.1016/j.plantsci.2013.05.009 PubMed DOI

Fisher MC, Henk DA, Briggs CJ et al (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194. https://doi.org/10.1038/nature10947 PubMed DOI

Florescu I, Radu I, Teodoru A et al (2023) Positive effect induced by plasma treatment of seeds on the agricultural performance of sunflower. Plants. https://doi.org/10.3390/plants12040794 PubMed DOI PMC

Fridman AA, Rusanov VD (1994) Theoretical basis of non-equilibrium near atmospheric pressure plasma chemistry. Pure Appl Chem 66:1267–1278. https://doi.org/10.1351/pac199466061267 DOI

Fridman A, Chirokov A, Gutsol A (2005) Non-thermal atmospheric pressure discharges. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/38/2/R01 DOI

Fu W, Zhang C, Nie C et al (2019) A high efficiency low-temperature microwave-driven atmospheric pressure plasma jet. Appl Phys Lett. https://doi.org/10.1063/1.5108538 DOI

Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. https://doi.org/10.1126/science.1136674 PubMed DOI

Gavahian M, Cullen PJ (2020) Cold plasma as an emerging technique for mycotoxin-free food: efficacy, mechanisms, and trends. Food Rev Int 36:193–214. https://doi.org/10.1080/87559129.2019.1630638 DOI

Gorbanev Y, Vervloessem E, Nikiforov A, Bogaerts A (2020) Nitrogen fixation with water vapor by nonequilibrium plasma: toward sustainable ammonia production. ACS Sustain Chem Eng 8:2996–3004. https://doi.org/10.1021/acssuschemeng.9b07849 DOI

Guiné RPF, Pinho S, Barroca MJ (2011) Study of the convective drying of pumpkin (Cucurbita maxima). Food Bioprod Process 89:422–428. https://doi.org/10.1016/j.fbp.2010.09.001 DOI

Guo Q, Wang Y, Zhang H et al (2017) Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-16944-8 DOI

Guragain RP, Baniya HB, Shrestha B et al (2023) Non-thermal plasma: a promising technology for the germination enhancement of radish (Raphanus sativus) and carrot (Daucus carota sativus L.). J Food Qual. https://doi.org/10.1155/2023/4131657 DOI

Hamdan A, Jing-Lin Liu MSC (2018) Microwave plasma jet in water : characterization and feasibility to wastewater treatment. Plasma Chem Plasma Process 38:1003–1020. https://doi.org/10.1007/s11090-018-9918-y DOI

Hamdan A, Liu JL, Cha MS (2018) Microwave plasma jet in water: characterization and feasibility to wastewater treatment. Plasma Chem Plasma Process 38:1003–1020. https://doi.org/10.1007/s11090-018-9918-y DOI

Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F et al (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:1–52. https://doi.org/10.3390/antiox9080681 DOI

Hashizume H, Kitano H, Mizuno H et al (2021) Improvement of yield and grain quality by periodic cold plasma treatment with rice plants in a paddy field. Plasma Process Polym 18:1–11. https://doi.org/10.1002/ppap.202000181 DOI

Hatzisymeon M, Tataraki D, Rassias G, Aggelopoulos CA (2021a) Novel combination of high voltage nanopulses and in-soil generated plasma micro-discharges applied for the highly efficient degradation of trifluralin. J Hazard Mater 415:125646. https://doi.org/10.1016/j.jhazmat.2021.125646 PubMed DOI

Hatzisymeon M, Tataraki D, Tsakiroglou C et al (2021b) Highly energy-efficient degradation of antibiotics in soil: extensive cold plasma discharges generation in soil pores driven by high voltage nanopulses. Sci Total Environ 786:147420. https://doi.org/10.1016/j.scitotenv.2021.147420 DOI

Heeb L, Jenner E, Cock MJW (2019) Climate-smart pest management: building resilience of farms and landscapes to changing pest threats. J Pest Sci 2004(92):951–969. https://doi.org/10.1007/s10340-019-01083-y DOI

Holc M, Primc G, Iskra J et al (2019) Effect of oxygen plasma on sprout and root growth, surface morphology and yield of garlic. Plants 8:1–16. https://doi.org/10.3390/plants8110462 DOI

Holc M, Gselman P, Primc G et al (2022) Wettability and water uptake improvement in plasma-treated alfalfa seeds. Agric 12:1–13. https://doi.org/10.3390/agriculture12010096 DOI

Holubová L, Kyzek S, Ďurovcová I et al (2020) Non-thermal plasma—a new green priming agent for plants? Int J Mol Sci 21:1–16. https://doi.org/10.3390/ijms21249466 DOI

Homa K, Barney WP, Davis WP et al (2021) Cold plasma treatment strategies for the control of fusarium oxysporum f. sp. basilici in sweet basil. HortScience 56:42–51. https://doi.org/10.21273/HORTSCI15338-20 DOI

Homola T, Prukner V, Artemenko A et al (2021) Direct treatment of pepper (Capsicum annuum L.) and melon (Cucumis melo) seeds by amplitude-modulated dielectric barrier discharge in air. J Appl Phys. https://doi.org/10.1063/5.0039165 DOI

Humphreys J, Lan R, Tao S (2021) Development and recent progress on ammonia synthesis catalysts for haber-bosch process. Adv Energy Sustain Res. https://doi.org/10.1002/aesr.202000043 DOI

Iqdiam BM, Abuagela MO, Boz Z et al (2020) Effects of atmospheric pressure plasma jet treatment on aflatoxin level, physiochemical quality, and sensory attributes of peanuts. J Food Process Preserv 44:1–11. https://doi.org/10.1111/jfpp.14305 DOI

Jha N, Ryu JJ, Choi EH, Kaushik NK (2017) Generation and role of reactive oxygen and nitrogen species induced by plasma, lasers, chemical agents, and other systems in dentistry. Oxid Med Cell Longev. https://doi.org/10.1155/2017/7542540 PubMed DOI PMC

Ji SH, Ki SH, Kang MH et al (2018) Characterization of physical and biochemical changes in plasma treated spinach seed during germination. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/aab2a2 DOI

Jiang J, He X, Li L et al (2014) Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci Technol 16:54–58. https://doi.org/10.1088/1009-0630/16/1/12 DOI

Jin F, Shi J, Ma S, et al (2022) Effects of Corona Discharge on the Germination Characteristics of Wild Pea Seeds in High Altitude Alpine Meadow. pp 175–183

Kalachova T, Jindřichová B, Pospíchalová R, Fujera J, Artemenko A, Jančík J, Antonova A, Kylián O, Prukner V, Burketová L, Milan Šimek TH (2024) Plasma treatment modifies element distribution in seed coating and affects further germination and plant growth through interaction with soil microbiome. Agric Environ Chem. https://doi.org/10.1021/acs.jafc.3c07160 DOI

Kanter DR, Zhang X, Mauzerall DL (2015) Reducing nitrogen pollution while decreasing farmers’ costs and increasing fertilizer industry profits. J Environ Qual 44:325–335. https://doi.org/10.2134/jeq2014.04.0173 PubMed DOI

Khamsen N, Onwimol D, Teerakawanich N et al (2016) Rice (Oryza sativa L.) seed sterilization and germination enhancement via atmospheric hybrid nonthermal discharge plasma. ACS Appl Mater Interfaces 8:19268–19275. https://doi.org/10.1021/acsami.6b04555 PubMed DOI

Khan MS, Rahman MS (2017) Pesticide residue in foods: Sources, management, and control. Springer, Berlin/Heidelberg, Germany DOI

Kim JW, Puligundla P, Mok C (2017) Effect of corona discharge plasma jet on surface-borne microorganisms and sprouting of broccoli seeds. J Sci Food Agric 97:128–134. https://doi.org/10.1002/jsfa.7698 PubMed DOI

Kim PKT, Phan HT, Boonyawan D, Pilairuk Intipunya CSB, E JMR, Phimolsiripol Y (2018) Non-thermal plasma for elimination of pesticide residues in mango. Innov Food Sci Emerg Technol 48:164–171. https://doi.org/10.1016/j.ifset.2018.06.009 DOI

Klimek A, Piercey DG (2024) Nitrogen fixation via plasma-assisted processes: mechanisms, applications, and comparative analysis—a comprehensive review. Processes. https://doi.org/10.3390/pr12040786 DOI

Kuzin A, Solovchenko A, Khort D et al (2023) Effects of plasma-activated water on leaf and fruit biochemical composition and scion growth in apple. Plants. https://doi.org/10.3390/plants12020385 PubMed DOI PMC

Larsen AE, Patton M, Martin EA (2019) High highs and low lows: elucidating striking seasonal variability in pesticide use and its environmental implications. Sci Total Environ 651:828–837. https://doi.org/10.1016/j.scitotenv.2018.09.206 PubMed DOI

Le TQX, Nguyen LN, Nguyen TT et al (2022) Effects of cold plasma treatment on physical modification and endogenous hormone regulation in enhancing seed germination and radicle growth of mung bean. Appl Sci. https://doi.org/10.3390/app122010308 DOI

Lebedev YA (2010) Microwave discharges: generation and diagnostics. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/257/1/012016 DOI

Lesueur H, Czernichowski A, Chapelle J (1994) Electrically assisted partial oxidation of methane. Int J Hydrogen Energy 19:139–144 DOI

Li SP, Jiang YY, Cao XH et al (2013) Degradation of nitenpyram pesticide in aqueous solution by low-temperature plasma. Environ Technol (United Kingdom) 34:1609–1616. https://doi.org/10.1080/09593330.2013.765914 DOI

Li L, Jiang J, Li J et al (2014) Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep 4:1–7. https://doi.org/10.1038/srep05859 DOI

Li Y, Wang T, Meng Y et al (2017) Air atmospheric dielectric barrier discharge plasma induced germination and growth enhancement of wheat seed. Plasma Chem Plasma Process 37:1621–1634. https://doi.org/10.1007/s11090-017-9835-5 DOI

Li S, Medrano JA, Hessel V, Gallucci F (2018) Recent progress of plasma-assisted nitrogen fixation research: a review. Processes 6(12):248. https://doi.org/10.3390/pr6120248 DOI

Lim JS, Kim D, Ki S et al (2023) Characteristics of a rollable dielectric barrier discharge plasma and its effects on spinach-seed germination. Int J Mol Sci. https://doi.org/10.3390/ijms24054638 PubMed DOI PMC

Lin L, Liang R, Liu X et al (2024) Seed vigor of soybean treated by corona discharge plasma. Plant Sci Today 11:266–273. https://doi.org/10.14719/pst.2288 DOI

Ling L, Jiangang L, Minchong S et al (2015) Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci Rep 5:1–10. https://doi.org/10.1038/srep13033 DOI

Liu B, Wu J, Yang S et al (2020) Nitrate regulation of lateral root and root hair development in plants. J Exp Bot 71:4405–4414. https://doi.org/10.1093/jxb/erz536 PubMed DOI

Liu M, Feng J, Yang X et al (2024) Recent advances in the degradation efficacy and mechanisms of mycotoxins in food by atmospheric cold plasma. Ecotoxicol Environ Saf 270:11594. https://doi.org/10.1016/j.ecoenv.2024.115944 DOI

Los A, Ziuzina D, Boehm D et al (2019) Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: Effects on seed surface chemistry and characteristics. Plasma Process Polym 16:1800148. https://doi.org/10.1002/PPAP.201800148 DOI

Lu Q, Liu D, Song Y et al (2014) Inactivation of the tomato pathogen cladosporium fulvum by an atmospheric-pressure cold plasma jet. Plasma Process Polym 11:1028–1036. https://doi.org/10.1002/ppap.201400070 DOI

Lykogianni M, Bempelou E, Karamaouna F, Aliferis KA (2021) Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Sci Total Environ 795:148625. https://doi.org/10.1016/j.scitotenv.2021.148625 PubMed DOI

Ma Y, Tian Y, Zeng Y, Tu X (2021) Plasma synthesis of ammonia in a tangled wire dielectric barrier discharge reactor: effect of electrode materials. J Energy Inst 99:137–144. https://doi.org/10.1016/j.joei.2021.09.002 DOI

Marthandan V, Geetha R, Kumutha K et al (2020) Seed priming: a feasible strategy to enhance drought tolerance in crop plants. Int J Mol Sci 21:1–23. https://doi.org/10.3390/ijms21218258 DOI

Mazandarani A, Goudarzi S, Ghafoorifard H, Eskandari A (2020) Evaluation of DBD plasma effects on barley seed germination and seedling growth. IEEE Trans Plasma Sci 48:3115–3121. https://doi.org/10.1109/TPS.2020.3012909 DOI

Mildaziene V, Ivankov A, Sera B, Baniulis D (2022) Biochemical and physiological plant processes affected by seed treatment with non-thermal plasma. Plants. https://doi.org/10.3390/plants11070856 PubMed DOI PMC

Misra NN, Pankaj SK, Walsh T et al (2014) In-package nonthermal plasma degradation of pesticides on fresh produce. J Hazard Mater 271:33–40. https://doi.org/10.1016/j.jhazmat.2014.02.005 PubMed DOI

Misra NN, Martynenko A, Chemat F et al (2018) Thermodynamics, transport phenomena, and electrochemistry of external field-assisted nonthermal food technologies. Crit Rev Food Sci Nutr 58:1832–1863. https://doi.org/10.1080/10408398.2017.1287660 PubMed DOI

Misra N, Schl€uter O, Cullen P (2016) Cold Plasma in Food and Agriculture. Academic Press

Mitra A, Li YF, Klämpfl TG et al (2014) Inactivation of surface-borne microorganisms and increased germination of seed specimen by cold atmospheric plasma. Food Bioprocess Technol 7:645–653. https://doi.org/10.1007/s11947-013-1126-4 DOI

Molina R, Lalueza A, López-Santos C et al (2021) Physicochemical surface analysis and germination at different irrigation conditions of DBD plasma-treated wheat seeds. Plasma Process Polym. https://doi.org/10.1002/ppap.202000086 DOI

Motrescu I, Ciolan MA, Calistru AE, Jitareanu G (2023) Germination and growth improvement of some micro-greens under the influence of reactive species produced in a non-thermal plasma (NTP). Agronomy. https://doi.org/10.3390/agronomy13010150 DOI

Mousavi SM, Imani S, Dorranian D et al (2017) Effect of cold plasma on degradation of organophosphorus pesticides used on some agricultural products. J Plant Prot Res 57:25–35. https://doi.org/10.1515/jppr-2017-0004 DOI

Muhammad AI, Attanda ML (2023) Cold plasma technology: Revolutionizing sustainable and safe agricultural food production. Proc 23rd Int Conf 43rd Annu Gen Meet Niger Inst Agric Eng 43: 853–859

Mutaf-Yardimci O, Saveliev AV, Fridman AA, Kennedy LA (2000) Thermal and nonthermal regimes of gliding arc discharge in air flow. J Appl Phys 87:1632–1641. https://doi.org/10.1063/1.372071 DOI

Nedyalkova S, Bozhanova V, Benova E et al (2019) Study on the effect of cold plasma on the germination and growth of durum wheat seeds contaminated with fusarium graminearum. Int J Innov Approaches Agric Res 3:623–635. https://doi.org/10.29329/ijiaar.2019.217.8 DOI

Nehra V, Kumar A, Dwivedi HK (2008) Atmospheric non-thermal plasma sources. Int J Eng 2:53–68

Nguyen HM, Omidkar A, Li W et al (2023) Non-thermal plasma assisted catalytic nitrogen fixation with methane at ambient conditions. Chem Eng J 471:144748. https://doi.org/10.1016/j.cej.2023.144748 DOI

Niemira BA (2012) Cold plasma reduction of salmonella and Escherichia coli O157: H7 on almonds using ambient pressure gases. J Food Sci 77:171–175. https://doi.org/10.1111/j.1750-3841.2011.02594 DOI

Nishime TMC, Werner J, Wannicke N et al (2022) Characterization and optimization of a conical corona reactor for seed treatment of rapeseed. Appl Sci. https://doi.org/10.3390/app12073292 DOI

Niveditha A, Pandiselvam R, Prasath VA et al (2021) Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods—a review. Food Control 130:108338. https://doi.org/10.1016/j.foodcont.2021.108338 DOI

Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43. https://doi.org/10.1017/S0021859605005708 DOI

Ongrak P, Poolyarat N, Suksaengpanomrung S et al (2023) Germination, physicochemical properties, and antioxidant enzyme activities in Kangkong (Ipomoea aquatica Forssk.) seeds as affected by dielectric barrier discharge plasma. Horticulturae. https://doi.org/10.3390/horticulturae9121269 DOI

Organization F and A (2015) Sustainable Development Goals. In: United Nations. https://sdgs.un.org/

Ouf SA, Basher AH, Mohamed AAH (2015) Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. J Sci Food Agric 95:3204–3210. https://doi.org/10.1002/jsfa.7060 PubMed DOI

Ouf SA, Almarashi JQM, Mohamed AAH (2022) Characterization and evaluation of cold atmospheric plasma as seedborne fungal disinfectant and promoting mediator for physico-chemical characteristics of Moringa oleifera seedlings. Sci Rep 12:1–12. https://doi.org/10.1038/s41598-022-18768-7 DOI

Paatre Shashikanthalu S, Ramireddy L, Radhakrishnan M (2020) Stimulation of the germination and seedling growth of Cuminum cyminum L. seeds by cold plasma. J Appl Res Med Aromat Plants 18:100259. https://doi.org/10.1016/j.jarmap.2020.100259 DOI

Pal P, Pal UN, Member S, Singh V (2024) Experimental investigation for the generation and characterization of plasma-activated water. IEEE Trans Plasma Sci. https://doi.org/10.1109/TPS.2024.3434412 DOI

Pal P, Singh V, Sharma NK, et al (2023) Discharge Analysis and Characterisation of Cold Atmospheric Pressure Plasma Jet and Generation of Plasma Activated Water for Agriculture Applications. In: IEEE International Pulsed Power Conference. IEEE, pp 1–4

Pańka D, Jeske M, Łukanowski A et al (2022) Can cold plasma be used for boosting plant growth and plant protection in sustainable plant production? Agronomy 12:1–20. https://doi.org/10.3390/agronomy12040841 DOI

Park S, Choe W, Kim H (2018) Electron heating in rf capacitive discharges at atmospheric-to subatmospheric pressures. Sci Rep 8:1–7. https://doi.org/10.1038/s41598-018-27945-6 DOI

Patil BS, Wang Q, Hessel V, Lang J (2015) Plasma N2-fixation: 1900–2014. Catal Today 256:49–66. https://doi.org/10.1016/j.cattod.2015.05.005 DOI

Patil BS, Cherkasov N, Lang J et al (2016) Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: effect of support materials and supported active metal oxides. Appl Catal B Environ 194:123–133. https://doi.org/10.1016/j.apcatb.2016.04.055 DOI

Penado KNM, Mahinay CLS, Culaba IB (2018) Effect of atmospheric plasma treatment on seed germination of rice (Oryza sativa L.). Jpn J Appl Phys. https://doi.org/10.7567/JJAP.57.01AG08 DOI

Perea-Brenes A, Garcia JL, Cantos M et al (2023) Germination and first stages of growth in drought, salinity, and cold stress conditions of plasma-treated barley seeds. ACS Agric Sci Technol 3:760–770. https://doi.org/10.1021/acsagscitech.3c00121 PubMed DOI PMC

Petrescu D, Cimpeanu M, Topala I, Gorgan D (2022) The modulatory effects of non-thermal plasma on seed’s morphology, germination and genetics—a review. Plants 11:1–20. https://doi.org/10.3390/plants11162181 DOI

Priatama RA, Pervitasari AN, Park S et al (2022) Current advancements in the molecular mechanism of plasma treatment for seed germination and plant growth. Int J Mol Sci. https://doi.org/10.3390/ijms23094609 PubMed DOI PMC

Puligundla P, Kim JW, Mok C (2017) Effect of corona discharge plasma jet treatment on decontamination and sprouting of rapeseed (Brassica napus L.) seeds. Food Control 71:376–382. https://doi.org/10.1016/j.foodcont.2016.07.021 DOI

Qin S, Chen S, Wang X et al (2023) Experimental study on the degradation of acaricides on the surface of kumquat cuimi by nonthermal air plasma. Appl Sci. https://doi.org/10.3390/app13137560 DOI

Randeniya LK, De Groot GJJB (2015) Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: a review. Plasma Process Polym 12:608–623. https://doi.org/10.1002/ppap.201500042 DOI

Ranieri P, Sponsel N, Kizer J et al (2021) Plasma agriculture: review from the perspective of the plant and its ecosystem. Plasma Process Polym. https://doi.org/10.1002/ppap.202000162 DOI

Ranjitha Gracy TK, Sharanyakanth PS, Radhakrishnan M (2022) Non-thermal technologies: solution for hazardous pesticides reduction in fruits and vegetables. Crit Rev Food Sci Nutr 62:1782–1799. https://doi.org/10.1080/10408398.2020.1847029 DOI

Rasooli Z, Barzin G, Mahabadi TD, Entezari M (2021) Stimulating effects of cold plasma seed priming on germination and seedling growth of cumin plant. South African J Bot 142:106–113. https://doi.org/10.1016/j.sajb.2021.06.025 DOI

Romero-Puertas MC, Terrón-Camero LC, Peláez-Vico MÁ et al (2019) Reactive oxygen and nitrogen species as key indicators of plant responses to Cd stress. Environ Exp Bot 161:107–119. https://doi.org/10.1016/j.envexpbot.2018.10.012 DOI

Rongsangchaicharean T, Srisonphan S, Onwimol D (2022) Responses of rice seed quality to large-scale atmospheric nonthermal plasmas. Plasma Chem Plasma Process 42:1127–1141. https://doi.org/10.1007/s11090-022-10261-3 DOI

Roy NC, Hasan MM, Kabir AH et al (2018) Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat. Plasma Sci Technol. https://doi.org/10.1088/2058-6272/aac647 DOI

Ruangwong K, Rongsangchaicharean T, Thammaniphit C et al (2020) Atmospheric corona discharge plasma for Rice (Oryza sativa L.) seed surface modification, fungi decontamination, and shelf life extension. Plasma Med 10:191–201. https://doi.org/10.1615/plasmamed.2021036474 DOI

Rüntzel CL, da Silva JR, da Silva BA et al (2019) Effect of cold plasma on black beans (Phaseolus vulgaris L.), fungi inactivation and micro-structures stability. Emirates J Food Agric 31:864–873. https://doi.org/10.9755/ejfa.2019.v31.i11.2029 DOI

Salih AAM, Baraibar M, Mwangi KK, Artan G (2020) Climate change and locust outbreak in East Africa. Nat Clim Chang 10:584–585. https://doi.org/10.1038/s41558-020-0835-8 DOI

Sarangapani C, Misra NN, Milosavljevic V et al (2016) Pesticide degradation in water using atmospheric air cold plasma. J Water Process Eng 9:225–232. https://doi.org/10.1016/j.jwpe.2016.01.003 DOI

Sarangapani C, O’Toole G, Cullen PJ, Bourke P (2017) Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innov Food Sci Emerg Technol 44:235–241. https://doi.org/10.1016/j.ifset.2017.02.012 DOI

Schnabel U, Niquet R, Schlüter O et al (2015) Decontamination and sensory properties of microbiologically contaminated fresh fruits and vegetables by microwave plasma processed air (PPA). J Food Process Preserv 39:653–662. https://doi.org/10.1111/jfpp.12273 DOI

Sedhai B, Guragain RP, Shrestha B et al (2023) Enhancement of seed germination of Daucus carota sativus L. by non-thermal plasma treatment. Contrib to Plasma Phys. https://doi.org/10.1002/ctpp.202200123 DOI

Selcuk M, Oksuz L, Basaran P (2008) Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresour Technol 99:5104–5109. https://doi.org/10.1016/j.biortech.2007.09.076 PubMed DOI

Šera B, Straňák V, Serý M et al (2008) Germination of chenopodium album in response to microwave plasma treatment. Plasma Sci Technol 10:506–511. https://doi.org/10.1088/1009-0630/10/4/22 DOI

Shah AK, Dhobi SH, Sah RL et al (2023) Impact of plasma treatment on lady’s finger seeds for germination and its growth. J Nepal Phys Soc 9:107–115. https://doi.org/10.3126/jnphyssoc.v9i1.57743 DOI

Sharma NK, Misra S, Varun PUN (2020) Experimental and simulation analysis of dielectric barrier discharge based pulsed cold atmospheric pressure plasma jet. Phys Plasmas. https://doi.org/10.1063/5.0018901 DOI

Šimek M, Homola T (2021) Plasma-assisted agriculture: history, presence, and prospects—a review. Eur Phys J D. https://doi.org/10.1140/epjd/s10053-021-00206-4 DOI

Singh H, Niharika LP et al (2023) Enhancing crop health and sustainability: exploring the potential of secondary metabolites and non-thermal plasma treatment as alternatives to pesticides. Plant Biotechnol Rep 17:803–820. https://doi.org/10.1007/s11816-023-00883-0 DOI

Sivachandiran L, Khacef A (2017) Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv 7:1822–1832 DOI

Sojithamporn P, Leksakul K, Sawangrat C et al (2023) Degradation of pesticide residues in water, soil, and food products via cold plasma technology. Foods 12:1–37. https://doi.org/10.3390/foods12244386 DOI

Starek-Wójcicka A, Sagan A, Terebun P et al (2020) Influence of a helium–nitrogen RF plasma jet on onion seed germination. Appl Sci 10:1–8. https://doi.org/10.3390/app10248973 DOI

Starič P, Vogel-Mikuš K, Mozetič M, Junkar I (2020) Effects of nonthermal plasma on morphology, genetics and physiology of seeds: A review. Plants. https://doi.org/10.3390/plants9121736 PubMed DOI PMC

Štěpánová V, Slavíček P, Kelar J et al (2018) Atmospheric pressure plasma treatment of agricultural seeds of cucumber (Cucumis sativus L.) and pepper (Capsicum annuum L.) with effect on reduction of diseases and germination improvement. Plasma Process Polym. https://doi.org/10.1002/ppap.201700076 DOI

Stolárik T, Henselová M, Martinka M et al (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous Phytohormones in Pea (Pisum sativum L.). Plasma Chem Plasma Process 35:659–676. https://doi.org/10.1007/s11090-015-9627-8 DOI

Świecimska M, Tulik M, Šerá B et al (2020) Non-thermal plasma can be used in disinfection of scots pine (Pinus sylvestris L.) seeds infected with fusarium oxysporum. Forests 11:1–11. https://doi.org/10.3390/f11080837 DOI

Tanwar H, Mor VS, Sharma S et al (2023) Optimization of ‘on farm’ hydropriming conditions in wheat: Soaking time and water volume have interactive effects on seed performance. PLoS ONE 18:1–24. https://doi.org/10.1371/journal.pone.0280962 DOI

Tardast Z, Iranbakhsh A, Ebadi M, Oraghi Ardebili Z (2024) Seed priming with corona discharge plasma modified growth performance, improved metabolism, and elicited production of tropane alkaloids in Datura inoxia seedlings; plasma technology for application in plant in-vitro cultures. Contrib to Plasma Phys 64:1–16. https://doi.org/10.1002/ctpp.202300165 DOI

Tırpancı Sivri G (2024) Innovative frontiers: advancing technologies for pesticide elimination in grape seeds. Ömer Halisdemir Üniversitesi Mühendislik Bilim Derg. https://doi.org/10.28948/ngumuh.1443273 DOI

Tiwari S, Caiola A, Bai X et al (2020) microwave plasma-enhanced and microwave heated chemical reactions. Plasma Chem Plasma Process. https://doi.org/10.1007/s11090-019-10040-7 DOI

Tong J, He R, Zhang X et al (2014) Effects of atmospheric pressure air plasma pretreatment on the seed germination and early growth of andrographis paniculata. Plasma Sci Technol 16:260–266. https://doi.org/10.1088/1009-0630/16/3/16 DOI

Toyokawa Y, Yagyu Y, Misawa T, Sakudo A (2017) A new roller conveyer system of non-thermal gas plasma as a potential control measure of plant pathogenic bacteria in primary food production. Food Control 72:62–72. https://doi.org/10.1016/j.foodcont.2016.07.031 DOI

Trebicki P (2020) Climate change and plant virus epidemiology. Virus Res 286:198059. https://doi.org/10.1016/j.virusres.2020.198059 PubMed DOI

Trebulová K, František Krˇcma ZK, P M (2020) Impact of microwave plasma torch on the yeast candida glabrata. Appl Sci. https://doi.org/10.3390/app10165538 DOI

Van Gaens W, Bogaerts A (2014) Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/46/27/079501 DOI

Varilla C, Marcone M, Annor GA (2020) Potential of cold plasma technology in ensuring the safety of foods and agricultural produce: a review. Foods 9:1–17. https://doi.org/10.3390/foods9101435 DOI

Vervloessem E, Aghaei M, Jardali F et al (2020) Plasma-based N2Fixation into NOx: insights from modeling toward optimum yields and energy costs in a gliding arc plasmatron. ACS Sustain Chem Eng 8:9711–9720. https://doi.org/10.1021/acssuschemeng.0c01815 DOI

Wang G, Zhu R, Yang L et al (2016) Non-thermal plasma for inactivated-vaccine preparation. Vaccine 34:1126–1132. https://doi.org/10.1016/j.vaccine.2015.10.099 PubMed DOI

Wang J, Song H, Song Z et al (2020) Effect of positive and negative corona discharge field on vigor of millet seeds. IEEE Access 8:50268–50275. https://doi.org/10.1109/ACCESS.2020.2979288 DOI

Wang G, Ren Y, Bai X et al (2022) Contributions of beneficial microorganisms in soil remediation and quality improvement of medicinal plants. Plants. https://doi.org/10.3390/plants11233200 PubMed DOI PMC

Wannicke N, Wagner R, Stachowiak J et al (2021) Efficiency of plasma-processed air for biological decontamination of crop seeds on the premise of unimpaired seed germination. Plasma Process Polym 18:1–14. https://doi.org/10.1002/ppap.202000207 DOI

Waskow A, Betschart J, Butscher D et al (2018) Characterization of efficiency and mechanisms of cold atmospheric pressure plasma decontamination of seeds for sprout production. Front Microbiol 9:1–15. https://doi.org/10.3389/fmicb.2018.03164 DOI

Waskow A, Howling A, Furno I (2021) Mechanisms of plasma-seed treatments as a potential seed processing technology. Front Phys 9:1–23. https://doi.org/10.3389/fphy.2021.617345 DOI

Waskow A, Avino F, Howling A, Furno I (2022) Entering the plasma agriculture field: an attempt to standardize protocols for plasma treatment of seeds. Plasma Process Polym. https://doi.org/10.1002/ppap.202100152 DOI

Wiktor A, Hrycak B, Jasinski M et al (2020) Impact of atmospheric pressure microwave plasma treatment on quality of selected spices. Appl Sci. https://doi.org/10.3390/app10196815 DOI

Winter J, Brandenburg R, Weltmann KD (2015) Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci Technol. https://doi.org/10.1088/0963-0252/24/6/064001 DOI

Xu W, Song Z, Li Y et al (2021) Effect of DC corona discharge on ammopiptanthus mongolicus seeds. IEEE Trans Plasma Sci 49:2791–2798. https://doi.org/10.1109/TPS.2021.3106445 DOI

Lee Y et al (2021) Enhancement of seed germination and microbial disinfection on ginseng by cold plasma treatment. J Ginseng Res 45(4):519–526. https://doi.org/10.1016/j.jgr.2020.12.002 PubMed DOI

Zahoranová A, Henselová M, Hudecová D et al (2016) Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Process 36:397–414. https://doi.org/10.1007/s11090-015-9684-z DOI

Zayan SA (2018) Impact of climate change on plant diseases and IPM strategies. Arab J Plant Prot 36:75–79. https://doi.org/10.22268/ajpp-036.1.075079 DOI

Zhang J, Kwon T, Kim S, Jeong D (2018) Plasma farming: non-thermal dielectric barrier discharge plasma technology for improving the growth of soybean sprouts and chickens. Plasma 1:285–296. https://doi.org/10.3390/plasma1020025 DOI

Zhang C, Fu W, Hu S et al (2021) Investigation on continuous and modulated microwave plasma filaments at atmospheric pressure. IEEE Access 9:154318–154323. https://doi.org/10.1109/ACCESS.2021.3128610 DOI

Zhang H, Zhang C, Han Q (2023) Mechanisms of bacterial inhibition and tolerance around cold atmospheric plasma. Appl Microbiol Biotechnol 107:5301–5316. https://doi.org/10.1007/s00253-023-12618-w PubMed DOI PMC

Zhou Z, Huang Y, Yang S, Chen W (2011) Introduction of a new atmospheric pressure plasma device and application on tomato seeds. Agric Sci 02:23–27. https://doi.org/10.4236/as.2011.21004 DOI

Zhou D, Zhou R, Zhou R et al (2021) Sustainable ammonia production by non-thermal plasmas: status, mechanisms, and opportunities. Chem Eng J. https://doi.org/10.1016/j.cej.2021.129544 PubMed DOI

Zikankuba VL, Mwanyika G, Ntwenya JE, James A (2019) Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food Agric. https://doi.org/10.1080/23311932.2019.1601544 DOI

Ziuzina D, Patil S, Cullen PJ et al (2014) Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol 42:109–116. https://doi.org/10.1016/j.fm.2014.02.007 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...