An Experimental Investigation into Trochoidal Milling for High-Quality GFRP Machining

. 2025 Apr 05 ; 18 (7) : . [epub] 20250405

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40271927

This study investigates the effectiveness of trochoidal (adaptive) milling in machining Glass Fiber Reinforced Polymer (GFRP), emphasizing its potential advantages over conventional milling. Six coated solid carbide end mills, each with distinct geometries, were evaluated under identical conditions to assess the cutting forces, surface quality, dimensional accuracy, burr formation, chip size distribution, and tool wear. Trochoidal milling demonstrated shorter cycle times-up to 23% faster-and higher material removal rates (MRRs), while conventional milling provided superior dimensional control and smoother surfaces in certain fiber-sensitive regions. A four-tooth cutter with a low helix angle (10°) and aluminum-oxide coating delivered the best overall performance, balancing minimal tool wear with high-quality finishes (arithmetic mean roughness, Ra, as low as 1.36 μm). The results indicate that although conventional milling can exhibit a 25%-lower RMS cutting force, its peak forces and extended machining times may limit the throughput. Conversely, trochoidal milling, when coupled with an appropriately robust tool, effectively manages the cutting forces, improves the surface quality, and reduces the machining time. Most chips produced were less than 11 μm in size, highlighting the need for suitable dust extraction. Notably, a hybrid approach-trochoidal roughing followed by conventional finishing-offers a promising method for achieving both efficient material removal and enhanced dimensional accuracy in GFRP components.

Zobrazit více v PubMed

Asmatulu R., Claus R.O., Mecham J.B., Inman D.J. Improving the Damping Properties of Composites Using Ferroelectric Inclusions. J. Intell. Mater. Syst. Struct. 2005;16:463–468. doi: 10.1177/1045389X05048850. DOI

Yousif B.A. Prediction on Mechanical Properties of Fly Ash Reinforced Polymer Composite Material. Al-Nahrain J. Sci. 2022;25:49–53. doi: 10.22401/ANJS.25.4.08. DOI

Kumar P., Mahavar J.T. Emerging Trends in Composite and Advanced Composite Materials Technology for Oil and Gas Industry. J. Aerosp. Sci. Technol. 2023;64:73–79. doi: 10.61653/joast.v64i1.2012.416. DOI

Fakhrudi Y.A., Faidzin K.N., Bisono R.M. Effect of Composite Composition on Mechanical Properties of Banana Fiber Composites with Epoxy Matrix for Functional Materials. Int. J. Sci. Eng. Inf. Technol. 2022;6:303–306. doi: 10.21107/ijseit.v6i2.15804. DOI

Imanaka Y., Anazawa T., Kumasaka F., Jippo H. Optimization of the Composition in a Composite Material for Microelectronics Application Using the Ising Model. Sci. Rep. 2021;11:3057. doi: 10.1038/s41598-021-81243-2. PubMed DOI PMC

Spanu P., Amza C.G., Abaza B.F. Study Regarding the Compressive Properties of Glass Fiber Reinforced Composites. Mater. Plast. 2018;55:580–583. doi: 10.37358/MP.18.4.5078. DOI

Elkhouly H.I., Aly M.F., Abd El-Magied R.K. Optimization of Wear Parameters for Glass Fabric-Epoxy Composites Using Response Surface Methodology and Flower Pollination Algorithm. J. Eng. Sci. Sustain. Ind. Technol. 2023;2:19–26. doi: 10.21608/jessit.2023.304324. DOI

Chakraverty A.P., Mohanty U.K., Biswal B.B. Thermal Shock Behavior of Hydrothermally Conditioned E-Glass Fiber/Epoxy Composites. Emerg. Mater. Res. 2012;1:263–270. doi: 10.1680/emr.12.00009. DOI

Zhang Y., Mi C. Improved Hydrothermal Aging Performance of Glass Fiber-reinforced Polymer Composites via Silica Nanoparticle Coating. J. Appl. Polym. Sci. 2020;137:48652. doi: 10.1002/app.48652. DOI

Mohammed M., Chai Y.Y., Doh S.I., Lim K.S. Degradation of Glass Fiber Reinforced Polymer (GFRP) Material Exposed to Tropical Atmospheric Condition. Key Eng. Mater. 2021;879:265–274. doi: 10.4028/www.scientific.net/KEM.879.265. DOI

Prakash C., Vijay Sekar K.S. 3D Finite Element Analysis of Slot Milling of Unidirectional Glass Fiber Reinforced Polymer Composites. J. Braz. Soc. Mech. Sci. Eng. 2018;40:279. doi: 10.1007/s40430-018-1195-4. DOI

Hussain S., Pandurangadu V., Kumar K. Machinability of Glass Fiber Reinforced Plastic (GFRP) Composite Materials. Int. J. Eng. Sci. Tech. 2011;3:68546. doi: 10.4314/ijest.v3i4.68546. DOI

Prakash R., Krishnaraj V., Zitoune R., Sheikh-Ahmad J. High-Speed Edge Trimming of CFRP and Online Monitoring of Performance of Router Tools Using Acoustic Emission. Materials. 2016;9:798. doi: 10.3390/ma9100798. PubMed DOI PMC

Prajwal H.V., Wani W.M., Murthy M., Srinivas S. Machinability and Delamination Studies on Glass Fiber Reinforced Polymer Matrix Composite Cut by Abrasive Water Jet Machine. Solid State Phenom. 2020;305:122–128. doi: 10.4028/www.scientific.net/SSP.305.122. DOI

Irina M.M.W., Azmi A.I., Lee C.C. Machinability Study of Hybrid FRP Composite Using Abrasive Waterjet Trimming Technology. Key Eng. Mater. 2017;740:118–124. doi: 10.4028/www.scientific.net/KEM.740.118. DOI

Erturk A.T., Yarar E., Vatansever F., Sahin A.E., Kilinçel M., Alpay Y.O. A Comparative Study of Mechanical and Machining Performance of Polymer Hybrid and Carbon Fiber Epoxy Composite Materials. Polym. Polym. Compos. 2021;29:S655–S666. doi: 10.1177/09673911211020620. DOI

Elfarhani M., Guesmi F., Mkaddem A., Ghazali S., Rubaiee S., Jarraya A. Thermal Aspects in Edge Trimming of Bio-Filled GFRP: Influence of Fiber Orientation and Silica Sand Filler in Heat Generation. Materials. 2022;15:4792. doi: 10.3390/ma15144792. PubMed DOI PMC

Knap A., Dvořáčková Š., Knápek T. Study of the Machining Process of GFRP Materials by Milling Technology with Coated Tools. Coatings. 2022;12:1354. doi: 10.3390/coatings12091354. DOI

Unal E. Temperature and Thrust Force Analysis on Drilling of Glass Fiber Reinforced Plastics. Therm. Sci. 2019;23:347–352. doi: 10.2298/TSCI180117181U. DOI

Jenarthanan M.P., Lakshman Prakash A., Jeyapaul R. Experimental Investigation and Analysis of Factors Influencing Delamination and Surface Roughness of Hybrid GFRP Laminates Using Taguchi Technique. Pigment. Resin Technol. 2016;45:463–475. doi: 10.1108/PRT-03-2015-0035. DOI

Shanmugasundaram S.M., Damodhiran L., Billan V., Gu D. Predictive Model for Circularity Error of Drilling on GFRP Composite Laminates Using Fuzzy Logic. Appl. Mech. Mater. 2013;446–447:316–320. doi: 10.4028/www.scientific.net/AMM.446-447.316. DOI

Doluk E., Rudawska A. Effect of Machining Settings and Tool Geometry on Surface Quality After Machining of Al/CFRP Sandwich Structures. Adv. Sci. Technol. Res. J. 2022;16:22–33. doi: 10.12913/22998624/147787. PubMed DOI

Deng Q., Mo R., Chen Z.C., Chang Z. An Analytical Approach to Cutter Edge Temperature Prediction in Milling and Its Application to Trochoidal Milling. Appl. Sci. 2020;10:1746. doi: 10.3390/app10051746. DOI

Liu D., Zhang Y., Luo M., Zhang D. Investigation of Tool Wear and Chip Morphology in Dry Trochoidal Milling of Titanium Alloy Ti–6Al–4V. Materials. 2019;12:1937. doi: 10.3390/ma12121937. PubMed DOI PMC

Günaydin E., Ozcelik B., Kuram E. Determination of Optimal Machining Strategy Using Trochoid Geometry for Micro-Channel Machining Method. Res. Sq. 2023 doi: 10.21203/rs.3.rs-3238513/v1. (preprint) DOI

Waszczuk K. Influence of the Trochoidal Tool Path Generation Method on the Milling Process Efficiency. Adv. Sci. Technol. Res. J. 2020;14:199–203. doi: 10.12913/22998624/122198. DOI

Dong Y., Li S., Zhang Q., Li P., Jia Z., Li Y. Modeling and Analysis of Micro Surface Topography from Ball-End Milling in a Trochoidal Milling Mode. Micromachines. 2021;12:1203. doi: 10.3390/mi12101203. PubMed DOI PMC

Zhou X., Zhou J., Qi Q., Zhang C., Zhang D. Effects of Toolpath Parameters on Engagement Angle and Cutting Force in Ellipse-Based Trochoidal Milling of Titanium Alloy Ti-6Al-4V. Appl. Sci. 2023;13:6550. doi: 10.3390/app13116550. DOI

Grešová Z., Ižol P., Vrabeľ M., Kaščák Ľ., Brindza J., Demko M. Influence of Ball-End Milling Strategy on the Accuracy and Roughness of Free Form Surfaces. Appl. Sci. 2022;12:4421. doi: 10.3390/app12094421. DOI

Wagih M., Hassan M.A., El-Hofy H., Yan J., Maher I. Effects of Process Parameters on Cutting Forces, Material Removal Rate, and Specific Energy in Trochoidal Milling. Proc. Inst. Mech. Eng. Part C. 2023;238:2745–2757. doi: 10.1177/09544062231196991. DOI

Karkalos N.E., Karmiris-Obratański P., Kurpiel S., Zagórski K., Markopoulos A.P. Investigation on the Surface Quality Obtained during Trochoidal Milling of 6082 Aluminum Alloy. Machines. 2021;9:75. doi: 10.3390/machines9040075. DOI

Xu P., Chen H., Li M., Lu W. New Opportunity: Machine Learning for Polymer Materials Design and Discovery. Adv. Theory Simul. 2022;5:2100565. doi: 10.1002/adts.202100565. DOI

Jenarthanan M.P., Jeyapaul R. Optimisation of Machining Parameters on Milling of GFRP Composites by Desirability Function Analysis Using Taguchi Method. Int. J. Eng. Sci. Tech. 2018;5:22–36. doi: 10.4314/ijest.v5i4.3. DOI

Nikam M., Al-Lohedan H.A., Mohammad F., Khetree S., Patil V., Lonare G., Khan F.J., Jagatap G., Giri J.P., Oza A.D., et al. Optimization of Machining Parameters for Enhanced Performance of Glass-Fibre-Reinforced Plastic (GFRP) Composites Using Design of Experiments. Sustainability. 2023;15:12372. doi: 10.3390/su151612372. DOI

Han F.-Y., Gu Z.-C., He L.-L., Gou T.-M., Zhang C.-W., Yang M.-Z., Shi R.-G. An Optimization Method of Trochoidal Radius for Trochoidal Milling Hole Based on the Adaptive Feed Rate Scheduling. Int. J. Adv. Manuf. Technol. 2024;130:1527–1539. doi: 10.1007/s00170-023-12804-0. DOI

Equbal A., Shamim M., Badruddin I.A., Equbal M.I., Sood A.K., Nik Ghazali N.N., Khan Z.A. Application of the Combined ANN and GA for Multi-Response Optimization of Cutting Parameters for the Turning of Glass Fiber-Reinforced Polymer Composites. Mathematics. 2020;8:947. doi: 10.3390/math8060947. DOI

Çelik Y.H., Türkan C. Investigation of Mechanical Characteristics of GFRP Composites Produced from Chopped Glass Fiber and Application of Taguchi Methods to Turning Operations. SN Appl. Sci. 2020;2:849. doi: 10.1007/s42452-020-2684-5. DOI

Kumar A.L., Prakash M. The Effect of Fiber Orientation on Mechanical Properties and Machinability of GFRP Composites by End Milling Using Cutting Force Analysis. Polym. Polym. Compos. 2021;29:S178–S187. doi: 10.1177/0967391121991289. DOI

Kilickap E., Celik Y.H., Yenigun B. Evaluation of Factors Affecting Delamination, Tensile Strength, Thrust Force and Surface Roughness in Drilling of GFRP. Res. Sq. 2021 doi: 10.1142/S0218625X23500257. (preprint) DOI

Wang X., Melly S.K., Li N., Wang G.-D., Peng T., Li Y., Zhao Q.D. Helical Milling Response of Glass Fiber-Reinforced Polymer Composite with Carbon Nanotube Buckypaper Interlayer. Polym. Polym. Compos. 2020;28:378–387. doi: 10.1177/0967391119879296. DOI

Yang B., Wang H., Fu K., Wang C. Prediction of Cutting Force and Chip Formation from the True Stress-Strain Relation Using an Explicit FEM for Polymer Machining. Polymers. 2022;14:189. doi: 10.3390/polym14010189. PubMed DOI PMC

Ciecieląg K. Machinability Measurements in Milling and Recurrence Analysis of Thin-Walled Elements Made of Polymer Composites. Materials. 2023;16:4825. doi: 10.3390/ma16134825. PubMed DOI PMC

Biruk-Urban K., Józwik J., Bere P. Cutting Forces and 3D Surface Analysis of CFRP Milling. Adv. Sci. Technol. Res. J. 2022;16:206–215. doi: 10.12913/22998624/147338. DOI

Su C., Cheng X., Yan X., Zheng G., Li Y., Mu Z. Helical Milling for Making Holes on Carbon Fiber-Reinforced Polymer. Int. J. Adv. Manuf. Technol. 2022;121:5197–5205. doi: 10.1007/s00170-022-09749-1. DOI

Gao T., Zhang Y., Li C., Wang Y., Chen Y., An Q., Sharma S. Fiber-Reinforced Composites in Milling and Grinding: Machining Bottlenecks and Advanced Strategies. Front. Mech. Eng. 2022;17:24. doi: 10.1007/s11465-022-0680-8. DOI

Xian G., Bai Y., Qi X., Wang J., Tian J., Xiao H. Hygrothermal aging on the mechanical property and degradation mechanism of carbon fiber reinforced epoxy composites modified by nylon 6. J. Mater. Res. Technol. 2024;33:6297–6306. doi: 10.1016/j.jmrt.2024.11.024. DOI

Ünüvar A., Koyunbakan M., Bağcı M. Optimization and Effects of Machining Parameters on Delamination in Drilling of Pure and Al2O3/SiO2 Added GFRP Composites. Int. J. Adv. Manuf. Technol. 2021;119:657–675. doi: 10.1007/s00170-021-08258-x. DOI

Mugundhu J.P., Subramanian S., Subramanian A. Analysis and Optimisation of Machinability Behavior of GFRP Composites Using Fuzzy Logic. Multidiscip. Model. Mater. Struct. 2015;11:102–119. doi: 10.1108/MMMS-04-2014-0020. DOI

Alizadeh Ashrafi S., Miller P., Wandro K., Kim D. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite. Materials. 2016;9:828. doi: 10.3390/ma9100828. PubMed DOI PMC

Jenarthanan M.P., Jeyapaul R., Naresh N. Modelling and Analysis of Factors Influencing Surface Roughness and Delamination of Milling of GFRP Laminates Using RSM. Multidiscip. Model. Mater. Struct. 2012;8:489–504. doi: 10.1108/15736101211281588. DOI

Matsuda Y., Fujiwara Y., Fujii Y. Observation of Machined Surface and Subsurface Structure of Hinoki (Chamaecyparis Obtusa) Produced in Slow-Speed Orthogonal Cutting Using X-Ray Computed Tomography. J. Wood Sci. 2015;61:128–135. doi: 10.1007/s10086-014-1457-4. DOI

Were F.H., Wafula G.A., Lukorito C.B., Kamanu T.K.K. Levels of PM10 and PM2.5 and Respiratory Health Impacts on School-Going Children in Kenya. J. Health Pollut. 2020;10:200912. doi: 10.5696/2156-9614-10.27.200912. PubMed DOI PMC

McElroy S., Dimitrova A., Evan A., Benmarhnia T. Saharan Dust and Childhood Respiratory Symptoms in Benin. Int. J. Environ. Res. Public Health. 2022;19:4743. doi: 10.3390/ijerph19084743. PubMed DOI PMC

Haddad M., Nouari M., El Mansori M. Study of the surface defects and dust generated during trimming of CFRP: Influence of tool geometry, machining parameters and cutting speed range. Compos. Part A. 2014;66:142–154. doi: 10.1016/j.compositesa.2014.07.005. DOI

Kehren D., Simonow B., Bäger D., Dziurowitz N., Wenzlaff D., Thim C., Neuhoff J., Meyer-Plath A., Plitzko S. Release of Respirable Fibrous Dust from Carbon Fibers Due to Splitting along the Fiber Axis. Aerosol Air Qual. Res. 2019;19:2185–2195. doi: 10.4209/aaqr.2019.03.0149. DOI

Nguyen-Dinh N., Lachaud F., Michel L., Girard M., Bouvet C. New tool for reduction of harmful particulate dispersion and to improve machining quality when trimming carbon/epoxy composites. Compos. Part A. 2020;128:105670. doi: 10.1016/j.compositesa.2020.105806. DOI

Elgnemi T., Nouari M., El Mansori M. Experimental Investigation on Dry Routing of CFRP Composite: Temperature, Forces, Tool Wear, and Fine Dust Emission. Materials. 2021;14:5697. doi: 10.3390/ma14195697. PubMed DOI PMC

Kroisová D., Kolařík K., Kolařík L., Čep R. Destruction of Carbon and Glass Fibers during Chip Machining of Composite Systems. Polymers. 2023;15:2888. doi: 10.3390/polym15132888. PubMed DOI PMC

Dvořáčková Š., Kroisová D., Knápek T., Váňa M. Effect of Cutting Conditions on the Size of Dust Particles Generated during Milling of Carbon Fibre-Reinforced Composite Materials. Polymers. 2024;16:2559. doi: 10.3390/polym16182559. PubMed DOI PMC

Sadílek M., Poruba Z., Čepová L., Šajgalík M. Increasing the Accuracy of Free-Form Surface Multiaxis Milling. Materials. 2020;14:25. doi: 10.3390/ma14010025. PubMed DOI PMC

Han F., He L., Hu Z., Zhang C. A Cutter Selection Method for 2 1/2-Axis Trochoidal Milling of the Pocket Based on Optimal Skeleton. IEEE Access. 2022;10:111665–111674. doi: 10.1109/ACCESS.2022.3215468. DOI

Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture. International Organization for Standardization; Geneva, Switzerland: 1996.

Gómez G., Fernández De Lucio P., Del Olmo A., Martínez De Pissón G., Jimeno A., González H., López De Lacalle L.N. Comparison between Milling Roughing Operations in Full Slotting Manufacturing: Trochoidal, Plunge and Conventional Milling. IOP Conf. Ser. Mater. Sci. Eng. 2021;1193:012003. doi: 10.1088/1757-899X/1193/1/012003. DOI

Chang C.-H., Huang M., Yau H.-T. A Double-NURBS Approach to the Generation of Trochoidal Tool Path. Int. J. Adv. Manuf. Technol. 2023;125:1757–1776. doi: 10.1007/s00170-022-10596-3. DOI

Ekşi S., Özsoy M., ÖZSOY N. Cutting parameter optimization in milling of glass fiber and carbon fiber reinforced composites to reduce cutting force. J. Test. Eval. 2023;51:2879–2890. doi: 10.1520/jte20220617. DOI

Hosokawa A. Special Issue on Machining of CFRP Composites. Int. J. Autom. Technol. 2016;10:299. doi: 10.20965/ijat.2016.p0299. DOI

Ciecieląg K. Influence of the length of components from polymer composite on selected machinability indicators in the circumferential milling process. Adv. Sci. Technol. Res. J. 2020;14:229–239. doi: 10.12913/22998624/127010. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...