An Experimental Investigation into Trochoidal Milling for High-Quality GFRP Machining
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40271927
PubMed Central
PMC11990107
DOI
10.3390/ma18071669
PII: ma18071669
Knihovny.cz E-zdroje
- Klíčová slova
- GFRP, adaptive milling, anisotropic materials, burr formation, composite machining, cutting forces, hybrid strategy, surface roughness, tool wear, trochoidal milling,
- Publikační typ
- časopisecké články MeSH
This study investigates the effectiveness of trochoidal (adaptive) milling in machining Glass Fiber Reinforced Polymer (GFRP), emphasizing its potential advantages over conventional milling. Six coated solid carbide end mills, each with distinct geometries, were evaluated under identical conditions to assess the cutting forces, surface quality, dimensional accuracy, burr formation, chip size distribution, and tool wear. Trochoidal milling demonstrated shorter cycle times-up to 23% faster-and higher material removal rates (MRRs), while conventional milling provided superior dimensional control and smoother surfaces in certain fiber-sensitive regions. A four-tooth cutter with a low helix angle (10°) and aluminum-oxide coating delivered the best overall performance, balancing minimal tool wear with high-quality finishes (arithmetic mean roughness, Ra, as low as 1.36 μm). The results indicate that although conventional milling can exhibit a 25%-lower RMS cutting force, its peak forces and extended machining times may limit the throughput. Conversely, trochoidal milling, when coupled with an appropriately robust tool, effectively manages the cutting forces, improves the surface quality, and reduces the machining time. Most chips produced were less than 11 μm in size, highlighting the need for suitable dust extraction. Notably, a hybrid approach-trochoidal roughing followed by conventional finishing-offers a promising method for achieving both efficient material removal and enhanced dimensional accuracy in GFRP components.
Zobrazit více v PubMed
Asmatulu R., Claus R.O., Mecham J.B., Inman D.J. Improving the Damping Properties of Composites Using Ferroelectric Inclusions. J. Intell. Mater. Syst. Struct. 2005;16:463–468. doi: 10.1177/1045389X05048850. DOI
Yousif B.A. Prediction on Mechanical Properties of Fly Ash Reinforced Polymer Composite Material. Al-Nahrain J. Sci. 2022;25:49–53. doi: 10.22401/ANJS.25.4.08. DOI
Kumar P., Mahavar J.T. Emerging Trends in Composite and Advanced Composite Materials Technology for Oil and Gas Industry. J. Aerosp. Sci. Technol. 2023;64:73–79. doi: 10.61653/joast.v64i1.2012.416. DOI
Fakhrudi Y.A., Faidzin K.N., Bisono R.M. Effect of Composite Composition on Mechanical Properties of Banana Fiber Composites with Epoxy Matrix for Functional Materials. Int. J. Sci. Eng. Inf. Technol. 2022;6:303–306. doi: 10.21107/ijseit.v6i2.15804. DOI
Imanaka Y., Anazawa T., Kumasaka F., Jippo H. Optimization of the Composition in a Composite Material for Microelectronics Application Using the Ising Model. Sci. Rep. 2021;11:3057. doi: 10.1038/s41598-021-81243-2. PubMed DOI PMC
Spanu P., Amza C.G., Abaza B.F. Study Regarding the Compressive Properties of Glass Fiber Reinforced Composites. Mater. Plast. 2018;55:580–583. doi: 10.37358/MP.18.4.5078. DOI
Elkhouly H.I., Aly M.F., Abd El-Magied R.K. Optimization of Wear Parameters for Glass Fabric-Epoxy Composites Using Response Surface Methodology and Flower Pollination Algorithm. J. Eng. Sci. Sustain. Ind. Technol. 2023;2:19–26. doi: 10.21608/jessit.2023.304324. DOI
Chakraverty A.P., Mohanty U.K., Biswal B.B. Thermal Shock Behavior of Hydrothermally Conditioned E-Glass Fiber/Epoxy Composites. Emerg. Mater. Res. 2012;1:263–270. doi: 10.1680/emr.12.00009. DOI
Zhang Y., Mi C. Improved Hydrothermal Aging Performance of Glass Fiber-reinforced Polymer Composites via Silica Nanoparticle Coating. J. Appl. Polym. Sci. 2020;137:48652. doi: 10.1002/app.48652. DOI
Mohammed M., Chai Y.Y., Doh S.I., Lim K.S. Degradation of Glass Fiber Reinforced Polymer (GFRP) Material Exposed to Tropical Atmospheric Condition. Key Eng. Mater. 2021;879:265–274. doi: 10.4028/www.scientific.net/KEM.879.265. DOI
Prakash C., Vijay Sekar K.S. 3D Finite Element Analysis of Slot Milling of Unidirectional Glass Fiber Reinforced Polymer Composites. J. Braz. Soc. Mech. Sci. Eng. 2018;40:279. doi: 10.1007/s40430-018-1195-4. DOI
Hussain S., Pandurangadu V., Kumar K. Machinability of Glass Fiber Reinforced Plastic (GFRP) Composite Materials. Int. J. Eng. Sci. Tech. 2011;3:68546. doi: 10.4314/ijest.v3i4.68546. DOI
Prakash R., Krishnaraj V., Zitoune R., Sheikh-Ahmad J. High-Speed Edge Trimming of CFRP and Online Monitoring of Performance of Router Tools Using Acoustic Emission. Materials. 2016;9:798. doi: 10.3390/ma9100798. PubMed DOI PMC
Prajwal H.V., Wani W.M., Murthy M., Srinivas S. Machinability and Delamination Studies on Glass Fiber Reinforced Polymer Matrix Composite Cut by Abrasive Water Jet Machine. Solid State Phenom. 2020;305:122–128. doi: 10.4028/www.scientific.net/SSP.305.122. DOI
Irina M.M.W., Azmi A.I., Lee C.C. Machinability Study of Hybrid FRP Composite Using Abrasive Waterjet Trimming Technology. Key Eng. Mater. 2017;740:118–124. doi: 10.4028/www.scientific.net/KEM.740.118. DOI
Erturk A.T., Yarar E., Vatansever F., Sahin A.E., Kilinçel M., Alpay Y.O. A Comparative Study of Mechanical and Machining Performance of Polymer Hybrid and Carbon Fiber Epoxy Composite Materials. Polym. Polym. Compos. 2021;29:S655–S666. doi: 10.1177/09673911211020620. DOI
Elfarhani M., Guesmi F., Mkaddem A., Ghazali S., Rubaiee S., Jarraya A. Thermal Aspects in Edge Trimming of Bio-Filled GFRP: Influence of Fiber Orientation and Silica Sand Filler in Heat Generation. Materials. 2022;15:4792. doi: 10.3390/ma15144792. PubMed DOI PMC
Knap A., Dvořáčková Š., Knápek T. Study of the Machining Process of GFRP Materials by Milling Technology with Coated Tools. Coatings. 2022;12:1354. doi: 10.3390/coatings12091354. DOI
Unal E. Temperature and Thrust Force Analysis on Drilling of Glass Fiber Reinforced Plastics. Therm. Sci. 2019;23:347–352. doi: 10.2298/TSCI180117181U. DOI
Jenarthanan M.P., Lakshman Prakash A., Jeyapaul R. Experimental Investigation and Analysis of Factors Influencing Delamination and Surface Roughness of Hybrid GFRP Laminates Using Taguchi Technique. Pigment. Resin Technol. 2016;45:463–475. doi: 10.1108/PRT-03-2015-0035. DOI
Shanmugasundaram S.M., Damodhiran L., Billan V., Gu D. Predictive Model for Circularity Error of Drilling on GFRP Composite Laminates Using Fuzzy Logic. Appl. Mech. Mater. 2013;446–447:316–320. doi: 10.4028/www.scientific.net/AMM.446-447.316. DOI
Doluk E., Rudawska A. Effect of Machining Settings and Tool Geometry on Surface Quality After Machining of Al/CFRP Sandwich Structures. Adv. Sci. Technol. Res. J. 2022;16:22–33. doi: 10.12913/22998624/147787. PubMed DOI
Deng Q., Mo R., Chen Z.C., Chang Z. An Analytical Approach to Cutter Edge Temperature Prediction in Milling and Its Application to Trochoidal Milling. Appl. Sci. 2020;10:1746. doi: 10.3390/app10051746. DOI
Liu D., Zhang Y., Luo M., Zhang D. Investigation of Tool Wear and Chip Morphology in Dry Trochoidal Milling of Titanium Alloy Ti–6Al–4V. Materials. 2019;12:1937. doi: 10.3390/ma12121937. PubMed DOI PMC
Günaydin E., Ozcelik B., Kuram E. Determination of Optimal Machining Strategy Using Trochoid Geometry for Micro-Channel Machining Method. Res. Sq. 2023 doi: 10.21203/rs.3.rs-3238513/v1. (preprint) DOI
Waszczuk K. Influence of the Trochoidal Tool Path Generation Method on the Milling Process Efficiency. Adv. Sci. Technol. Res. J. 2020;14:199–203. doi: 10.12913/22998624/122198. DOI
Dong Y., Li S., Zhang Q., Li P., Jia Z., Li Y. Modeling and Analysis of Micro Surface Topography from Ball-End Milling in a Trochoidal Milling Mode. Micromachines. 2021;12:1203. doi: 10.3390/mi12101203. PubMed DOI PMC
Zhou X., Zhou J., Qi Q., Zhang C., Zhang D. Effects of Toolpath Parameters on Engagement Angle and Cutting Force in Ellipse-Based Trochoidal Milling of Titanium Alloy Ti-6Al-4V. Appl. Sci. 2023;13:6550. doi: 10.3390/app13116550. DOI
Grešová Z., Ižol P., Vrabeľ M., Kaščák Ľ., Brindza J., Demko M. Influence of Ball-End Milling Strategy on the Accuracy and Roughness of Free Form Surfaces. Appl. Sci. 2022;12:4421. doi: 10.3390/app12094421. DOI
Wagih M., Hassan M.A., El-Hofy H., Yan J., Maher I. Effects of Process Parameters on Cutting Forces, Material Removal Rate, and Specific Energy in Trochoidal Milling. Proc. Inst. Mech. Eng. Part C. 2023;238:2745–2757. doi: 10.1177/09544062231196991. DOI
Karkalos N.E., Karmiris-Obratański P., Kurpiel S., Zagórski K., Markopoulos A.P. Investigation on the Surface Quality Obtained during Trochoidal Milling of 6082 Aluminum Alloy. Machines. 2021;9:75. doi: 10.3390/machines9040075. DOI
Xu P., Chen H., Li M., Lu W. New Opportunity: Machine Learning for Polymer Materials Design and Discovery. Adv. Theory Simul. 2022;5:2100565. doi: 10.1002/adts.202100565. DOI
Jenarthanan M.P., Jeyapaul R. Optimisation of Machining Parameters on Milling of GFRP Composites by Desirability Function Analysis Using Taguchi Method. Int. J. Eng. Sci. Tech. 2018;5:22–36. doi: 10.4314/ijest.v5i4.3. DOI
Nikam M., Al-Lohedan H.A., Mohammad F., Khetree S., Patil V., Lonare G., Khan F.J., Jagatap G., Giri J.P., Oza A.D., et al. Optimization of Machining Parameters for Enhanced Performance of Glass-Fibre-Reinforced Plastic (GFRP) Composites Using Design of Experiments. Sustainability. 2023;15:12372. doi: 10.3390/su151612372. DOI
Han F.-Y., Gu Z.-C., He L.-L., Gou T.-M., Zhang C.-W., Yang M.-Z., Shi R.-G. An Optimization Method of Trochoidal Radius for Trochoidal Milling Hole Based on the Adaptive Feed Rate Scheduling. Int. J. Adv. Manuf. Technol. 2024;130:1527–1539. doi: 10.1007/s00170-023-12804-0. DOI
Equbal A., Shamim M., Badruddin I.A., Equbal M.I., Sood A.K., Nik Ghazali N.N., Khan Z.A. Application of the Combined ANN and GA for Multi-Response Optimization of Cutting Parameters for the Turning of Glass Fiber-Reinforced Polymer Composites. Mathematics. 2020;8:947. doi: 10.3390/math8060947. DOI
Çelik Y.H., Türkan C. Investigation of Mechanical Characteristics of GFRP Composites Produced from Chopped Glass Fiber and Application of Taguchi Methods to Turning Operations. SN Appl. Sci. 2020;2:849. doi: 10.1007/s42452-020-2684-5. DOI
Kumar A.L., Prakash M. The Effect of Fiber Orientation on Mechanical Properties and Machinability of GFRP Composites by End Milling Using Cutting Force Analysis. Polym. Polym. Compos. 2021;29:S178–S187. doi: 10.1177/0967391121991289. DOI
Kilickap E., Celik Y.H., Yenigun B. Evaluation of Factors Affecting Delamination, Tensile Strength, Thrust Force and Surface Roughness in Drilling of GFRP. Res. Sq. 2021 doi: 10.1142/S0218625X23500257. (preprint) DOI
Wang X., Melly S.K., Li N., Wang G.-D., Peng T., Li Y., Zhao Q.D. Helical Milling Response of Glass Fiber-Reinforced Polymer Composite with Carbon Nanotube Buckypaper Interlayer. Polym. Polym. Compos. 2020;28:378–387. doi: 10.1177/0967391119879296. DOI
Yang B., Wang H., Fu K., Wang C. Prediction of Cutting Force and Chip Formation from the True Stress-Strain Relation Using an Explicit FEM for Polymer Machining. Polymers. 2022;14:189. doi: 10.3390/polym14010189. PubMed DOI PMC
Ciecieląg K. Machinability Measurements in Milling and Recurrence Analysis of Thin-Walled Elements Made of Polymer Composites. Materials. 2023;16:4825. doi: 10.3390/ma16134825. PubMed DOI PMC
Biruk-Urban K., Józwik J., Bere P. Cutting Forces and 3D Surface Analysis of CFRP Milling. Adv. Sci. Technol. Res. J. 2022;16:206–215. doi: 10.12913/22998624/147338. DOI
Su C., Cheng X., Yan X., Zheng G., Li Y., Mu Z. Helical Milling for Making Holes on Carbon Fiber-Reinforced Polymer. Int. J. Adv. Manuf. Technol. 2022;121:5197–5205. doi: 10.1007/s00170-022-09749-1. DOI
Gao T., Zhang Y., Li C., Wang Y., Chen Y., An Q., Sharma S. Fiber-Reinforced Composites in Milling and Grinding: Machining Bottlenecks and Advanced Strategies. Front. Mech. Eng. 2022;17:24. doi: 10.1007/s11465-022-0680-8. DOI
Xian G., Bai Y., Qi X., Wang J., Tian J., Xiao H. Hygrothermal aging on the mechanical property and degradation mechanism of carbon fiber reinforced epoxy composites modified by nylon 6. J. Mater. Res. Technol. 2024;33:6297–6306. doi: 10.1016/j.jmrt.2024.11.024. DOI
Ünüvar A., Koyunbakan M., Bağcı M. Optimization and Effects of Machining Parameters on Delamination in Drilling of Pure and Al2O3/SiO2 Added GFRP Composites. Int. J. Adv. Manuf. Technol. 2021;119:657–675. doi: 10.1007/s00170-021-08258-x. DOI
Mugundhu J.P., Subramanian S., Subramanian A. Analysis and Optimisation of Machinability Behavior of GFRP Composites Using Fuzzy Logic. Multidiscip. Model. Mater. Struct. 2015;11:102–119. doi: 10.1108/MMMS-04-2014-0020. DOI
Alizadeh Ashrafi S., Miller P., Wandro K., Kim D. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite. Materials. 2016;9:828. doi: 10.3390/ma9100828. PubMed DOI PMC
Jenarthanan M.P., Jeyapaul R., Naresh N. Modelling and Analysis of Factors Influencing Surface Roughness and Delamination of Milling of GFRP Laminates Using RSM. Multidiscip. Model. Mater. Struct. 2012;8:489–504. doi: 10.1108/15736101211281588. DOI
Matsuda Y., Fujiwara Y., Fujii Y. Observation of Machined Surface and Subsurface Structure of Hinoki (Chamaecyparis Obtusa) Produced in Slow-Speed Orthogonal Cutting Using X-Ray Computed Tomography. J. Wood Sci. 2015;61:128–135. doi: 10.1007/s10086-014-1457-4. DOI
Were F.H., Wafula G.A., Lukorito C.B., Kamanu T.K.K. Levels of PM10 and PM2.5 and Respiratory Health Impacts on School-Going Children in Kenya. J. Health Pollut. 2020;10:200912. doi: 10.5696/2156-9614-10.27.200912. PubMed DOI PMC
McElroy S., Dimitrova A., Evan A., Benmarhnia T. Saharan Dust and Childhood Respiratory Symptoms in Benin. Int. J. Environ. Res. Public Health. 2022;19:4743. doi: 10.3390/ijerph19084743. PubMed DOI PMC
Haddad M., Nouari M., El Mansori M. Study of the surface defects and dust generated during trimming of CFRP: Influence of tool geometry, machining parameters and cutting speed range. Compos. Part A. 2014;66:142–154. doi: 10.1016/j.compositesa.2014.07.005. DOI
Kehren D., Simonow B., Bäger D., Dziurowitz N., Wenzlaff D., Thim C., Neuhoff J., Meyer-Plath A., Plitzko S. Release of Respirable Fibrous Dust from Carbon Fibers Due to Splitting along the Fiber Axis. Aerosol Air Qual. Res. 2019;19:2185–2195. doi: 10.4209/aaqr.2019.03.0149. DOI
Nguyen-Dinh N., Lachaud F., Michel L., Girard M., Bouvet C. New tool for reduction of harmful particulate dispersion and to improve machining quality when trimming carbon/epoxy composites. Compos. Part A. 2020;128:105670. doi: 10.1016/j.compositesa.2020.105806. DOI
Elgnemi T., Nouari M., El Mansori M. Experimental Investigation on Dry Routing of CFRP Composite: Temperature, Forces, Tool Wear, and Fine Dust Emission. Materials. 2021;14:5697. doi: 10.3390/ma14195697. PubMed DOI PMC
Kroisová D., Kolařík K., Kolařík L., Čep R. Destruction of Carbon and Glass Fibers during Chip Machining of Composite Systems. Polymers. 2023;15:2888. doi: 10.3390/polym15132888. PubMed DOI PMC
Dvořáčková Š., Kroisová D., Knápek T., Váňa M. Effect of Cutting Conditions on the Size of Dust Particles Generated during Milling of Carbon Fibre-Reinforced Composite Materials. Polymers. 2024;16:2559. doi: 10.3390/polym16182559. PubMed DOI PMC
Sadílek M., Poruba Z., Čepová L., Šajgalík M. Increasing the Accuracy of Free-Form Surface Multiaxis Milling. Materials. 2020;14:25. doi: 10.3390/ma14010025. PubMed DOI PMC
Han F., He L., Hu Z., Zhang C. A Cutter Selection Method for 2 1/2-Axis Trochoidal Milling of the Pocket Based on Optimal Skeleton. IEEE Access. 2022;10:111665–111674. doi: 10.1109/ACCESS.2022.3215468. DOI
Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture. International Organization for Standardization; Geneva, Switzerland: 1996.
Gómez G., Fernández De Lucio P., Del Olmo A., Martínez De Pissón G., Jimeno A., González H., López De Lacalle L.N. Comparison between Milling Roughing Operations in Full Slotting Manufacturing: Trochoidal, Plunge and Conventional Milling. IOP Conf. Ser. Mater. Sci. Eng. 2021;1193:012003. doi: 10.1088/1757-899X/1193/1/012003. DOI
Chang C.-H., Huang M., Yau H.-T. A Double-NURBS Approach to the Generation of Trochoidal Tool Path. Int. J. Adv. Manuf. Technol. 2023;125:1757–1776. doi: 10.1007/s00170-022-10596-3. DOI
Ekşi S., Özsoy M., ÖZSOY N. Cutting parameter optimization in milling of glass fiber and carbon fiber reinforced composites to reduce cutting force. J. Test. Eval. 2023;51:2879–2890. doi: 10.1520/jte20220617. DOI
Hosokawa A. Special Issue on Machining of CFRP Composites. Int. J. Autom. Technol. 2016;10:299. doi: 10.20965/ijat.2016.p0299. DOI
Ciecieląg K. Influence of the length of components from polymer composite on selected machinability indicators in the circumferential milling process. Adv. Sci. Technol. Res. J. 2020;14:229–239. doi: 10.12913/22998624/127010. DOI