Variant pubertal development in Prader-Willi syndrome: early and slow progression of pubarche with normal age at gonadarche
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
40303632
PubMed Central
PMC12037383
DOI
10.3389/fendo.2025.1527140
Knihovny.cz E-resources
- Keywords
- MKRN3 gene, Prader-Willi syndrome puberty, bone age, gonadarche, pubarche, puberty,
- MeSH
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Prader-Willi Syndrome * genetics physiopathology MeSH
- Disease Progression MeSH
- Puberty * physiology genetics MeSH
- Ribonucleoproteins genetics MeSH
- Ubiquitin-Protein Ligases genetics MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- MKRN3 protein, human MeSH Browser
- Ribonucleoproteins MeSH
- Ubiquitin-Protein Ligases MeSH
INTRODUCTION: Prader-Willi syndrome (PWS) is primarily caused by a paternal microdeletion of the 15q11-q13 region, maternal uniparental disomy (mUPD) or unbalanced translocations. The MKRN3 gene, located within 15q11-q13, is a master regulator of pubertal initiation. We aimed to compare variant pubertal onset and progression with recent normative data and to correlate it with abnormal MKRN3 gene status. METHODS: Age at pubarche, gonadarche, subsequent pubertal progression and bone age (BA) at gonadarche were investigated in 37 PWS patients (18 females) who already entered pubarche and/or gonadarche with median age 11.1 (95% CI: 6.4 - 18.8) years. All patients were re-tested to confirm genetic subtypes of PWS. The MKRN3 gene was analyzed using single gene sequencing. RESULTS: Out of 37 subjects, 22 had microdeletion and 15 mUPD. Regardless of genetic subtypes and MKRN3 gene status, no correlation between genotypes and the pubertal pattern was found. They initiated pubarche early - girls at 7.4 (95%CI:6.4-8.4), and boys at 9.2 (8.2-10.2) years. The subsequent progression from PH2 to PH4 (pubic hair development) was prolonged to 3.7 years in girls (1.5-5.9;p<0.05), and 2.9 in boys (2.2-3.6;p<0.001). The age at gonadarche was adequate - 10.0 years in girls (8.8-11.2), and 11.0 in boys (9.8-12.1). Progression rate of breast development from B2 to B4 was 3.9 (0.2-7.5) years in girls and of testicular volume from 4 ml to 15ml was 3.8 (0.0-8.1) years in boys. The BA at gonadarche is advanced by 0.6 ± 1.1 years (p<0.001). CONCLUSIONS: Children with PWS, regardless of the genetic subtype and/or MKRN3 status, had an early pubarche and normally timed gonadarche. Pubarche progression was slower. Advanced BA was significantly correlated with gonadarche.
See more in PubMed
Kim S, Miller JL, Kuipers PJ, German JR, Beaudet AL, Sahoo T, et al. . Unique and atypical deletions in Prader–Willi syndrome reveal distinct phenotypes. Eur J Hum Genet. (2012) 20:283–90. doi: 10.1038/ejhg.2011.187 PubMed DOI PMC
Manzardo AM, Weisensel N, Ayala S, Hossain W, Butler MG. Prader-Willi syndrome genetic subtypes and clinical neuropsychiatric diagnoses in residential care adults. Clin Genet. (2018) 93:622–31. doi: 10.1111/cge.13142 PubMed DOI PMC
Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-willi syndrome. Genet Med. (2012) 14:10–26. doi: 10.1038/gim.0b013e31822bead0 PubMed DOI
Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: A review of clinical, genetic, and endocrine findings. J Endocrinol Invest. (2015) 38:1249–63. doi: 10.1007/s40618-015-0312-9 PubMed DOI PMC
Nicholls R, Knoll J, Butler M, Karam S, Lalande M. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature. (1989) 342:281–5. doi: 10.1038/342281a0 PubMed DOI PMC
Butler MG. Prader-Willi syndrome: Obesity due to Genomic Imprinting. Curr Genomics. (2011) 12:204–15. doi: 10.2174/138920211795677877 PubMed DOI PMC
Lionti T, Reid SM, White SM, Rowell MM. A population-based profile of 160 Australians with Prader-Willi syndrome: Trends in diagnosis, birth prevalence and birth characteristics. Am J Med Genet Part A. (2015) 167A:371–8. doi: 10.1002/ajmg.a.36845 PubMed DOI
Miller JL, Lynn CH, Driscoll DC, Goldstone AP, Gold JA, Kimonis V, et al. . Nutritional phases in Prader-Willi syndrome. Am J Med Genet Part A. (2011) 155:1040–9. doi: 10.1002/ajmg.a.33951 PubMed DOI PMC
Miller JL, Tamura R, Butler MG, Kimonis V, Sulsona C, Gold JA, et al. . Oxytocin treatment in children with Prader–Willi syndrome: A double-blind, placebo-controlled, crossover study. Am J Med Genet Part A. (2017) 173:1243–50. doi: 10.1002/ajmg.a.v173.5 PubMed DOI PMC
Tauber M, Diene G. Prader–Willi syndrome: Hormone therapies. Handb Clin Neurol. (2021) 181:351–67. doi: 10.1016/B978-0-12-820683-6.00026-9 PubMed DOI
Lee HS, Hwang JS. Central precocious puberty in a girl with Prader-Willi syndrome. J Pediatr Endocrinol Metab. (2013) 30:1201–4. doi: 10.1515/jpem-2013-0040 PubMed DOI
Ludwig NG, Radaeli RF, Silva MM, Romero CM, Al E. A boy with Prader-Willi syndrome: unmasking precocious puberty during growth hormone replacement therapy. Arch Endocrinol Metab. (2016) 60:596–600. doi: 10.1590/2359-3997000000196 PubMed DOI PMC
Crinò A, Di Giorgio G, Schiaffini R, Fierabracci A, Spera S, Maggioni A, et al. . Central precocious puberty and growth hormone deficiency in a boy with Prader-Willi syndrome. Eur J Pediatr. (2008) 167:1455–8. doi: 10.1007/s00431-008-0679-0 PubMed DOI
Meader BN, Albano A, Hilal S, Delaney A. Heterozygous deletions in MKRN3 cause central precocious puberty without Prader-Willi syndrome. J Clin Endocrinol Metab. (2020) 105:2732–9. doi: 10.1210/clinem/dgaa331 PubMed DOI PMC
Jong MTC, Carey AH, Caldwell KA, Lau MH, Handel MA, Driscoll DJ, et al. . Imprinting of a RING zinc-finger encoding gene in the mouse chromosome region homologous to the Prader – Willi syndrome genetic region. Hum Mol Genet. (1999) 8:795–803. doi: 10.1093/hmg/8.5.795 PubMed DOI
Liu H, Kong X, Chen F. Mkrn3 functions as a novel ubiquitin E3 ligase to inhibit Nptx1 during puberty initiation. Oncotarget. (2017) 8:85102–9. doi: 10.18632/oncotarget.19347 PubMed DOI PMC
Roberts SA, Naulé L, Chouman S, Johnson T, Johnson M, Carroll RS, et al. . Hypothalamic overexpression of makorin ring finger protein 3 results in delayed puberty in female mice. Endocrinol (United States). (2022) 163:1–10. doi: 10.1210/endocr/bqac132 PubMed DOI PMC
Abreu AP, Dauber A, Macedo DB, Sekoni D, Brito VN, Gill JC, et al. . Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med. (2013) 368:2467–75. doi: 10.1056/NEJMoa1302160 PubMed DOI PMC
Busch AS, Hagen CP, Almstrup K, Juul A. Circulating MKRN3 levels decline during puberty in healthy boys. J Clin Endocrinol Metab. (2016) 101:2588–93. doi: 10.1210/jc.2016-1488 PubMed DOI
Grandone A, Cirillo G, Sasso M, Capristo C, Tornese G, Marzuillo P, et al. . MKRN3 levels in girls with central precocious puberty and correlation with sexual hormone levels: a pilot study. Endocrine. (2018) 59:203–8. doi: 10.1007/s12020-017-1281-x PubMed DOI
Jeong HR, Lee HJ, Shim YS, Kang MJ, Yang S. Serum Makorin ring finger protein 3 values for predicting central precocious puberty in girls. Gynecol Endocrinol. (2019) 35:732–6. doi: 10.1080/09513590.2019.1576615 PubMed DOI
Garcia JP, Guerriero KA, Keen KL, Kenealy BP, Seminara SB, Terasawa E. Kisspeptin and neurokinin b signaling network underlies the pubertal increase in gnrh release in female rhesus monkeys. Endocrinology. (2017) 158:3269–80. doi: 10.1210/en.2017-00500 PubMed DOI PMC
Dauber A, Marina C-S, Macedo BD, Vinicius BN, Abreu AP. … Paternally inherited DLK1 deletion associated with familial central precocious puberty. J Clin Endocrinol Metab. (2017) 102:1557–67. doi: 10.1210/jc.2016-3677 PubMed DOI PMC
Valadares LP, Meireles CG, Toledo IP De, Abreu AP, Carroll RS, Latronico AC, et al. . MKRN3 mutations in central precocious puberty: A systematic review and meta-analysis. J Endocr Soc. (2019) 3:979–95. doi: 10.1210/js.2019-00041 PubMed DOI PMC
Kodytková A, Al Lababidi E, Čermáková I, Černá J, Čížek J, Kalvachová B, et al. . Analýza dat z celostátního registru pacientů léčených růstovým hormonem REPAR. Česko-Slovenská Pediatr. (2020) 75:205–12.
Marshall W, Tanner J. Variations in pattern of pubertal changes in girls. Arch Dis Child. (1969) 44:291–303. doi: 10.1136/adc.44.235.291 PubMed DOI PMC
Marshall W, Tanner J. Variations in the pattern of pubertal changes in boys. Arch Dis Child. (1970) 45:13–23. doi: 10.1136/adc.45.239.13 PubMed DOI PMC
Tanner J, Healy M, Goldstein H, Al. E. Assessment of skeletal maturity and prediction of adult height (TW3 method). 3rd ed. London, UK: WB Saunders; (2001).
Bláha P, Vignerová J, Riedlová J, Kobzová J, Krejčovský L. VI. celostátní antropologický výzkum dětí a mládeže 2001. Ces-Slov Pediat. (2003) 58:766–70.
Bláha P, Hrušková M, Krejčovský L, Al. E. Growth and development of Czech children aged from birth to six years: Anthropological research 2001 - 2003. Prague, Czech Republic: Charles University in Prague; (2010).
Aksglaede L, Sørensen K, Petersen J, Skakkebæk N, Juul A. Recent decline in age at breast development: The Copenhagen puberty study. Pediatrics. (2009) 123:932–9. doi: 10.1542/peds.2008-2491 PubMed DOI
Sørensen K, Aksglaede L, Petersen JH, Juul A. Recent changes in pubertal timing in healthy Danish boys: Associations with body mass index. J Clin Endocrinol Metab. (2010) 95:263–70. doi: 10.1210/jc.2009-1478 PubMed DOI
Goede J, Hack W, Sijstermans K, van der Voort-Doedens L, van der Ploeg T, Vries AM, et al. . Normative values for testicular volume measured by ultrasonography in a normal population from infancy to adolescence. Horm Res Paediatr. (2011) 76:56–64. doi: 10.1159/000326057 PubMed DOI
Palumbo S, Cirillo G, Aiello F, Papparella A, Miraglia E, Grandone A. MKRN3 role in regulating pubertal onset: the state of art of functional studies. Front Endocrinol (Lausanne). (2022) 13:1–11. doi: 10.3389/fendo.2022.991322 PubMed DOI PMC
Kota AS, Ejaz S. Precocious Puberty. USA: StatPearls Publ. (2023). PubMed
Crinò A, Schiaffini R, Ciampalini P, Spera S, Beccaria L, Benzi F, et al. . Hypogonadism and pubertal development in Prader-Willi syndrome. Eur J Pediatr. (2003) 162:327–33. doi: 10.1007/s00431-002-1132-4 PubMed DOI
Passone GBC, Aragão FFL, Franco RR, Leite SEJ, Gonzalez BAM, De Albuquerque Schil SP, et al. . Puberty in girls with Prader-Willi syndrome: cohort evaluation and clinical recommendations in a Latin American tertiary center. Front Endocrinol (Lausanne). (2024) 15:1–8. doi: 10.3389/fendo.2024.1403470 PubMed DOI PMC
Hirsch HJ, Eldar-Geva T, Bennaroch F, Pollak Y, Gross-Tsur V. Sexual dichotomy of gonadal function in Prader-Willi syndrome from early infancy through the fourth decade. Hum Reprod. (2015) 30:2587–96. doi: 10.1093/humrep/dev213 PubMed DOI
Griffing E, Halpin K, Lee BR, Paprocki E. Premature pubarche in Prader - Willi syndrome: Risk factors and consequences. Clin Endocrinol (Oxf). (2024) 101:162–9. doi: 10.1111/cen.v101.2 PubMed DOI
Eiholzer U, Obwegeser C, Witassek F, Meinhardt U. Bone age maturation in prader-willi syndrome on GH treatment is accelerated in pre-pubertal age without affecting final height. ESPE Abstr. (2015) 84:P–3-968.
DeSalvo DJ, Mehra R, Vaidyanathan P, Kaplowitz PB. In children with premature adrenarche, bone age advancement by 2 or more years is common and generally benign. J Pediatr Endocrinol Metab. (2013) 26:215–21. doi: 10.1515/jpem-2012-0283 PubMed DOI
Sopher A, Jean A, Zwany S, Winston D, Pomeranz C, Bell J, et al. . Bone age advancement in prepubertal children with obesity and premature adrenarche: possible potentiating factors. Obes (Silver Spring). (2011) 19:1259–64. doi: 10.1038/oby.2010.305 PubMed DOI PMC
Elias CF, Purohit D. Leptin signaling and circuits in puberty and fertility. Cell Mol Life Sci. (2013) 70:841–62. doi: 10.1007/s00018-012-1095-1 PubMed DOI PMC
Yura S, Ogawa Y, Sagawa N, Masuzaki H, Itoh H, Ebihara K, et al. . Accelerated puberty and late-onset hypothalamic hypogonadism in female transgenic skinny mice overexpressing leptin. J Clin Invest. (2000) 105:749–55. doi: 10.1172/JCI8353 PubMed DOI PMC