MolViewSpec: a Mol* extension for describing and sharing molecular visualizations
Language English Country Great Britain, England Media print
Document type Journal Article
Grant support
R01GM157729
NIH HHS - United States
National Institute of Allergy and Infectious Diseases
DBI-2129634
UK Biotechnology and Biological Research Council
Masaryk University
DBI-2321666
NSF
CEP Register
NCI NIH HHS - United States
DE-SC0019749
United States Department of Energy
BB/W017970/1
UK Biotechnology and Biological Research Council
National Science Foundation
R01 GM157729
NIGMS NIH HHS - United States
22-30571M
Czech Republic JuniorStar project
EMBL-EBI
PubMed
40326523
PubMed Central
PMC12230705
DOI
10.1093/nar/gkaf370
PII: 8125619
Knihovny.cz E-resources
- MeSH
- Internet MeSH
- Computer Graphics * MeSH
- Software * MeSH
- User-Computer Interface MeSH
- Publication type
- Journal Article MeSH
Data visualization is a pivotal component of a structural biologist's arsenal. The Mol* Viewer makes molecular visualizations available to broader audiences via most web browsers. While Mol* provides a wide range of functionality, it has a steep learning curve and is only available via a JavaScript interface. To enhance the accessibility and usability of web-based molecular visualization, we introduce MolViewSpec (molstar.org/mol-view-spec), a standardized approach for defining molecular visualizations that decouples the definition of complex molecular scenes from their rendering. Scene definition can include references to commonly used structural, volumetric, and annotation data formats together with a description of how the data should be visualized and paired with optional annotations specifying colors, labels, measurements, and custom 3D geometries. Developed as an open standard, this solution paves the way for broader interoperability and support across different programming languages and molecular viewers, enabling more streamlined, standardized, and reproducible visual molecular analyses. MolViewSpec is freely available as a Mol* extension and a standalone Python package.
See more in PubMed
wwPDB consortium Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019; 47:D520–8. 10.1093/nar/gky949. PubMed DOI PMC
Wilkinson MD, Dumontier M, Aalbersberg IJ et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data. 2016; 3:1–9. 10.1038/sdata.2016.18. PubMed DOI PMC
Berman H, Henrick K, Nakamura H Announcing the worldwide Protein Data Bank. Nat Struct Biol. 2003; 10:980. 10.1038/nsb1203-980. PubMed DOI
Lensink MF, Brysbaert G, Raouraoua N et al. Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI experiment. Proteins. 2023; 91:1658–83. 10.1002/prot.26609. PubMed DOI PMC
Jumper J, Evans R, Pritzel A et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596:583–9. 10.1038/s41586-021-03819-2. PubMed DOI PMC
Lin Z, Akin H, Rao R et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science. 2023; 379:1123–30. 10.1126/science.ade2574. PubMed DOI
Ahdritz G, Bouatta N, Floristean C et al. OpenFold: retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization. Nat Methods. 2024; 21:1514–24. 10.1038/s41592-024-02272-z. PubMed DOI PMC
Sehnal D, Bittrich S, Deshpande M et al. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021; 49:W431–7. 10.1093/nar/gkab314. PubMed DOI PMC
Procter JB, Carstairs GM, Soares B et al.. Katoh K Alignment of Biological Sequences with Jalview. 2020; 2231:1st ednNew York: Humana; 203–24. 10.1007/978-1-0716-1036-7_13. PubMed DOI PMC
Meng EC, Goddard TD, Pettersen EF et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 2023; 32:e4792. 10.1002/pro.4792. PubMed DOI PMC
Tomasello G, Armenia I, Molla G The Protein Imager: a full-featured online molecular viewer interface with server-side HQ-rendering capabilities. Bioinformatics. 2020; 36:2909–11. 10.1093/bioinformatics/btaa009. PubMed DOI
Bittrich S, Midlik A, Varadi M et al. Describing and sharing molecular visualizations using the MolViewSpec toolkit. Curr Protoc. 2024; 4:e1099. 10.1002/cpz1.1099. PubMed DOI PMC
Westbrook JD, Young JY, Shao C et al. PDBx/mmCIF ecosystem: foundational semantic tools for structural biology. J Mol Biol. 2022; 434:167599. 10.1016/j.jmb.2022.167599. PubMed DOI PMC
Sehnal D, Bittrich S, Velankar S et al. BinaryCIF and CIFTools—Lightweight, efficient and extensible macromolecular data management. PLoS Comput Biol. 2020; 16:e1008247. 10.1371/journal.pcbi.1008247. PubMed DOI PMC
Westbrook JD, Fitzgerald PMD. Bourne PE, Weissig H The PDB Format, mmCIF, and other Data Formats. 2003; 44:Hoboken: Wiley-Liss, Inc; 161–79. 10.1002/0471721204. PubMed DOI
Sehnal D, Grant OC Rapidly display Glycan symbols in 3D structures: 3D-SNFG in LiteMol. J Proteome Res. 2019; 18:770–4. 10.1021/acs.jproteome.8b00473. PubMed DOI
Varadi M, Bertoni D, Magana P et al. AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 2024; 52:D368–75. 10.1093/nar/gkad1011. PubMed DOI PMC
Nishimasu H, Fushinobu S, Shoun H et al. Crystal Structures of an ATP-dependent Hexokinase with Broad Substrate Specificity from the Hyperthermophilic Archaeon PubMed DOI
Tunyasuvunakool K, Adler J, Wu Z et al. Highly accurate protein structure prediction for the human proteome. Nature. 2021; 596:590–6. 10.1038/s41586-021-03828-1. PubMed DOI PMC
Rasmussen SGF, DeVree BT, Zou Y et al. Crystal structure of the β PubMed DOI PMC
Yano JK, Wester MR, Schoch GA et al. The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-Å resolution. J Biol Chem. 2004; 279:38091–4. 10.1074/jbc.C400293200. PubMed DOI
Jabbour E, Kantarjian H Chronic myeloid leukemia: 2025 update on diagnosis, therapy, and monitoring. Am J Hematol. 2024; 99:2191–12. 10.1002/ajh.27443. PubMed DOI
Nikolov DB, Chen H, Halay ED et al. Crystal structure of a human TATA box-binding protein/TATA element complex. Proc Natl Acad Sci. 1996; 93:4862–7. 10.1073/pnas.93.10.4862. PubMed DOI PMC
Nagar B, Hantschel O, Young MA et al. Structural Basis for the Autoinhibition of c-Abl Tyrosine Kinase. Cell. 2003; 112:859–71. 10.1016/s0092-8674(03)00194-6. PubMed DOI
Kim JL, Nikolov DB, Burley SK Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature. 1993; 365:520–7. 10.1038/365520a0. PubMed DOI
Rout MP, Sali A Principles for Integrative Structural Biology Studies. Cell. 2019; 177:1384–403. 10.1016/j.cell.2019.05.016. PubMed DOI PMC
Vallat B, Webb BM, Zalevsky A et al. PDB-IHM: a system for deposition, curation, validation, and dissemination of integrative structures. J Mol Biol. 2025; 168963. 10.1016/j.jmb.2025.168963. PubMed DOI
Shi Y, Fernandez-Martinez J, Tjioe E et al. Structural Characterization by Cross-linking Reveals the Detailed Architecture of a Coatomer-related Heptameric Module from the Nuclear Pore Complex. Mol Cell Proteom. 2014; 13:2927–43. 10.1074/mcp.M114.041673. PubMed DOI PMC