• This record comes from PubMed

MolViewSpec: a Mol* extension for describing and sharing molecular visualizations

. 2025 Jul 07 ; 53 (W1) : W408-W414.

Language English Country Great Britain, England Media print

Document type Journal Article

Grant support
R01GM157729 NIH HHS - United States
National Institute of Allergy and Infectious Diseases
DBI-2129634 UK Biotechnology and Biological Research Council
Masaryk University
DBI-2321666 NSF CEP Register
NCI NIH HHS - United States
DE-SC0019749 United States Department of Energy
BB/W017970/1 UK Biotechnology and Biological Research Council
National Science Foundation
R01 GM157729 NIGMS NIH HHS - United States
22-30571M Czech Republic JuniorStar project
EMBL-EBI

Data visualization is a pivotal component of a structural biologist's arsenal. The Mol* Viewer makes molecular visualizations available to broader audiences via most web browsers. While Mol* provides a wide range of functionality, it has a steep learning curve and is only available via a JavaScript interface. To enhance the accessibility and usability of web-based molecular visualization, we introduce MolViewSpec (molstar.org/mol-view-spec), a standardized approach for defining molecular visualizations that decouples the definition of complex molecular scenes from their rendering. Scene definition can include references to commonly used structural, volumetric, and annotation data formats together with a description of how the data should be visualized and paired with optional annotations specifying colors, labels, measurements, and custom 3D geometries. Developed as an open standard, this solution paves the way for broader interoperability and support across different programming languages and molecular viewers, enabling more streamlined, standardized, and reproducible visual molecular analyses. MolViewSpec is freely available as a Mol* extension and a standalone Python package.

See more in PubMed

wwPDB consortium  Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019; 47:D520–8. 10.1093/nar/gky949. PubMed DOI PMC

Wilkinson  MD, Dumontier  M, Aalbersberg  IJ  et al.  The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data. 2016; 3:1–9. 10.1038/sdata.2016.18. PubMed DOI PMC

Berman  H, Henrick  K, Nakamura  H  Announcing the worldwide Protein Data Bank. Nat Struct Biol. 2003; 10:980. 10.1038/nsb1203-980. PubMed DOI

Lensink  MF, Brysbaert  G, Raouraoua  N  et al.  Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI experiment. Proteins. 2023; 91:1658–83. 10.1002/prot.26609. PubMed DOI PMC

Jumper  J, Evans  R, Pritzel  A  et al.  Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596:583–9. 10.1038/s41586-021-03819-2. PubMed DOI PMC

Lin  Z, Akin  H, Rao  R  et al.  Evolutionary-scale prediction of atomic-level protein structure with a language model. Science. 2023; 379:1123–30. 10.1126/science.ade2574. PubMed DOI

Ahdritz  G, Bouatta  N, Floristean  C  et al.  OpenFold: retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization. Nat Methods. 2024; 21:1514–24. 10.1038/s41592-024-02272-z. PubMed DOI PMC

Sehnal  D, Bittrich  S, Deshpande  M  et al.  Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021; 49:W431–7. 10.1093/nar/gkab314. PubMed DOI PMC

Procter  JB, Carstairs  GM, Soares  B  et al.. Katoh  K  Alignment of Biological Sequences with Jalview. 2020; 2231:1st ednNew York: Humana; 203–24. 10.1007/978-1-0716-1036-7_13. PubMed DOI PMC

Meng  EC, Goddard  TD, Pettersen  EF  et al.  UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 2023; 32:e4792. 10.1002/pro.4792. PubMed DOI PMC

Tomasello  G, Armenia  I, Molla  G  The Protein Imager: a full-featured online molecular viewer interface with server-side HQ-rendering capabilities. Bioinformatics. 2020; 36:2909–11. 10.1093/bioinformatics/btaa009. PubMed DOI

Bittrich  S, Midlik  A, Varadi  M  et al.  Describing and sharing molecular visualizations using the MolViewSpec toolkit. Curr Protoc. 2024; 4:e1099. 10.1002/cpz1.1099. PubMed DOI PMC

Westbrook  JD, Young  JY, Shao  C  et al.  PDBx/mmCIF ecosystem: foundational semantic tools for structural biology. J Mol Biol. 2022; 434:167599. 10.1016/j.jmb.2022.167599. PubMed DOI PMC

Sehnal  D, Bittrich  S, Velankar  S  et al.  BinaryCIF and CIFTools—Lightweight, efficient and extensible macromolecular data management. PLoS Comput Biol. 2020; 16:e1008247. 10.1371/journal.pcbi.1008247. PubMed DOI PMC

Westbrook  JD, Fitzgerald  PMD. Bourne  PE, Weissig  H  The PDB Format, mmCIF, and other Data Formats. 2003; 44:Hoboken: Wiley-Liss, Inc; 161–79. 10.1002/0471721204. PubMed DOI

Sehnal  D, Grant  OC  Rapidly display Glycan symbols in 3D structures: 3D-SNFG in LiteMol. J Proteome Res. 2019; 18:770–4. 10.1021/acs.jproteome.8b00473. PubMed DOI

Varadi  M, Bertoni  D, Magana  P  et al.  AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 2024; 52:D368–75. 10.1093/nar/gkad1011. PubMed DOI PMC

Nishimasu  H, Fushinobu  S, Shoun  H  et al.  Crystal Structures of an ATP-dependent Hexokinase with Broad Substrate Specificity from the Hyperthermophilic Archaeon PubMed DOI

Tunyasuvunakool  K, Adler  J, Wu  Z  et al.  Highly accurate protein structure prediction for the human proteome. Nature. 2021; 596:590–6. 10.1038/s41586-021-03828-1. PubMed DOI PMC

Rasmussen  SGF, DeVree  BT, Zou  Y  et al.  Crystal structure of the β PubMed DOI PMC

Yano  JK, Wester  MR, Schoch  GA  et al.  The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-Å resolution. J Biol Chem. 2004; 279:38091–4. 10.1074/jbc.C400293200. PubMed DOI

Jabbour  E, Kantarjian  H  Chronic myeloid leukemia: 2025 update on diagnosis, therapy, and monitoring. Am J Hematol. 2024; 99:2191–12. 10.1002/ajh.27443. PubMed DOI

Nikolov  DB, Chen  H, Halay  ED  et al.  Crystal structure of a human TATA box-binding protein/TATA element complex. Proc Natl Acad Sci. 1996; 93:4862–7. 10.1073/pnas.93.10.4862. PubMed DOI PMC

Nagar  B, Hantschel  O, Young  MA  et al.  Structural Basis for the Autoinhibition of c-Abl Tyrosine Kinase. Cell. 2003; 112:859–71. 10.1016/s0092-8674(03)00194-6. PubMed DOI

Kim  JL, Nikolov  DB, Burley  SK  Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature. 1993; 365:520–7. 10.1038/365520a0. PubMed DOI

Rout  MP, Sali  A  Principles for Integrative Structural Biology Studies. Cell. 2019; 177:1384–403. 10.1016/j.cell.2019.05.016. PubMed DOI PMC

Vallat  B, Webb  BM, Zalevsky  A  et al.  PDB-IHM: a system for deposition, curation, validation, and dissemination of integrative structures. J Mol Biol. 2025; 168963. 10.1016/j.jmb.2025.168963. PubMed DOI

Shi  Y, Fernandez-Martinez  J, Tjioe  E  et al.  Structural Characterization by Cross-linking Reveals the Detailed Architecture of a Coatomer-related Heptameric Module from the Nuclear Pore Complex. Mol Cell Proteom. 2014; 13:2927–43. 10.1074/mcp.M114.041673. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...