Single-Atom Colloidal Nanorobotics Enhanced Stem Cell Therapy for Corneal Injury Repair
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40359418
PubMed Central
PMC12120985
DOI
10.1021/acsnano.4c18874
Knihovny.cz E-resources
- Keywords
- cerium oxide, cornea, glucose, mesenchymal stem cells, nanorobot, single-atom,
- MeSH
- Cerium chemistry MeSH
- Colloids chemistry MeSH
- Humans MeSH
- Mesenchymal Stem Cells cytology MeSH
- Mice MeSH
- Corneal Injuries * therapy pathology MeSH
- Mesenchymal Stem Cell Transplantation * MeSH
- Gold chemistry MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cerium MeSH
- ceric oxide MeSH Browser
- Colloids MeSH
- Gold MeSH
Corneal repair using mesenchymal stem cell therapy faces challenges due to long-term cell survival issues. Here, we design cerium oxide with gold single-atom-based nanorobots (CeSAN-bots) for treating corneal damage in a synergistic combination with stem cells. Powered by glucose, CeSAN-bots exhibit enhanced diffusion and active motion due to the cascade reaction catalyzed by gold and cerium oxide. CeSAN-bots demonstrate a two-fold increase in cellular uptake efficiency into mesenchymal stem cells compared to passive uptake. CeSAN-bots possess intrinsic antioxidant and immunomodulatory properties, promoting corneal regeneration. Validation in a mouse corneal alkali burn model reveals an improvement in corneal clarity restoration when stem cells are incorporated with CeSAN-bots. This work presents a strategy for developing glucose-driven, enzyme-free, single-atom-based ultrasmall nanorobots with promising applications in targeted intracellular delivery in diverse biological environments.
See more in PubMed
Whitcher J. P., Srinivasan M., Upadhyay M. P.. Corneal Blindness: A Global Perspective. Bull. W. H. O. 2001;79(3):214–221. PubMed PMC
Gain P., Jullienne R., He Z., Aldossary M., Acquart S., Cognasse F., Thuret G.. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmology. 2016;134(2):167–173. doi: 10.1001/jamaophthalmol.2015.4776. PubMed DOI
Galindo S., de la Mata A., López-Paniagua M., Herreras J. M., Pérez I., Calonge M., Nieto-Miguel T.. Subconjunctival Injection of Mesenchymal Stem Cells for Corneal Failure Due to Limbal Stem Cell Deficiency: State of the Art. Stem Cell Res. Ther. 2021;12(1):60. doi: 10.1186/s13287-020-02129-0. PubMed DOI PMC
Oral C. M., Pumera M.. In Vivo Applications of Micro/Nanorobots. Nanoscale. 2023;15(19):8491–8507. doi: 10.1039/D3NR00502J. PubMed DOI
Li J. X., Esteban-Fernández de Ávila B., Gao W., Zhang L. F., Wang J.. Micro/Nanorobots for Biomedicine: Delivery, Surgery, Sensing, and Detoxification. Sci. Rob. 2017;2(4):eaam6431. doi: 10.1126/scirobotics.aam6431. PubMed DOI PMC
Arqué X., Romero-Rivera A., Feixas F., Patiño T., Osuna S., Sánchez S.. Intrinsic Enzymatic Properties Modulate the Self-Propulsion of Micromotors. Nat. Commun. 2019;10(1):2826. doi: 10.1038/s41467-019-10726-8. PubMed DOI PMC
Zhang Y. F., Hess H.. Chemically-Powered Swimming and Diffusion in the Microscopic World. Nature Reviews Chemistry. 2021;5(7):500–510. doi: 10.1038/s41570-021-00281-6. PubMed DOI
Abdelmohsen L. K. E. A., Nijemeisland M., Pawar G. M., Janssen G.-J. A., Nolte R. J. M., van Hest J. C. M., Wilson D. A.. Dynamic Loading and Unloading of Proteins in Polymeric Stomatocytes: Formation of an Enzyme-Loaded Supramolecular Nanomotor. ACS Nano. 2016;10(2):2652–2660. doi: 10.1021/acsnano.5b07689. PubMed DOI
Yuan H., Liu X., Wang L., Ma X.. Fundamentals and Applications of Enzyme Powered Micro/Nano-Motors. Bioactive Materials. 2021;6(6):1727–1749. doi: 10.1016/j.bioactmat.2020.11.022. PubMed DOI PMC
Jiang D., Ni D., Rosenkrans Z. T., Huang P., Yan X., Cai W.. Nanozyme: New Horizons for Responsive Biomedical Applications. Chem. Soc. Rev. 2019;48(14):3683–3704. doi: 10.1039/C8CS00718G. PubMed DOI PMC
Zheng J., Wang W., Gao X., Zhao S., Chen W., Li J., Liu Y.-N.. Cascade Catalytically Released Nitric Oxide-Driven Nanomotor with Enhanced Penetration for Antibiofilm. Small. 2022;18(52):2205252. doi: 10.1002/smll.202205252. PubMed DOI
Badia A., Duarri A., Salas A., Rosell J., Ramis J., Gusta M. F., Casals E., Zapata M. A., Puntes V., García-Arumí J.. Repeated Topical Administration of 3 Nm Cerium Oxide Nanoparticles Teverts Fisease Strophic Phenotype and Arrests Neovascular Degeneration in Amd Mouse Models. ACS Nano. 2023;17(2):910–926. doi: 10.1021/acsnano.2c05447. PubMed DOI
Jiao L., Yan H., Wu Y., Gu W., Zhu C., Du D., Lin Y.. When Nanozymes Meet Single-Atom Catalysis. Angew. Chem., Int. Ed. 2020;59(7):2565–2576. doi: 10.1002/anie.201905645. PubMed DOI
Du X., Jia B., Wang W., Zhang C., Liu X., Qu Y., Zhao M., Li W., Yang Y., Li Y. Q.. pH-Switchable Nanozyme Cascade Catalysis: A Strategy for Spatial-Temporal Modulation of Pathological Wound Microenvironment to Rescue Stalled Healing in Diabetic Ulcer. J. Nanobiotechnol. 2022;20(1):12. doi: 10.1186/s12951-021-01215-6. PubMed DOI PMC
Truttmann V., Drexler H., Stöger-Pollach M., Kawawaki T., Negishi Y., Barrabés N., Rupprechter G.. CeO2 Supported Gold Nanocluster Catalysts for Co Oxidation: Surface Evolution Influenced by the Ligand Shell. ChemCatChem. 2022;14(14):e202200322. doi: 10.1002/cctc.202200322. PubMed DOI PMC
Yan R., Sun S., Yang J., Long W., Wang J., Mu X., Li Q., Hao W., Zhang S., Liu H.. et al. Nanozyme-Based Bandage with Single-Atom Vatalysis for Brain Trauma. ACS Nano. 2019;13(10):11552–11560. doi: 10.1021/acsnano.9b05075. PubMed DOI
Ju X., Kalbacova M. H., Smid B., Johanek V., Janata M., Dinhova T. N., Belinova T., Mazur M., Vorokhta M., Strnad L.. Poly(Acrylic Acid)-Mediated Synthesis of Cerium Oxide Nanoparticles with Variable Oxidation States and Their Effect on Regulating the Intracellular Ros Level. J. Mater. Chem. B. 2021;9(40):8530–8530. doi: 10.1039/D1TB90156G. PubMed DOI
Chen J., Ma Q., Li M., Chao D., Huang L., Wu W., Fang Y., Dong S.. Glucose-Oxidase Like Catalytic Mechanism of Noble Metal Nanozymes. Nat. Commun. 2021;12(1):3375. doi: 10.1038/s41467-021-23737-1. PubMed DOI PMC
Yan H., Zhang N., Wang D.. Highly Efficient CeO2-Supported Noble-Metal Catalysts: From Single Atoms to Nanoclusters. Chem. Catal. 2022;7(2):1594–1623. doi: 10.1016/j.checat.2022.05.001. DOI
Jesson D. E., Pennycook S. J.. Incoherent Imaging of Crystals Using Thermally Scattered Electrons. Proc. R. Soc. A. 1995;449(1936):273–293. doi: 10.1098/rspa.1995.0044. DOI
Wang J., Tan H., Yu S., Zhou K.. Morphological Effects of Gold Clusters on the Reactivity of Ceria Surface Oxygen. ACS Catal. 2015;5(5):2873–2881. doi: 10.1021/cs502055r. DOI
Lucid A. K., Keating P. R. L., Allen J. P., Watson G. W.. Structure and Reducibility of CeO2 Doped with Trivalent Cations. J. Phys. Chem. C. 2016;120(41):23430–23440. doi: 10.1021/acs.jpcc.6b08118. DOI
Bruix A., Lykhach Y., Matolínová I., Neitzel A., Skála T., Tsud N., Vorokhta M., Stetsovych V., Ševčíková K., Mysliveček J.. et al. Maximum Noble-Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum. Angew. Chem., Int. Ed. 2014;53(39):10525–10530. doi: 10.1002/anie.201402342. PubMed DOI
Jones J., Xiong H., DeLaRiva A. T., Peterson E. J., Pham H., Challa S. R., Qi G., Oh S., Wiebenga M. H., Pereira Hernández X. I.. et al. Thermally Stable Single-Atom Platinum-on-Ceria Catalysts via Atom Trapping. Science. 2016;353(6295):150–154. doi: 10.1126/science.aaf8800. PubMed DOI
Comotti M., Della Pina C., Matarrese R., Rossi M.. The Catalytic Activity of “Naked” Gold Particles. Angew. Chem., Int. Ed. 2004;43(43):5812–5815. doi: 10.1002/anie.200460446. PubMed DOI
Celardo I., Pedersen J. Z., Traversa E., Ghibelli L.. Pharmacological Potential of Cerium Oxide Nanoparticles. Nanoscale. 2011;3(4):1411–1420. doi: 10.1039/c0nr00875c. PubMed DOI
Montemore M. M., van Spronsen M. A., Madix R. J., Friend C. M.. O(2) Activation by Metal Surfaces: Implications for Bonding and Reactivity on Heterogeneous Catalysts. Chem. Rev. 2018;118(5):2816–2862. doi: 10.1021/acs.chemrev.7b00217. PubMed DOI
Finocchiaro G., Ju X., Mezghrani B., Berret J.-F.. Cerium Oxide Catalyzed Disproportionation of Hydrogen Peroxide: A Closer Look at the Reaction Intermediate. Chem. - Eur. J. 2024;30:e202304012. doi: 10.1002/chem.202304012. PubMed DOI
Cosnier S., Gross A. J., Le Goff A., Holzinger M.. Recent Advances on Enzymatic Glucose/Oxygen and Hydrogen/Oxygen Biofuel Cells: Achievements and Limitations. J. Power Sources. 2016;325:252–263. doi: 10.1016/j.jpowsour.2016.05.133. DOI
Hsiao M. W., Adžić R. R., Yeager E. B.. Electrochemical Oxidation of Glucose on Single Crystal and Polycrystalline Gold Surfaces in Phosphate Buffer. J. Electrochem. Soc. 1996;143(3):759. doi: 10.1149/1.1836536. DOI
Zhao Y., Li X., Schechter J. M., Yang Y.. Revisiting the Oxidation Peak in the Cathodic Scan of the Cyclic Voltammogram of Alcohol Oxidation on Noble Metal Electrodes. RSC Adv. 2016;6(7):5384–5390. doi: 10.1039/C5RA24249E. DOI
Ma X., Jannasch A., Albrecht U.-R., Hahn K., Miguel-López A., Schäffer E., Sánchez S.. Enzyme-Powered Hollow Mesoporous Janus Nanomotors. Nano Lett. 2015;15(10):7043–7050. doi: 10.1021/acs.nanolett.5b03100. PubMed DOI
Schattling P. S., Ramos-Docampo M. A., Salgueirino V., Stadler B.. Double-Fueled Janus Swimmers with Magnetotactic Behavior. ACS Nano. 2017;11(4):3973–3983. doi: 10.1021/acsnano.7b00441. PubMed DOI
Wang W.. Open Questions of Chemically Powered Nano- and Micromotors. J. Am. Chem. Soc. 2023;145(50):27185–27197. doi: 10.1021/jacs.3c09223. PubMed DOI
Lee T.-C., Alarcón-Correa M., Miksch C., Hahn K., Gibbs J. G., Fischer P.. Self-Propelling Nanomotors in the Presence of Strong Brownian Forces. Nano Lett. 2014;14(5):2407–2412. doi: 10.1021/nl500068n. PubMed DOI PMC
Glidden M., Muschol M.. Characterizing Gold Nanorods in Solution Using Depolarized Dynamic Light Scattering. J. Phys. Chem. C. 2012;116(14):8128–8137. doi: 10.1021/jp211533d. DOI
Joseph A., Contini C., Cecchin D., Nyberg S., Ruiz-Perez L., Gaitzsch J., Fullstone G., Tian X. H., Azizi J., Preston J.. et al. Chemotactic Synthetic Vesicles: Design and Applications in Blood-Brain Barrier Crossing. Sci. Adv. 2017;3(8):e1700362. doi: 10.1126/sciadv.1700362. PubMed DOI PMC
Xiao Z., Nsamela A., Garlan B., Simmchen J.. A Platform for Stop-Flow Gradient Generation to Investigate Chemotaxis. Angew. Chem., Int. Ed. 2022;61(21):e202117768. doi: 10.1002/anie.202117768. PubMed DOI PMC
Moran J. L., Wheat P. M., Marine N. A., Posner J. D.. Chemokinesis-Driven Accumulation of Active Colloids in Low-Mobility Regions of Fuel Gradients. Sci. Rep. 2021;11(1):4785. doi: 10.1038/s41598-021-83963-x. PubMed DOI PMC
Popescu M. N., Uspal W. E., Bechinger C., Fischer P.. Chemotaxis of Active Janus Nanoparticles. Nano Lett. 2018;18(9):5345–5349. doi: 10.1021/acs.nanolett.8b02572. PubMed DOI
Zhao X., Dey K. K., Jeganathan S., Butler P. J., Córdova-Figueroa U. M., Sen A.. Enhanced Diffusion of Passive Tracers in Active Enzyme Solutions. Nano Lett. 2017;17(8):4807–4812. doi: 10.1021/acs.nanolett.7b01618. PubMed DOI
Sengupta S., Dey K. K., Muddana H. S., Tabouillot T., Ibele M. E., Butler P. J., Sen A.. Enzyme Molecules as Nanomotors. J. Am. Chem. Soc. 2013;135(4):1406–1414. doi: 10.1021/ja3091615. PubMed DOI
Muddana H. S., Sengupta S., Mallouk T. E., Sen A., Butler P. J.. Substrate Catalysis Enhances Single-Enzyme Diffusion. J. Am. Chem. Soc. 2010;132(7):2110–2111. doi: 10.1021/ja908773a. PubMed DOI PMC
Pavlick R. A., Sengupta S., McFadden T., Zhang H., Sen A.. A Polymerization-Powered Motor. Angew. Chem., Int. Ed. 2011;50(40):9374–9377. doi: 10.1002/anie.201103565. PubMed DOI
Ju X., Fučíková A., Šmíd B., Nováková J., Matolínová I., Matolín V., Janata M., Bělinová T., Hubálek Kalbáčová M.. Colloidal Stability and Catalytic Activity of Cerium Oxide Nanoparticles in Cell Culture Media. RSC Adv. 2020;10(65):39373–39384. doi: 10.1039/D0RA08063B. PubMed DOI PMC
Peng Y., Xu P., Duan S., Liu J., Moran J. L., Wang W.. Generic Rules for Distinguishing Autophoretic Colloidal Motors. Angew. Chem., Int. Ed. 2022;61(12):e202116041. doi: 10.1002/anie.202116041. PubMed DOI
Channei D., Inceesungvorn B., Wetchakun N., Phanichphant S., Nakaruk A., Koshy P., Sorrell C. C.. Photocatalytic Activity under Visible Light of Fe-Doped CeO2 Nanoparticles Synthesized by Flame Spray Pyrolysis. Ceram. Int. 2013;39(3):3129–3134. doi: 10.1016/j.ceramint.2012.09.093. DOI
Makuła P., Pacia M., Macyk W.. How to Correctly Determine the Band Gap Energy of Modified Demiconductor Photocatalysts Based on Uv–Vis Spectra. J. Phys. Chem. Lett. 2018;9(23):6814–6817. doi: 10.1021/acs.jpclett.8b02892. PubMed DOI
Archer R. J., Ebbens S. J.. Symmetrical Catalytic Colloids Display Janus-Like Active Brownian Particle Motion. Adv. Sci. 2023;10(33):2303154. doi: 10.1002/advs.202303154. PubMed DOI PMC
Patiño T., Feiner-Gracia N., Arqué X., Miguel-López A., Jannasch A., Stumpp T., Schäffer E., Albertazzi L., Sánchez S.. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors. J. Am. Chem. Soc. 2018;140(25):7896–7903. doi: 10.1021/jacs.8b03460. PubMed DOI
Wang W., Duan W., Ahmed S., Mallouk T. E., Sen A.. Small Power: Autonomous Nano- and Micromotors Propelled by Self-Generated Gradients. Nano Today. 2013;8(5):531–554. doi: 10.1016/j.nantod.2013.08.009. DOI
Mano N., Heller A.. Bioelectrochemical Propulsion. J. Am. Chem. Soc. 2005;127(33):11574–11575. doi: 10.1021/ja053937e. PubMed DOI
Sengupta S., Patra D., Ortiz-Rivera I., Agrawal A., Shklyaev S., Dey K. K., Córdova-Figueroa U., Mallouk T. E., Sen A.. Self-Powered Enzyme Micropumps. Nat. Chem. 2014;6(5):415–422. doi: 10.1038/nchem.1895. PubMed DOI
Arqué X., Patiño T., Sánchez S.. Enzyme-Powered Micro- and Nano-Motors: Key Parameters for an Application-Oriented Design. Chemical Science. 2022;13(32):9128–9146. doi: 10.1039/D2SC01806C. PubMed DOI PMC
Somasundar A., Ghosh S., Mohajerani F., Massenburg L. N., Yang T. L., Cremer P. S., Velegol D., Sen A.. Positive and Negative Chemotaxis of Enzyme-Coated Liposome Motors. Nat. Nanotechnol. 2019;14(12):1129–1134. doi: 10.1038/s41565-019-0578-8. PubMed DOI
Guo Z., Wu Y., Xie Z., Shao J., Liu J., Yao Y., Wang J., Shen Y., Gooding J. J., Liang K.. Self-Propelled Initiative Collision at Microelectrodes with Vertically Mobile Micromotors. Angew. Chem., Int. Ed. 2022;61(40):e202209747. doi: 10.1002/anie.202209747. PubMed DOI PMC
Liu M. L., Chen L., Zhao Z. W., Liu M. C., Zhao T. C., Ma Y. Z., Zhou Q. Y., Ibrahim Y. S., Elzatahry A. A., Li X. M.. et al. Enzyme-Based Mesoporous Nanomotors with near-Infrared Optical Brakes. J. Am. Chem. Soc. 2022;144(9):3892–3901. doi: 10.1021/jacs.1c11749. PubMed DOI
Rucinskaite G., Thompson S. A., Paterson S., de la Rica R.. Enzyme-Coated Janus Nanoparticles That Selectively Bind Cell Receptors as a Function of the Concentration of Glucose. Nanoscale. 2017;9(17):5404–5407. doi: 10.1039/C7NR00298J. PubMed DOI
Kwon T., Kumari N., Kumar A., Lim J., Son C. Y., Lee I. S.. Au/Pt-Egg-in-Nest Nanomotor for Glucose-Powered Catalytic Motion and Enhanced Molecular Transport to Living Cells. Angew. Chem., Int. Ed. 2021;60(32):17579–17586. doi: 10.1002/anie.202103827. PubMed DOI
Putra I., Shen X., Anwar K. N., Rabiee B., Samaeekia R., Almazyad E., Giri P., Jabbehdari S., Hayat M. R., Elhusseiny A. M.. et al. Preclinical Evaluation of the Safety and Efficacy of Cryopreserved Bone Marrow Mesenchymal Stromal Cells for Corneal Repair. Translational Vision Science & Technology. 2021;10(10):3. doi: 10.1167/tvst.10.10.3. PubMed DOI PMC
Li P., Ou Q., Shi S., Shao C.. Immunomodulatory Properties of Mesenchymal Stem Cells/Dental Stem Cells and Their Therapeutic Applications. Cellular & Molecular Immunology. 2023;20(6):558–569. doi: 10.1038/s41423-023-00998-y. PubMed DOI PMC
Carrington L. M., Boulton M.. Hepatocyte Growth Factor and Keratinocyte Growth Factor Regulation of Epithelial and Stromal Corneal Wound Healing. Journal of Cataract & Refractive Surgery. 2005;31(2):412–423. doi: 10.1016/j.jcrs.2004.04.072. PubMed DOI
Blanco-Mezquita T., Martinez-Garcia C., Proença R., Zieske J. D., Bonini S., Lambiase A., Merayo-Lloves J.. Nerve Growth Factor Promotes Corneal Epithelial Migration by Enhancing Expression of Matrix Metalloprotease-9. Investigative Ophthalmology & Visual Science. 2013;54(6):3880–3890. doi: 10.1167/iovs.12-10816. PubMed DOI PMC
Quintana F. J.. Old Dog, New Tricks: Il-6 Cluster Signaling Promotes Pathogenic Th17 Cell Differentiation. Nature Immunology. 2017;18(1):8–10. doi: 10.1038/ni.3637. PubMed DOI
Fultz M. J., Barber S. A., Dieffenbach C. W., Vogel S. N.. Induction of Ifn-Γ in Macrophages by Lipopolysaccharide. Int. Immunol. 1993;5(11):1383–1392. doi: 10.1093/intimm/5.11.1383. PubMed DOI
Isakov N., Mally M. I., Altman A.. Mitogen-Induced Human T Cell Proliferation Is Associated with Increased Expression of Selected Pkc Genes. Molecular Immunology. 1992;29(7):927–933. doi: 10.1016/0161-5890(92)90131-G. PubMed DOI
Koo S., Sohn H. S., Kim T. H., Yang S., Jang S. Y., Ye S., Choi B., Kim S. H., Park K. S., Shin H. M.. et al. Ceria-Vesicle Nanohybrid Therapeutic for Modulation of Innate and Adaptive Immunity in a Collagen-Induced Arthritis Model. Nat. Nanotechnol. 2023;18(12):1502–1514. doi: 10.1038/s41565-023-01523-y. PubMed DOI
Trosan P., Javorkova E., Zajicova A., Hajkova M., Hermankova B., Kossl J., Krulova M., Holan V.. The Supportive Role of Insulin-Like Growth Factor-I in the Differentiation of Murine Mesenchymal Stem Cells into Corneal-Like Cells. Stem Cells and Development. 2016;25(11):874–881. doi: 10.1089/scd.2016.0030. PubMed DOI
Dua H. S., King A. J., Joseph A.. A New Classification of Ocular Surface Burns. British Journal of Ophthalmology. 2001;85(11):1379–1383. doi: 10.1136/bjo.85.11.1379. PubMed DOI PMC
Geesala R., Dhoke N. R., Das A.. Cox-2 Inhibition Potentiates Mouse Bone Marrow Stem Cell Engraftment and Differentiation-Mediated Wound Repair. Cytotherapy. 2017;19(6):756–770. doi: 10.1016/j.jcyt.2017.03.072. PubMed DOI
Hang C., Moawad M. S., Lin Z., Guo H., Xiong H., Zhang M., Lu R., Liu J., Shi D., Xie D.. et al. Biosafe Cerium Oxide Nanozymes Protect Human Pluripotent Stem Cells and Cardiomyocytes from Oxidative Stress. J. Nanobiotechnol. 2024;22(1):132. doi: 10.1186/s12951-024-02383-x. PubMed DOI PMC
Ren X., Zhuang H., Zhang Y., Zhou P.. Cerium Oxide Nanoparticles-Carrying Human Umbilical Cord Mesenchymal Stem Cells Counteract Oxidative Damage and Facilitate Tendon Regeneration. J. Nanobiotechnol. 2023;21(1):359. doi: 10.1186/s12951-023-02125-5. PubMed DOI PMC
Fernandes-Cunha G. M., Na K.-S., Putra I., Lee H. J., Hull S., Cheng Y.-C., Blanco I. J., Eslani M., Djalilian A. R., Myung D.. Corneal Wound Healing Effects of Mesenchymal Stem Cell Secretome Delivered within a Viscoelastic Gel Carrier. Stem Cells Translational Medicine. 2019;8(5):478–489. doi: 10.1002/sctm.18-0178. PubMed DOI PMC
Chen W., Zhou H., Zhang B., Cao Q., Wang B., Ma X.. Recent Progress of Micro/Nanorobots for Cell Delivery and Manipulation. Adv. Funct. Mater. 2022;32(18):2110625. doi: 10.1002/adfm.202110625. DOI
Venugopalan P. L., Esteban-Fernández de Ávila B., Pal M., Ghosh A., Wang J.. Fantastic Voyage of Nanomotors into the Cell. ACS Nano. 2020;14(8):9423–9439. doi: 10.1021/acsnano.0c05217. PubMed DOI
Xuan M., Shao J., Lin X., Dai L., He Q.. Self-Propelled Janus Mesoporous Silica Nanomotors with Sub-100 Nm Diameters for Drug Encapsulation and Delivery. ChemPhysChem. 2014;15(11):2255–2260. doi: 10.1002/cphc.201402111. PubMed DOI
Villa K., Krejčová L., Novotný F., Heger Z., Sofer Z., Pumera M.. Cooperative Multifunctional Self-Propelled Paramagnetic Microrobots with Chemical Handles for Cell Manipulation and Drug Delivery. Adv. Funct. Mater. 2018;28(43):1804343. doi: 10.1002/adfm.201804343. DOI
Tu Y., Peng F., André A. A. M., Men Y., Srinivas M., Wilson D. A.. Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery. ACS Nano. 2017;11(2):1957–1963. doi: 10.1021/acsnano.6b08079. PubMed DOI PMC
Gao S., Hou J., Zeng J., Richardson J. J., Gu Z., Gao X., Li D., Gao M., Wang D.-W., Chen P.. et al. Superassembled Biocatalytic Porous Framework Micromotors with Reversible and Sensitive pH-Speed Regulation at Ultralow Physiological H2O2 Concentration. Adv. Funct. Mater. 2019;29(18):1808900. doi: 10.1002/adfm.201808900. DOI
Hortelão A. C., Patiño T., Perez-Jiménez A., Blanco À., Sánchez S.. Enzyme-Powered Nanobots Enhance Anticancer Drug Delivery. Adv. Funct. Mater. 2018;28(25):1705086. doi: 10.1002/adfm.201705086. DOI
Ferreira L.. Nanoparticles as Tools to Study and Control Stem Cells. Journal of Cellular Biochemistry. 2009;108(4):746–752. doi: 10.1002/jcb.22303. PubMed DOI
Vissers C., Ming G. -l., Song H.. Nanoparticle Technology and Stem Cell Therapy Team up against Neurodegenerative Disorders. Adv. Drug Delivery Rev. 2019;148:239–251. doi: 10.1016/j.addr.2019.02.007. PubMed DOI PMC