The gut microbiome and metabolome in children with a first febrile urinary tract infection: a pilot study
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, pozorovací studie
PubMed
40369126
PubMed Central
PMC12402013
DOI
10.1007/s00467-025-06782-6
PII: 10.1007/s00467-025-06782-6
Knihovny.cz E-zdroje
- Klíčová slova
- Gut microbiota, Kidney, Pediatric, Pyelonephritis, SCFA,
- MeSH
- antibakteriální látky terapeutické užití MeSH
- dítě MeSH
- dysbióza * mikrobiologie MeSH
- feces mikrobiologie chemie MeSH
- horečka * mikrobiologie etiologie MeSH
- infekce močového ústrojí * mikrobiologie moč farmakoterapie komplikace MeSH
- kojenec MeSH
- kojení MeSH
- lidé MeSH
- metabolom * MeSH
- pilotní projekty MeSH
- předškolní dítě MeSH
- střevní mikroflóra * fyziologie MeSH
- studie případů a kontrol MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- Názvy látek
- antibakteriální látky MeSH
BACKGROUND: Urinary tract infection (UTI) is a common bacterial infection in the pediatric population. Febrile urinary tract infection (fUTI) can lead to severe complications such as urosepsis as well as kidney scarring, chronic kidney disease, and systemic hypertension. Recent research supports the hypothesis that dysbiosis of the microbiome may play a role in the pathogenesis and development of fUTI in infants. Our main aim was to compare the shift in gut microbiota composition between children with the first fUTI and controls. METHODS: We conducted an observational study with 17 children with the first fUTI compared to 18 healthy controls. We performed analysis of the gastrointestinal microbiome and measurements of metabolites in stool and urine. RESULTS: In the gut microbiome, we found significant differences with lower α-diversity the Shannon index) and significantly lower relative abundance of probiogenic bacteria (short-chain fatty acids (SCFA)) in children with the first episode of fUTI before the start of antibiotic therapy. Furthermore, our findings confirm that the length of breastfeeding has significant influence on gut microbiota composition, reducing pathogenic bacteria and enhancing beneficial taxa. Shannon diversity, duration of breastfeeding, and specific taxa, particularly Faecalibacterium and Escherichia, emerged as strong predictors linked to the development of fUTI. CONCLUSIONS: This study demonstrates that gut microbiome changes are associated with the onset of fUTI in children. Machine learning models identified Shannon index, specific bacterial taxa, and breastfeeding as strong predictors of fUTI. The study highlighted the potential role of the gut microbiome in preventing fUTI.
Children's Hospital of Philadelphia Philadelphia PA USA
Department of Pediatrics 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Pediatrics Slovak Medical University in Bratislava Bratislava Slovakia
Department of Pediatrics University of Pennsylvania Philadelphia PA USA
Zobrazit více v PubMed
Tullus K, Shaikh N (2020) Urinary tract infections in children. Lancet 395:1659–1668. 10.1016/S0140-6736(20)30676-0 PubMed
Firoozeh F, Saffari M, Neamati F et al (2014) Detection of virulence genes in PubMed
Yoo JY, Groer M, Dutra SVO et al (2020) Gut microbiota and immune system interactions. Microorganisms 8:1587. 10.3390/microorganisms8101587 PubMed PMC
Clavel T, Horz HP, Segata N, Vehreschild M (2022) Next steps after 15 stimulating years of human gut microbiome research. Microb Biotechnol 15:164–175. 10.1111/1751-7915.13970 PubMed PMC
Hou K, Wu ZX, Chen XY et al (2022) Microbiota in health and diseases. Signal Transduct Target Ther 7:135. 10.1038/s41392-022-00974-4 PubMed PMC
Lemberger U, Quhal F, Bruchbacher A et al (2021) The microbiome in urinary tract infections in children—an update. Curr Opin Urol 31:147–154. 10.1097/MOU.0000000000000858 PubMed
Paalanne N, Husso A, Salo J et al (2018) Intestinal microbiome as a risk factor for urinary tract infections in children. Eur J Clin Microbiol Infect Dis 37:1881–1891. 10.1007/s10096-018-3322-7 PubMed
Sadeghi-Bojd S, Naghshizadian R, Mazaheri M et al (2020) Efficacy of probiotic prophylaxis after the first febrile urinary tract infection in children with normal urinary tracts. J Pediatric Infect Dis Soc 9:305–310. 10.1093/jpids/piz025 PubMed
Kusumi K, Islam MS, Banker H et al (2025) Navigating the microbial maze: unraveling the connection between gut microbiome and pediatric kidney and urinary tract disease. Pediatr Nephrol 40:339–353. 10.1007/s00467-024-06357-x PubMed
Lazar V, Ditu LM, Pircalabioru GG et al (2018) Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front Immunol 9:1830. 10.3389/fimmu.2018.01830 PubMed PMC
Schwartz DJ, Langdon AE, Dantas G (2020) Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med 12:82. 10.1186/s13073-020-00782-x PubMed PMC
Gong Ch, Yang L, Liu K et al (2021) Effects of antibiotic treatment and probiotics on the gut microbiome of 40 infants delivered before term by cesarean section analysed by using 16S rRNA quantivave polymerase chain reaction sequencing. Med Sci Monit 27:e928467–1-e928467–12. 10.12659/MSM.928467. PubMed PMC
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12. 10.14806/ej.17.1.200
Shen W, Le S, Li Y et al (2016) SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 11:e0163962. 10.1371/journal.pone.0163962 PubMed PMC
Ounit R, Wanamaker S, Close TJ et al (2015) CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genomics 16:236. 10.1186/s12864-015-1419-2 PubMed PMC
Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590-596. 10.1093/nar/gks1219 PubMed PMC
Nilsson RH, Larsson KH, Taylor AFS et al (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47:D259–D264. 10.1093/nar/gky1022 PubMed PMC
Kõljalg U, Nilsson HR, Schigel D et al (2020) The taxon hypothesis paradigm-on the unambiguous detection and communication of taxa. Microorganisms 8:1910. 10.3390/microorganisms8121910 PubMed PMC
Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. 10.1128/AEM.01541-09 PubMed PMC
Basson A, Trotter A, Rodriguez-Palacios A et al (2016) Mucosal interactions between genetics, diet, and microbiome in inflammatory bowel disease. Front Immunol 7:290. 10.3389/fimmu.2016.00290 PubMed PMC
Krawczyk B, Wityk P, Gałęcka M et al (2021) The many faces of PubMed PMC
Reis RS, Horn F (2010) Enteropathogenic Escherichia coli, Salmonella, Shigella and Yersinia: cellular aspects of host-bacteria interactions in enteric diseases. Gut Pathog 2:8. 10.1186/1757-4749-2-8 PubMed PMC
Baranovicova E, Grendar M, Kalenska D et al (2018) NMR metabolomic study of blood plasma in ischemic and ischemically preconditioned rats: an increased level of ketone bodies and decreased content of glycolytic products 24 h after global cerebral ischemia. J Physiol Biochem 74:417–429. 10.1007/s13105-018-0632-2 PubMed
Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830. 10.48550/arXiv.1201.0490
Mattoo T, Shaikh N, Nelson C (2021) Contemporary management of urinary tract infection in children. Pediatrics 147:e2020012138. 10.1542/peds.2022-059259 PubMed
Hong L, Huang Y, Han J et al (2024) Pathogen-specific alterations in intestinal microbiota precede urinary tract infections in preterm infants: a longitudinal case-control study. Gut Microbes 16:2333413. 10.1080/19490976.2024.2333413 PubMed PMC
Worby CJ, Schreiber HL, Straub TJ et al (2022) Longitudinal multi-omics analyses link gut microbiome dysbiosis with recurrent urinary tract infections in women. Nat Microbiol 7:630–639. 10.1038/s41564-022-01107-x PubMed PMC
Magruder M, Sholi AN, Gong C et al (2019) Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat Commun 10:5521. 10.1038/s41467-019-13467-w PubMed PMC
Ronan V, Yeasin R, Claud EC (2021) Childhood development and the microbiome-the intestinal microbiota in maintenance of health and development of disease during childhood development. Gastroenterology 160:495–506. 10.1053/j.gastro.2020.08.065 PubMed PMC
Lara-Villoslada F, Olivares M, Sierra S et al (2007) Beneficial effects of probiotic bacteria isolated from breast milk. Br J Nutr 98(Suppl 1):S96–S100. 10.1017/S0007114507832910 PubMed
Levy I, Comarsca J, Davidovits M et al (2009) Urinary tract infection in preterm infants: the protective role of breastfeeding. Pediatr Nephrol 24:527–531. 10.1007/s00467-008-1007-7 PubMed
He Y, Han C, Li C et al (2024) Role of N-acetylkynurenine in mediating the effect of gut microbiota on urinary tract infection: a Mendelian randomization study. Front Microbiol 15:1384095. 10.3389/fmicb.2024.1384095 PubMed PMC
Choi HW, Lee KW, Kim YH (2023) Microbiome in urological diseases: axis crosstalk and bladder disorders. Investig Clin Urol 64:126–139. 10.4111/icu.20220357 PubMed PMC
Kadry AA, El-Antrawy MA, El-Ganiny AM (2023) Impact of short chain fatty acids (SCFAs) on antimicrobial activity of new β-lactam/β-lactamase inhibitor combinations and on virulence of PubMed PMC