Seasonal synchronization and unpredictability in epidemic models with waning immunity and healthcare thresholds
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
101063853
HORIZON EUROPE Marie Sklodowska-Curie Actions
PubMed
40382369
PubMed Central
PMC12085651
DOI
10.1038/s41598-025-01467-4
PII: 10.1038/s41598-025-01467-4
Knihovny.cz E-zdroje
- Klíčová slova
- Bifurcation, Chaos, Quasiperiodicity, SIRS model, Seasonality,
- MeSH
- COVID-19 * epidemiologie přenos imunologie MeSH
- epidemie MeSH
- epidemiologické modely * MeSH
- lidé MeSH
- pandemie MeSH
- roční období * MeSH
- SARS-CoV-2 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This paper explores a model integrating healthcare capacity thresholds and seasonal effects to investigate the synchronization of epidemic cycles with seasonal transmission rates, using parameters reflective of the COVID-19 pandemic. Through bifurcation analysis in the epi-seasonal domain, we identify regions of significant seasonal synchronization related to transmission rate fluctuations, waning immunity, and healthcare capacity thresholds. The model highlights four sources of unpredictability: chaotic regimes, quasiperiodicity, proximity to SNIC or transcritical bifurcations, and bistability. Our findings reveal that chaotic regimes are more predictable than quasiperiodic regimes in epidemiological terms. Synchronizing outbreaks with seasonal cycles, even in chaotic regimes, predominantly results in significant winter outbreaks. Conversely, quasiperiodicity allows outbreaks to occur at any time of the year. Near eradication unpredictability aligns with historical pertussis data, underscoring the model's relevance to real-world epidemics and vaccine schedules. Additionally, we identify a bistability region with potential for abrupt shifts in disease prevalence, triggered by superspreading events or migration.
Zobrazit více v PubMed
Diekmann, O. & Heesterbeek, J. A. P. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation Vol. 5 (Wiley, 2000).
Vyska, M. & Gilligan, C. Complex dynamical behaviour in an epidemic model with control. Bull. Math. Biol.78, 2212–2227. 10.1007/s11538-016-0217-6 (2016). PubMed PMC
Wang, J., Liu, S., Zheng, B. & Takeuchi, Y. Qualitative and bifurcation analysis using an SIR model with a saturated treatment function. Math. Comput. Model.55, 710–722. 10.1016/j.mcm.2011.08.045 (2012).
Ajbar, A. & Alqahtani, R. T. Bifurcation analysis of a SEIR epidemic system with governmental action and individual reaction. Adv. Differ. Equ.10.1186/s13662-020-02997-z (2020). PubMed PMC
Lu, M., Huang, J., Ruan, S. & Yu, P. Global dynamics of a susceptible-infectious-recovered epidemic model with a generalized nonmonotone incidence rate. J. Dyn. Diff. Equat.33, 1625–1661 (2021). PubMed PMC
Zhang, J. & Qiao, Y. Bifurcation analysis of an SIR model considering hospital resources and vaccination. Math. Comput. Simul.208, 157–185 (2023).
Dushoff, J., Plotkin, J. B., Levin, S. A. & Earn, D. J. Dynamical resonance can account for seasonality of influenza epidemics. Proc. Natl. Acad. Sci.101, 16915–16916 (2004). PubMed PMC
Simpson, R. B., Zhou, B. & Naumova, E. N. Seasonal synchronization of foodborne outbreaks in the United States, 1996–2017. Sci. Rep.10.1038/s41598-020-74435-9 (2020). PubMed PMC
Martinez, M. E. The calendar of epidemics: Seasonal cycles of infectious diseases. PLoS Pathog.14, e1007327 (2018). PubMed PMC
Mathieu, E. et al. Covid-19 pandemic https://ourworldindata.org/coronavirus (2020).
National Center for Immunization and Respiratory Diseases (U.S.) & Centers for Disease Control and Prevention (U.S.). Office of the Associate Director for Communication. Digital Media Branch. Division of Public Affairs. 1918 pandemic influenza: three waves. 1918 Flu Pandemic: 100 Years (2018).
Finkelman, B. S. et al. Global patterns in seasonal activity of influenza A/H3N2, A/H1N1, and B from 1997 to 2005: viral coexistence and latitudinal gradients. PLoS ONE2, e1296 (2007). PubMed PMC
Chen, X. et al. Global analysis of influenza epidemic characteristics in the first two seasons after lifting the nonpharmaceutical interventions for COVID-19. Int. J. Infect. Dis.151, 107372 (2025). PubMed
Magpantay, F. & Rohani, P. Dynamics of pertussis transmission in the United States. Am. J. Epidemiol.181, 921–931 (2015). PubMed PMC
Rohani, P. & Scarpino, S. Pertussis: Epidemiology, Immunology, and Evolution (Oxford University Press, 2018).
Boëlle, P.-Y., Ansart, S., Cori, A. & Valleron, A.-J. Transmission parameters of the a/h1n1 (2009) influenza virus pandemic: a review. Influenza Other Respir. Viruses5, 306–316 (2011). PubMed PMC
Golubitsky, M., Stewart, I. & Schaeffer, D. G. Singularities and Groups in Bifurcation Theory 1 edn. (Springer, 1988).
Guckenheimer, J. & Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields 7 edn. (Springer, 2002).
Kuznetsov, Y. A. Elements of Applied Bifurcation Theory 2nd ed. edn. (Springer, 1998).
The MathWorks Inc. Matlab, version r2023a. https://www.mathworks.com (2023).
Dhooge, A., Govaerts, W. & Kuznetsov, Yu. A. MatCont: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw.29, 141–164 (2003).
Dhooge, A., Govaerts, W., Kuznetsov, Yu. A., Meijer, H. G. & Sautois, B. New features of the software MatCont for bifurcation analysis of dynamical systems. Math. Comput. Model. Dyn. Syst.14, 147–175 (2008).
Přibylová, L. et al. Using real-time ascertainment rate estimate from infection and hospitalization dataset for modeling the spread of infectious disease: Covid-19 case study in the czech republic. PLoS ONE18, e0287959 (2023). PubMed PMC
Sherratt, K. et al. Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations. Elife12, e81916 (2023). PubMed PMC
Madewell, Z. J. et al. Rapid review and meta-analysis of serial intervals for SARS-CoV-2 Delta and Omicron variants. BMC Infect. Dis.23, 429 (2023). PubMed PMC
Peppa, M., John Edmunds, W. & Funk, S. Disease severity determines health-seeking behaviour amongst individuals with influenza-like illness in an internet-based cohort. BMC Infect. Dis.17, 1–13 (2017). PubMed PMC
van Kampen, J. J. et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat. Commun.12, 267 (2021). PubMed PMC
Kissler, S. M. et al. Viral dynamics of SARS-CoV-2 variants in vaccinated and unvaccinated persons. N. Engl. J. Med.385, 2489–2491 (2021). PubMed PMC
Šmíd, M. et al. Protection by vaccines and previous infection against the omicron variant of severe acute respiratory syndrome coronavirus 2. J. Infect. Dis.226, 1385–1390 (2022). PubMed PMC
Li, X. et al. Clinical determinants of the severity of COVID-19: A systematic review and meta-analysis. PLoS ONE16, e0250602 (2021). PubMed PMC
Zhang, J.-J., Dong, X., Liu, G.-H. & Gao, Y.-D. Risk and protective factors for COVID-19 morbidity, severity, and mortality. Clin. Rev. Allergy Immunol.64, 90–107 (2023). PubMed PMC
Polack, F. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med.383, 2603–2615. 10.1056/NEJMoa2034577 (2020). PubMed PMC
Fajnzylber, J. et al. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat. Commun.11, 5493 (2020). PubMed PMC
Berec, L. et al. Protection provided by vaccination, booster doses and previous infection against covid-19 infection, hospitalisation or death over time in Czechia. PLoS ONE17, e0270801 (2022). PubMed PMC
Eclerová, V., Přibylová, L. & Botha, A. E. Embedding nonlinear systems with two or more harmonic phase terms near the Hopf-Hopf bifurcation. Nonlinear Dyn.111, 1537–1551 (2023).
Přibylová, L., Sen, D. & Eclerová, V. Destabilization of a seasonal synchronization in a population model with a seasonally varying Allee effect. Appl. Math. Comput.462, 128331 (2024).
Přibylová, L. Exploring synchronization mechanisms via bifurcation analysis - a unified approach across neuronal, ecological and physical realms. In 2023 International Conference on Applied Mathematics & Computer Science (ICAMCS), 1–9, 10.1109/ICAMCS59110.2023 (IEEE, 2024).
Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos 2 edn. (Springer, 2003).
Benettin, G., Galgani, L., Giorgilli, A. & Strelcyn, J.-M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory. Meccanica15, 9–20 (1980).
Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. Determining lyapunov exponents from a time series. Phys. D16, 285–317 (1985).
Jones, A. & Strigul, N. Is spread of COVID-19 a chaotic epidemic?. Chaos Solitons Fract.142, 110376 (2021). PubMed PMC
Govorukhin, V. Calculation Lyapunov exponents for ODE. https://www.mathworks.com/matlabcentral/fileexchange/4628-calculation-lyapunov-exponents-for-ode. MATLAB Central File Exchange. Retrieved March 6, 2024 (2024).
Milstein, G. N. Approximate integration of stochastic differential equations. Theory Probab. Appl.19, 557–562 (1974).
Devaney, R. An Introduction to Chaotic Dynamical Systems (CRC Press, 2018).
Strogatz, S. H. Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, 2018).
World Health Organization. Global influenza surveillance and response system (gisrs). https://www.who.int/initiatives/global-influenza-surveillance-and-response-system Accessed: 2025-04-07 (2025).
Pusuluri, K., Ju, H. & Shilnikov, A. Chaotic dynamics in neural systems. Synergetics 197–209 (2020).
Přibylová, L. et al. Weak coupling of neurons enables very high-frequency and ultra-fast oscillations through the interplay of synchronized phase shifts. Netw. Neurosci.8, 293–318 (2024). PubMed PMC
Scully, J., Hinsley, C., Bloom, D., Meijer, H. G. E. & Shilnikov, A. L. Widespread neuronal chaos induced by slow oscillating currents. Chaos35, 033120. 10.1063/5.0248001 (2025). PubMed
Záthurecký, J., Eclerová, V., Ševčík, J., Zapadlo, Š & Přibylová, L. Phase shifts inside Arnold tongues of weakly coupled oscillators. Commun. Nonlinear Sci. Numer. Simul.145, 108729 (2025).
Zamanzadeh, M., Meijer, H. G. & Ouakad, H. M. Internal resonance in a MEMS levitation force resonator. Nonlinear Dyn.110, 1151–1174 (2022).
Eclerová, V. & Botha, A. Bifurcations of the superconductor-ferromagnet-superconductor [Image: see text] 0 josephson junction. Commun. Nonlinear Sci. Numer. Simul. 108777 (2025).
Chowdhury, P. R., Banerjee, M. & Petrovskii, S. Coexistence of chaotic and non-chaotic attractors in a three-species slow-fast system. Chaos Solitons Fract.167, 113015 (2023).
Kumar, B., Sinha, R. K. & Hussain, S. Comparative analysis of eco-epidemic model with disease in prey and gestation delay in predator: Implications for population dynamics. Adv. Continuous Discrete Models2025, 8 (2025).
National Notifiable Diseases Surveillance System (NNDSS). 2020 Case Definition: Pertussis/Whooping Cough (Bordetella pertussis) (Centers for Disease Control and Prevention (CDC), 2020). Accessed 5 Apr 2024.
European Centre for Disease Prevention and Control (ECDC). Annual Epidemiological Report for 2018: Pertussis (ECDC, 2020). Accessed 5 Apr 2024.
Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature438, 355–359 (2005). PubMed PMC
Delamater, P. L., Street, E. J., Leslie, T. F., Yang, Y. T. & Jacobsen, K. H. Complexity of the basic reproduction number (R0). Emerg. Infect. Dis.25, 1 (2019). PubMed PMC
Sen, D. & Přibylová, L. Complex dynamics in prey-predator systems with cross-coupling: Exploring nonlinear interactions and population oscillations. Commun. Nonlinear Sci. Numer. Simul.137, 108154 (2024).
Mondal, D., Sen, M. & Sen, D. Exploring population oscillations: Cross-coupling and dispersal effects in prey-predator dynamics. Phys. D472, 134525 (2025).
Clark, J. M., Clark, M. D. & Wilcox, L. R. pomp: Statistical Inference for Partially Observed Markov Processes (2020). R package version 2.4-0.
King, A. A., Nguyen, D. & Ionides, E. L. Statistical inference for partially observed Markov processes via the R package pomp. J. Stat. Softw.69, 1–43 (2016).
United Nations, Department of Economic and Social Affairs, Population Division. World population prospects 2022: Summary of results. Technical report UN DESA/POP/2022/TR/NO. 3 (2022). Accessed 10 Apr 2025.
Eurostat. Eurostat Regional Yearbook 2023 (Publications Office of the European Union, Luxembourg, 2023). Product code: KS-HA-23-001.