Empagliflozin enhances metabolic efficiency and improves left ventricular hypertrophy in a hypertrophic cardiomyopathy mouse model

. 2025 Oct 22 ; 46 (40) : 4105-4119.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40396194

Grantová podpora
NHLBI NIH HHS - United States
NIH HHS - United States
American Heart Association
National Institute for Research of Metabolic and Cardiovascular Diseases
European Union
National Science Foundation Engineering Research Center on Cellular Metamaterials
National Science Foundation Graduate Research Fellowship
NHLBI NIH HHS - United States
NIH HHS - United States

BACKGROUND AND AIMS: Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disorder characterized by left ventricular hypertrophy (LVH), diastolic dysfunction, and impaired metabolic efficiency. This study investigates the therapeutic potential of the sodium-glucose cotransporter 2 inhibitor (SGLT2i) empagliflozin (EMPA) in ameliorating these pathological features in a mouse model carrying the myosin R403Q mutation. METHODS: Male mice harbouring the R403Q mutation were treated with EMPA for 16 weeks. Multi-nuclear magnetic resonance spectroscopy (31P, 13C, and 23Na MRS), echocardiography, transcriptomic, proteomic, and phosphoproteomic profiling were utilized to assess metabolic, structural, and functional changes. RESULTS: Empagliflozin facilitated the coupling of glycolysis with glucose oxidation and normalized elevated intracellular sodium levels. Treatment resulted in a significant reduction in LVH and myocardial fibrosis as evidenced by echocardiography and histopathology. These structural improvements correlated with enhancements in mitochondrial adenosine triphosphate (ATP) synthesis, fatty acid oxidation, and branched-chain amino acid catabolism. Furthermore, EMPA improved left ventricular diastolic function and contractile reserve, underscored by improved ATP production and reduced energy cost of contraction. Notably, these benefits were linked to down-regulation of the mammalian target of rapamycin signalling pathway and normalization of myocardial substrate metabolic fluxes. CONCLUSIONS: Empagliflozin significantly mitigates structural and metabolic dysfunctions in a mouse model of HCM, underscoring its potential as a therapeutic agent for managing this condition. These findings suggest broader applicability of SGLT2i in cardiovascular diseases, including those due to myocardial-specific mutations, warranting further clinical investigation.

Komentář v

doi: 10.1093/eurheartj/ehaf395 PubMed

Zobrazit více v PubMed

Maron  BJ, Desai  MY, Nishimura  RA, Spirito  P, Rakowski  H, Towbin  JA, et al.  Diagnosis and evaluation of hypertrophic cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol  2022;79:372–89. 10.1016/J.JACC.2021.12.002 PubMed DOI

Marian  AJ, Braunwald  E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res  2017;121:749–70. 10.1161/CIRCRESAHA.117.311059 PubMed DOI PMC

Toepfer  CN, Garfinkel  AC, Venturini  G, Wakimoto  H, Repetti  G, Alamo  L, et al.  Myosin sequestration regulates sarcomere function, cardiomyocyte energetics, and metabolism, informing the pathogenesis of hypertrophic cardiomyopathy. Circulation  2020;141:828–42. 10.1161/CIRCULATIONAHA.119.042339 PubMed DOI PMC

Sequeira  V, Bertero  E, Maack  C. Energetic drain driving hypertrophic cardiomyopathy. FEBS Lett  2019;593:1616–26. 10.1002/1873-3468.13496 PubMed DOI

Yotti  R, Seidman  CE, Seidman  JG. Advances in the genetic basis and pathogenesis of sarcomere cardiomyopathies. Annu Rev Genomics Hum Genet  2019;20:129–53. 10.1146/ANNUREV-GENOM-083118-015306 PubMed DOI

Crilley  JG, Boehm  EA, Blair  E, Rajagopalan  B, Blamire  AM, Styles  P, et al.  Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol  2003;41:1776–82. 10.1016/S0735-1097(02)03009-7 PubMed DOI

Coats  CJ, Heywood  WE, Virasami  A, Ashrafi  N, Syrris  P, Remedios  CD, et al.  Proteomic analysis of the myocardium in hypertrophic obstructive cardiomyopathy. Circ Genomic Precis Med  2018;11:e001974. 10.1161/CIRCGEN.117.001974 PubMed DOI

Ranjbarvaziri  S, Kooiker  KB, Ellenberger  M, Fajardo  G, Zhao  M, Roest  AV, et al.  Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy. Circulation  2021;144:1714–31. 10.1161/CIRCULATIONAHA.121.053575 PubMed DOI PMC

Sambandam  N, Lopaschuk  GD, Brownsey  RW, Allard  MF. Energy metabolism in the hypertrophied heart. Heart Fail Rev  2002;7:161–73. 10.1023/A:1015380609464 PubMed DOI

Aoyama  R, Takano  H, Kobayashi  Y, Kitamura  M, Asai  K, Amano  Y, et al.  Evaluation of myocardial glucose metabolism in hypertrophic cardiomyopathy using 18F-fluorodeoxyglucose positron emission tomography. PLoS One  2017;12:e0188479. 10.1371/JOURNAL.PONE.0188479 PubMed DOI PMC

Jung  WI, Sieverding  L, Breuer  J, Hoess  T, Widmaier  S, Schmidt  O, et al. PubMed DOI

Moore  J, Ewoldt  J, Venturini  G, Pereira  AC, Padilha  K, Lawton  M, et al.  Multi-omics profiling of hypertrophic cardiomyopathy reveals altered mechanisms in mitochondrial dynamics and excitation–contraction coupling. Int J Mol Sci  2023;24:4724. 10.3390/IJMS24054724/S1 PubMed DOI PMC

Garciarena  CD, Youm  JB, Swietach  P, Vaughan-Jones  RD. H PubMed DOI

Fillmore  N, Levasseur  JL, Fukushima  A, Wagg  CS, Wang  W, Dyck  JRB, et al.  Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol Med  2018;24:1–12. 10.1186/S10020-018-0005-X PubMed DOI PMC

Chahine  M, Bkaily  G, Nader  M, Al-Khoury  J, Jacques  D, Beier  N, et al.  NHE-1-dependent intracellular sodium overload in hypertrophic hereditary cardiomyopathy: prevention by NHE-1 inhibitor. J Mol Cell Cardiol  2005;38:571–82. 10.1016/J.YJMCC.2005.01.003 PubMed DOI

Coppini  R, Ferrantini  C, Mugelli  A, Poggesi  C, Cerbai  E. Altered Ca PubMed DOI PMC

Anker  SD, Butler  J, Filippatos  G, Ferreira  JP, Bocchi  E, Böhm  M, et al.  Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med  2021;385:1451–61. 10.1056/NEJMOA2107038 PubMed DOI

Croteau  D, Luptak  I, Chambers  JM, Hobai  I, Panagia  M, Pimentel  DR, et al.  Effects of sodium-glucose linked transporter 2 inhibition with ertugliflozin on mitochondrial function, energetics, and metabolic gene expression in the presence and absence of diabetes mellitus in mice. J Am Heart Assoc  2021;10:e019995. 10.1161/JAHA.120.019995 PubMed DOI PMC

Croteau  D, Baka  T, Young  S, He  H, Chambers  JM, Qin  F, et al.  SGLT2 inhibitor ertugliflozin decreases elevated intracellular sodium, and improves energetics and contractile function in diabetic cardiomyopathy. Biomed Pharmacother  2023;160:114310. 10.1016/J.BIOPHA.2023.114310 PubMed DOI PMC

Subramanian  M, Sravani  V, Krishna  SP, Bijjam  S, Sunehra  C, Yalagudri  S, et al.  Efficacy of SGLT2 inhibitors in patients with diabetes and nonobstructive hypertrophic cardiomyopathy. Am J Cardiol  2023;188:80–6. 10.1016/J.AMJCARD.2022.10.054 PubMed DOI

Aglan  A, Fath  AR, Eldaly  AS, Anderson  AS, Phillips  JS, Maron  BJ, et al.  Impact of sodium-glucose cotransporter 2 inhibitors on mortality in hypertrophic cardiomyopathy. JACC Adv  2024;3:100843. 10.1016/J.JACADV.2024.100843 PubMed DOI PMC

Aksentijević  D, Karlstaedt  A, Basalay M  V, O’Brien  BA, Sanchez-Tatay  D, Eminaga  S, et al.  Intracellular sodium elevation reprograms cardiac metabolism. Nat Commun  2020;11:4337. 10.1038/s41467-020-18160-x PubMed DOI PMC

Gong  Q, Zhang  R, Wei  F, Fang  J, Zhang  J, Sun  J, et al.  SGLT2 inhibitor-empagliflozin treatment ameliorates diabetic retinopathy manifestations and exerts protective effects associated with augmenting branched chain amino acids catabolism and transportation in db/db mice. Biomed Pharmacother  2022;152:113222. 10.1016/J.BIOPHA.2022.113222 PubMed DOI

Verma  S, Rawat  S, Ho  KL, Wagg  CS, Zhang  L, Teoh  H, et al.  Empagliflozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors. JACC Basic Transl Sci  2018;3:575–87. 10.1016/J.JACBTS.2018.07.006 PubMed DOI PMC

Geisterfer-Lowrance  AAT, Christe  M, Conner  DA, Ingwall  JS, Schoen  FJ, Seidman  CE, et al.  A mouse model of familial hypertrophic cardiomyopathy. Science  1996;272:731–4. 10.1126/SCIENCE.272.5262.731 PubMed DOI

Spindler  M, Saupe  KW, Christe  ME, Sweeney  HL, Seidman  CE, Seidman  JG, et al.  Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. J Clin Invest  1998;101:1775–83. 10.1172/JCI1940 PubMed DOI PMC

Sverdlov  AL, Elezaby  A, Qin  F, Behring  JB, Luptak  I, Calamaras  TD, et al.  Mitochondrial reactive oxygen species mediate cardiac structural, functional, and mitochondrial consequences of diet-induced metabolic heart disease. J Am Heart Assoc  2016;5:e002555. 10.1161/JAHA.115.002555 PubMed DOI PMC

Luptak  I, Qin  F, Sverdlov  AL, Pimentel  DR, Panagia  M, Croteau  D, et al.  Energetic dysfunction is mediated by mitochondrial reactive oxygen species and precedes structural remodeling in metabolic heart disease. Antioxid Redox Signal  2019;31:539–49. 10.1089/ars.2018.7707 PubMed DOI PMC

Luptak  I, Sverdlov  AL, Panagia  M, Qin  F, Pimentel  DR, Croteau  D, et al.  Decreased ATP production and myocardial contractile reserve in metabolic heart disease. J Mol Cell Cardiol  2018;116:106–14. 10.1016/j.yjmcc.2018.01.017 PubMed DOI PMC

Luptak  I, Yan  J, Cui  L, Jain  M, Liao  R, Tian  R. Long-term effects of increased glucose entry on mouse hearts during normal aging and ischemic stress. Circulation  2007;116:901–9. 10.1161/CIRCULATIONAHA.107.691253 PubMed DOI

Luptak  I, Balschi  JA, Xing  Y, Leone  TC, Kelly  DP, Tian  R. Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-α-null hearts can be rescued by increasing glucose transport and utilization. Circulation  2005;112:2339–46. 10.1161/CIRCULATIONAHA.105.534594 PubMed DOI

Malloy  CR, Sherry  AD, Jeffrey  H. Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by PubMed DOI

Miller  EJ, Calamaras  T, Elezaby  A, Sverdlov  A, Qin  F, Luptak  I, et al.  Partial liver kinase B1 (LKB1) deficiency promotes diastolic dysfunction, de novo systolic dysfunction, apoptosis, and mitochondrial dysfunction with dietary metabolic challenge. J Am Heart Assoc  2015;5:e002277. 10.1161/JAHA.115.002277 PubMed DOI PMC

Goodman  JB, Qin  F, Morgan  RJ, Chambers  JM, Croteau  D, Siwik  DA, et al.  Redox-resistant SERCA [sarco(endo)plasmic reticulum calcium ATPase] attenuates oxidant-stimulated mitochondrial calcium and apoptosis in cardiac myocytes and pressure overload-induced myocardial failure in mice. Circulation  2020;142:2459–69. 10.1161/CIRCULATIONAHA.120.048183 PubMed DOI PMC

Liu  X, Yin  K, Chen  L, Chen  W, Li  W, Zhang  T, et al.  Lineage-specific regulatory changes in hypertrophic cardiomyopathy unraveled by single-nucleus RNA-seq and spatial transcriptomics. Cell Discov  2023;9:6. 10.1038/S41421-022-00490-3 PubMed DOI PMC

Liu  W, Sun  D, Yang  J. Diastolic dysfunction of hypertrophic cardiomyopathy genotype-positive subjects without hypertrophy is detected by tissue Doppler imaging: a systematic review and meta-analysis. J Ultrasound Med  2017;36:2093–103. 10.1002/JUM.14250 PubMed DOI

Ertz-Berger  BR, He  H, Dowell  C, Factor  SM, Haim  TE, Nunez  S, et al.  Changes in the chemical and dynamic properties of cardiac troponin T cause discrete cardiomyopathies in transgenic mice. Proc Natl Acad Sci U S A  2005;102:18219–24. 10.1073/PNAS.0509181102 PubMed DOI PMC

Huang  Y, Zhou  M, Sun  H, Wang  Y. Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit?  Cardiovasc Res  2011;90:220–3. 10.1093/CVR/CVR070 PubMed DOI PMC

Fine  KS, Wilkins  JT, Sawicki  KT. Circulating branched chain amino acids and cardiometabolic disease. J Am Heart Assoc  2024;13:e031617. 10.1161/JAHA.123.031617 PubMed DOI PMC

Murashige  D, Jung  JW, Neinast  MD, Levin  MG, Chu  Q, Lambert  JP, et al.  Extra-cardiac BCAA catabolism lowers blood pressure and protects from heart failure. Cell Metab  2022;34:1749–64.e7. 10.1016/J.CMET.2022.09.008 PubMed DOI PMC

Hooijman  P, Stewart  MA, Cooke  R. A new state of cardiac myosin with very slow ATP turnover: a potential cardioprotective mechanism in the heart. Biophys J  2011;100:1969–76. 10.1016/j.bpj.2011.02.061 PubMed DOI PMC

Sarkar  SS, Trivedi  DV, Morck  MM, Adhikari  AS, Pasha  SN, Ruppel  KM, et al.  The hypertrophic cardiomyopathy mutations R403Q and R663H increase the number of myosin heads available to interact with actin. Sci Adv  2020;6:eaax0069. 10.1126/sciadv.aax0069 PubMed DOI PMC

Wijnker  PJM, Sequeira  V, Kuster  DWD, van der Velden  J. Hypertrophic cardiomyopathy: a vicious cycle triggered by sarcomere mutations and secondary disease hits. Antioxid Redox Signal  2019;31:318–58. 10.1089/ars.2017.7236 PubMed DOI PMC

Kammermeier  H. High energy phosphate of the myocardium: concentration versus free energy change. Basic Res Cardiol  1987;82:31–6. 10.1007/978-3-662-11289-2 PubMed DOI

Tian  R, Halow  JM, Meyer  M, Dillmann  WH, Figueredo  VM, Ingwall  JS, et al.  Thermodynamic limitation for Ca PubMed DOI

Tian  R, Nascimben  L, Ingwall  JS, Lorell  BH. Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts. Circulation  1997;96:1313–9. 10.1161/01.CIR.96.4.1313 PubMed DOI

Panagia  M, He  H, Baka  T, Pimentel  DR, Croteau  D, Bachschmid  MM, et al.  Increasing mitochondrial ATP synthesis with butyrate normalizes ADP and contractile function in metabolic heart disease. NMR Biomed  2020;33:e4258. 10.1002/nbm.4258 PubMed DOI PMC

Louch  WE, Hougen  K, Mork  HK, Swift  F, Aronsen  JM, Sjaastad  I, et al.  Sodium accumulation promotes diastolic dysfunction in end-stage heart failure following Serca2 knockout. J Physiol  2010;588:465–78. 10.1113/jphysiol.2009.183517 PubMed DOI PMC

Coppini  R, Ferrantini  C, Mazzoni  L, Sartiani  L, Olivotto  I, Poggesi  C, et al.  Regulation of intracellular Na PubMed DOI PMC

Schauer  A, Adams  V, Kämmerer  S, Langner  E, Augstein  A, Barthel  P, et al.  Empagliflozin improves diastolic function in HFpEF by restabilizing the mitochondrial respiratory chain. Circ Heart Fail  2024;17:e011107. 10.1161/CIRCHEARTFAILURE.123.011107 PubMed DOI PMC

Liu  T, Takimoto  E, Dimaano  VL, DeMazumder  D, Kettlewell  S, Smith  G, et al.  Inhibiting mitochondrial Na PubMed DOI PMC

Liao  R, Jain  M, Cui  L, D’Agostino  J, Aiello  F, Luptak  I, et al.  Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation  2002;106:2125–31. 10.1161/01.CIR.0000034049.61181.F3 PubMed DOI

Yurista  SR, Silljé  HHW, Oberdorf-Maass  SU, Schouten  EM, Pavez Giani  MG, Hillebrands  JL, et al.  Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail  2019;21:862–73. 10.1002/EJHF.1473 PubMed DOI

Santos-Gallego  CG, Requena-Ibanez  JA, San Antonio  R, Ishikawa  K, Watanabe  S, Picatoste  B, et al.  Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol  2019;73:1931–44. 10.1016/J.JACC.2019.01.056 PubMed DOI

Chase  D, Eykyn  TR, Shattock  MJ, Chung  YJ. Empagliflozin improves cardiac energetics during ischaemia/reperfusion by directly increasing cardiac ketone utilization. Cardiovasc Res  2023;119:2672–80. 10.1093/CVR/CVAD157 PubMed DOI PMC

Baka  T, Croteau  D, Chambers  J, He  H, Balschi  J, Qin  F, et al.  Abstract 10678: Butyrate improves energetics, diastolic function and contractile reserve in hearts from mice with hypertrophic cardiomyopathy due to myosin R403Q mutation. Circulation  2021;144:A10678. 10.1161/CIRC.144.SUPPL_1.10678 DOI

Packer  M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol 2023;20:443–62. 10.1038/s41569-022-00824-4 PubMed DOI

Razeghi  P, Young  ME, Alcorn  JL, Moravec  CS, Frazier  OH, Taegtmeyer  H. Metabolic gene expression in fetal and failing human heart. Circulation  2001;104:2923–31. 10.1161/HC4901.100526 PubMed DOI

Ritterhoff  J, Tian  R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res  2017;113:411–21. 10.1093/CVR/CVX017 PubMed DOI PMC

Tran  DH, May  HI, Li  Q, Luo  X, Huang  J, Zhang  G, et al.  Chronic activation of hexosamine biosynthesis in the heart triggers pathological cardiac remodeling. Nat Commun  2020;11:1771. 10.1038/s41467-020-15640-y PubMed DOI PMC

Wang  W, Wang  J, Yao  K, Wang  S, Nie  M, Zhao  Y, et al.  Metabolic characterization of hypertrophic cardiomyopathy in human heart. Nat Cardiovasc Res  2022;1:445–61. 10.1038/s44161-022-00057-1 PubMed DOI

Gélinas  R, Mailleux  F, Dontaine  J, Bultot  L, Demeulder  B, Ginion  A, et al.  AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nat Commun  2018;9:374. 10.1038/s41467-017-02795-4 PubMed DOI PMC

Forelli  N, Eaton  D, Patel  J, Bowman  CE, Kawakami  R, Kuznetsov  IA, et al. SGLT2 inhibitors activate pantothenate kinase in the human heart. bioRxiv, 10.1101/2024.07.26.605401, 27 July 2024, preprint: not peer reviewed. DOI

Baka  T, Moore  J, Qin  F, He  H, Chambers  JM, Croteau  D, et al.  Abstract 15515: SGLT2 inhibitor empagliflozin increases fatty acid oxidation, coupling between glycolysis and glucose oxidation, and decreases left ventricular hypertrophy in mice with hypertrophic cardiomyopathy due to myosin R403Q mutation. Circulation  2023;148:A15515. 10.1161/CIRC.148.SUPPL_1.15515 DOI

Karwi  QG, Wagg  CS, Altamimi  TR, Uddin  GM, Ho  KL, Darwesh  AM, et al.  Insulin directly stimulates mitochondrial glucose oxidation in the heart. Cardiovasc Diabetol  2020;19:207. 10.1186/S12933-020-01177-3 PubMed DOI PMC

Schuldt  M, van Driel  B, Algül  S, Parbhudayal  RY, Barge-Schaapveld  DQCM, Güçlü  A, et al.  Distinct metabolomic signatures in preclinical and obstructive hypertrophic cardiomyopathy. Cells  2021;10:2950. 10.3390/cells10112950 PubMed DOI PMC

Bertero  E, Maack  C. Calcium signaling and reactive oxygen species in mitochondria. Circ Res  2018;122:1460–78. 10.1161/CIRCRESAHA.118.310082 PubMed DOI

Pogwizd  SM, Sipido  KR, Verdonck  F, Bers  DM. Intracellular Na in animal models of hypertrophy and heart failure: contractile function and arrhythmogenesis. Cardiovasc Res  2003;57:887–96. 10.1016/S0008-6363(02)00735-6 PubMed DOI

Wijnker  PJM, Dinani  R, Laan  NVD, Algül  S, Knollmann  BC, Verkerk  AO, et al.  Hypertrophic cardiomyopathy dysfunction mimicked in human engineered heart tissue and improved by sodium-glucose cotransporter 2 inhibitors. Cardiovasc Res  2024;120:301–17. 10.1093/CVR/CVAE004 PubMed DOI PMC

Coppini  R, Santini  L, Olivotto  I, Ackerman  MJ, Cerbai  E. Abnormalities in sodium current and calcium homoeostasis as drivers of arrhythmogenesis in hypertrophic cardiomyopathy. Cardiovasc Res  2020;116:1585–99. 10.1093/CVR/CVAA124 PubMed DOI

Fernandes  GC, Fernandes  A, Cardoso  R, Penalver  J, Knijnik  L, Mitrani  RD, et al.  Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: a meta-analysis of 34 randomized controlled trials. Heart Rhythm  2021;18:1098–105. 10.1016/J.HRTHM.2021.03.028 PubMed DOI

Bertero  E, Prates Roma  L, Ameri  P, Maack  C. Cardiac effects of SGLT2 inhibitors: the sodium hypothesis. Cardiovasc Res  2018;114:12–8. 10.1093/cvr/cvx149 PubMed DOI

Hegyi  B, Mira Hernandez  J, Shen  EY, Habibi  NR, Bossuyt  J, Bers  DM. Empagliflozin reverses late Na PubMed DOI PMC

Philippaert  K, Kalyaanamoorthy  S, Fatehi  M, Long  W, Soni  S, Byrne  NJ, et al.  Cardiac late sodium channel current is a molecular target for the sodium/glucose cotransporter 2 inhibitor empagliflozin. Circulation  2021;143:2188–204. 10.1161/CIRCULATIONAHA.121.053350 PubMed DOI PMC

Karmazyn  M. NHE-1: still a viable therapeutic target. J Mol Cell Cardiol  2013;61:77–82. 10.1016/j.yjmcc.2013.02.006 PubMed DOI

Maack  C, Cortassa  S, Aon  MA, Ganesan  AN, Liu  T, O’Rourke  B. Elevated cytosolic Na PubMed DOI PMC

Aragón-Herrera  A, Feijóo-Bandín  S, Otero Santiago  M, Barral  L, Campos-Toimil  M, Gil-Longo  J, et al.  Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats. Biochem Pharmacol  2019;170:113677. 10.1016/J.BCP.2019.113677 PubMed DOI

Li  X, Lu  Q, Qiu  Y, Carmo  JD, Wang  Z, Silva  Ad, et al.  Direct cardiac actions of the sodium glucose co-transporter 2 inhibitor empagliflozin improve myocardial oxidative phosphorylation and attenuate pressure-overload heart failure. J Am Heart Assoc  2021;10:e018298. 10.1161/JAHA.120.018298 PubMed DOI PMC

Moellmann  J, Mann  PA, Kappel  BA, Kahles  F, Klinkhammer  BM, Boor  P, et al.  The sodium-glucose co-transporter-2 inhibitor ertugliflozin modifies the signature of cardiac substrate metabolism and reduces cardiac mTOR signalling, endoplasmic reticulum stress and apoptosis. Diabetes Obes Metab  2022;24:2263–72. 10.1111/DOM.14814 PubMed DOI

Sun  H, Olson  KC, Gao  C, Prosdocimo  DA, Zhou  M, Wang  Z, et al.  Catabolic defect of branched-chain amino acids promotes heart failure. Circulation  2016;133:2038–49. 10.1161/CIRCULATIONAHA.115.020226 PubMed DOI PMC

Li  T, Zhang  Z, Kolwicz  SC, Abell  L, Roe  ND, Kim  M, et al.  Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury. Cell Metab  2017;25:374–85. 10.1016/J.CMET.2016.11.005 PubMed DOI PMC

Wang  W, Zhang  F, Xia  Y, Zhao  S, Yan  W, Wang  H, et al.  Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol  2016;311:H1160–9. 10.1152/AJPHEART.00114.2016 PubMed DOI

Neishabouri  SH, Hutson  SM, Davoodi  J. Chronic activation of mTOR complex 1 by branched chain amino acids and organ hypertrophy. Amino Acids  2015;47:1167–82. 10.1007/S00726-015-1944-Y PubMed DOI

Du  X, Li  Y, Wang  Y, You  H, Hui  P, Zheng  Y, et al.  Increased branched-chain amino acid levels are associated with long-term adverse cardiovascular events in patients with STEMI and acute heart failure. Life Sci  2018;209:167–72. 10.1016/J.LFS.2018.08.011 PubMed DOI

Kimura  Y, Okumura  T, Kazama  S, Shibata  N, Oishi  H, Arao  Y, et al.  Usefulness of plasma branched-chain amino acid analysis in predicting outcomes of patients with nonischemic dilated cardiomyopathy. Int Heart J  2020;61:739–47. 10.1536/IHJ.20-010 PubMed DOI

Yu  J-Y, Cao  N, Rau  CD, Lee  R-P, Yang  J, Flach  RJR, et al.  Cell-autonomous effect of cardiomyocyte branched-chain amino acid catabolism in heart failure in mice. Acta Pharmacol Sin  2023;44:1380–90. 10.1038/s41401-023-01076-9 PubMed DOI PMC

Uddin  GM, Zhang  L, Shah  S, Fukushima  A, Wagg  CS, Gopal  K, et al.  Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc Diabetol  2019;18:86. 10.1186/S12933-019-0892-3 PubMed DOI PMC

Zhang  L, Zhang  H, Xie  X, Tie  R, Shang  X, Zhao  Q, et al.  Empagliflozin ameliorates diabetic cardiomyopathy via regulated branched-chain amino acid metabolism and mTOR/p-ULK1 signaling pathway-mediated autophagy. Diabetol Metab Syndr  2023;15:93. 10.1186/S13098-023-01061-6 PubMed DOI PMC

Kappel  BA, Lehrke  M, Schütt  K, Artati  A, Adamski  J, Lebherz  C, et al.  Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation  2017;136:969–72. 10.1161/CIRCULATIONAHA.117.029166 PubMed DOI

Pabel  S, Hamdani  N, Luedde  M, Sossalla  S. SGLT2 inhibitors and their mode of action in heart failure-has the mystery been unravelled?  Curr Heart Fail Rep  2021;18:315–28. 10.1007/S11897-021-00529-8 PubMed DOI PMC

Pabel  S, Wagner  S, Bollenberg  H, Bengel  P, Kovács  Á, Schach  C, et al.  Empagliflozin directly improves diastolic function in human heart failure. Eur J Heart Fail  2018;20:1690–700. 10.1002/EJHF.1328 PubMed DOI

Kolijn  D, Pabel  S, Tian  Y, Lódi  M, Herwig  M, Carrizzo  A, et al.  Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc Res  2021;117:495–507. 10.1093/CVR/CVAA123 PubMed DOI

Marton  A, Kaneko  T, Kovalik  JP, Yasui  A, Nishiyama  A, Kitada  K, et al.  Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat Rev Nephrol  2021;17:65–77. 10.1038/S41581-020-00350-X PubMed DOI

Arbelo  E, Protonotarios  A, Gimeno  JR, Arbustini  E, Arbelo  E, Barriales-Villa  R, et al.  2023 ESC guidelines for the management of cardiomyopathies. Eur Heart J  2023;44:3503–626. 10.1093/EURHEARTJ/EHAD194 PubMed DOI

Ommen  SR, Ho  CY, Asif  IM, Balaji  S, Burke  MA, Day  SM, et al.  2024 AHA/ACC/AMSSM/HRS/PACES/SCMR guideline for the management of hypertrophic cardiomyopathy: a report of the American Heart Association/American College of Cardiology joint committee on clinical practice guidelines. Circulation  2024;149:e1239–311. 10.1161/CIR.0000000000001250 PubMed DOI

Palmer  BM, Wang  Y, Teekakirikul  P, Hinson  JT, Fatkin  D, Strouse  S, et al.  Myofilament mechanical performance is enhanced by R403Q myosin in mouse myocardium independent of sex. Am J Physiol Heart Circ Physiol  2008;294:H1939–47. 10.1152/AJPHEART.00644.2007 PubMed DOI

Singh  SR, Zech  ATL, Geertz  B, Reischmann-Düsener  S, Osinska  H, Prondzynski  M, et al.  Activation of autophagy ameliorates cardiomyopathy in Mybpc3-targeted knockin mice. Circ Heart Fail  2017;10:e004140. 10.1161/CIRCHEARTFAILURE.117.004140 PubMed DOI PMC

Xu  X, Roe  ND, Weiser-Evans  MCM, Ren  J. Inhibition of mammalian target of rapamycin with rapamycin reverses hypertrophic cardiomyopathy in mice with cardiomyocyte-specific knockout of PTEN. Hypertension  2014;63:729–39. 10.1161/HYPERTENSIONAHA.113.02526 PubMed DOI

Sciarretta  S, Volpe  M, Sadoshima  J. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res  2014;114:549–64. 10.1161/CIRCRESAHA.114.302022 PubMed DOI PMC

Kim  M, Hunter  RW, Garcia-Menendez  L, Gong  G, Yang  YY, Kolwicz  SC, et al.  Mutation in the γ2-subunit of AMP-activated protein kinase stimulates cardiomyocyte proliferation and hypertrophy independent of glycogen storage. Circ Res  2014;114:966–75. 10.1161/CIRCRESAHA.114.302364 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...