Empagliflozin enhances metabolic efficiency and improves left ventricular hypertrophy in a hypertrophic cardiomyopathy mouse model
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
NHLBI NIH HHS - United States
NIH HHS - United States
American Heart Association
National Institute for Research of Metabolic and Cardiovascular Diseases
European Union
National Science Foundation Engineering Research Center on Cellular Metamaterials
National Science Foundation Graduate Research Fellowship
NHLBI NIH HHS - United States
NIH HHS - United States
PubMed
40396194
PubMed Central
PMC12539926
DOI
10.1093/eurheartj/ehaf324
PII: 8139707
Knihovny.cz E-zdroje
- Klíčová slova
- Branched-chain amino acids, Cardiac energetics, Cardiac metabolism, Hypertrophic cardiomyopathy, Metabolic reprogramming, SGLT2 inhibition, Uncoupled glycolysis, mTOR,
- MeSH
- adenosintrifosfát metabolismus biosyntéza MeSH
- benzhydrylové sloučeniny * farmakologie terapeutické užití MeSH
- echokardiografie MeSH
- glifloziny * farmakologie terapeutické užití MeSH
- glukosidy * farmakologie terapeutické užití MeSH
- glykolýza účinky léků MeSH
- hypertrofická kardiomyopatie * farmakoterapie metabolismus MeSH
- hypertrofie levé komory srdeční * farmakoterapie metabolismus MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát MeSH
- benzhydrylové sloučeniny * MeSH
- empagliflozin MeSH Prohlížeč
- glifloziny * MeSH
- glukosidy * MeSH
BACKGROUND AND AIMS: Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disorder characterized by left ventricular hypertrophy (LVH), diastolic dysfunction, and impaired metabolic efficiency. This study investigates the therapeutic potential of the sodium-glucose cotransporter 2 inhibitor (SGLT2i) empagliflozin (EMPA) in ameliorating these pathological features in a mouse model carrying the myosin R403Q mutation. METHODS: Male mice harbouring the R403Q mutation were treated with EMPA for 16 weeks. Multi-nuclear magnetic resonance spectroscopy (31P, 13C, and 23Na MRS), echocardiography, transcriptomic, proteomic, and phosphoproteomic profiling were utilized to assess metabolic, structural, and functional changes. RESULTS: Empagliflozin facilitated the coupling of glycolysis with glucose oxidation and normalized elevated intracellular sodium levels. Treatment resulted in a significant reduction in LVH and myocardial fibrosis as evidenced by echocardiography and histopathology. These structural improvements correlated with enhancements in mitochondrial adenosine triphosphate (ATP) synthesis, fatty acid oxidation, and branched-chain amino acid catabolism. Furthermore, EMPA improved left ventricular diastolic function and contractile reserve, underscored by improved ATP production and reduced energy cost of contraction. Notably, these benefits were linked to down-regulation of the mammalian target of rapamycin signalling pathway and normalization of myocardial substrate metabolic fluxes. CONCLUSIONS: Empagliflozin significantly mitigates structural and metabolic dysfunctions in a mouse model of HCM, underscoring its potential as a therapeutic agent for managing this condition. These findings suggest broader applicability of SGLT2i in cardiovascular diseases, including those due to myocardial-specific mutations, warranting further clinical investigation.
Department of Biomedical Engineering Boston University Boston MA USA
Department of Biomedical Engineering University of Arizona Tucson AZ USA
Department of Genetics Harvard Medical School Boston MA USA
Department of Medicine University of Arizona Tucson AZ USA
Division of Cardiovascular Medicine Brigham and Women's Hospital Boston MA USA
Howard Hughes Medical Institute Chevy Chase MD USA
Physiological NMR Core Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA USA
doi: 10.1093/eurheartj/ehaf395 PubMed
Zobrazit více v PubMed
Maron BJ, Desai MY, Nishimura RA, Spirito P, Rakowski H, Towbin JA, et al. Diagnosis and evaluation of hypertrophic cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol 2022;79:372–89. 10.1016/J.JACC.2021.12.002 PubMed DOI
Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 2017;121:749–70. 10.1161/CIRCRESAHA.117.311059 PubMed DOI PMC
Toepfer CN, Garfinkel AC, Venturini G, Wakimoto H, Repetti G, Alamo L, et al. Myosin sequestration regulates sarcomere function, cardiomyocyte energetics, and metabolism, informing the pathogenesis of hypertrophic cardiomyopathy. Circulation 2020;141:828–42. 10.1161/CIRCULATIONAHA.119.042339 PubMed DOI PMC
Sequeira V, Bertero E, Maack C. Energetic drain driving hypertrophic cardiomyopathy. FEBS Lett 2019;593:1616–26. 10.1002/1873-3468.13496 PubMed DOI
Yotti R, Seidman CE, Seidman JG. Advances in the genetic basis and pathogenesis of sarcomere cardiomyopathies. Annu Rev Genomics Hum Genet 2019;20:129–53. 10.1146/ANNUREV-GENOM-083118-015306 PubMed DOI
Crilley JG, Boehm EA, Blair E, Rajagopalan B, Blamire AM, Styles P, et al. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol 2003;41:1776–82. 10.1016/S0735-1097(02)03009-7 PubMed DOI
Coats CJ, Heywood WE, Virasami A, Ashrafi N, Syrris P, Remedios CD, et al. Proteomic analysis of the myocardium in hypertrophic obstructive cardiomyopathy. Circ Genomic Precis Med 2018;11:e001974. 10.1161/CIRCGEN.117.001974 PubMed DOI
Ranjbarvaziri S, Kooiker KB, Ellenberger M, Fajardo G, Zhao M, Roest AV, et al. Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy. Circulation 2021;144:1714–31. 10.1161/CIRCULATIONAHA.121.053575 PubMed DOI PMC
Sambandam N, Lopaschuk GD, Brownsey RW, Allard MF. Energy metabolism in the hypertrophied heart. Heart Fail Rev 2002;7:161–73. 10.1023/A:1015380609464 PubMed DOI
Aoyama R, Takano H, Kobayashi Y, Kitamura M, Asai K, Amano Y, et al. Evaluation of myocardial glucose metabolism in hypertrophic cardiomyopathy using 18F-fluorodeoxyglucose positron emission tomography. PLoS One 2017;12:e0188479. 10.1371/JOURNAL.PONE.0188479 PubMed DOI PMC
Jung WI, Sieverding L, Breuer J, Hoess T, Widmaier S, Schmidt O, et al. PubMed DOI
Moore J, Ewoldt J, Venturini G, Pereira AC, Padilha K, Lawton M, et al. Multi-omics profiling of hypertrophic cardiomyopathy reveals altered mechanisms in mitochondrial dynamics and excitation–contraction coupling. Int J Mol Sci 2023;24:4724. 10.3390/IJMS24054724/S1 PubMed DOI PMC
Garciarena CD, Youm JB, Swietach P, Vaughan-Jones RD. H PubMed DOI
Fillmore N, Levasseur JL, Fukushima A, Wagg CS, Wang W, Dyck JRB, et al. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol Med 2018;24:1–12. 10.1186/S10020-018-0005-X PubMed DOI PMC
Chahine M, Bkaily G, Nader M, Al-Khoury J, Jacques D, Beier N, et al. NHE-1-dependent intracellular sodium overload in hypertrophic hereditary cardiomyopathy: prevention by NHE-1 inhibitor. J Mol Cell Cardiol 2005;38:571–82. 10.1016/J.YJMCC.2005.01.003 PubMed DOI
Coppini R, Ferrantini C, Mugelli A, Poggesi C, Cerbai E. Altered Ca PubMed DOI PMC
Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 2021;385:1451–61. 10.1056/NEJMOA2107038 PubMed DOI
Croteau D, Luptak I, Chambers JM, Hobai I, Panagia M, Pimentel DR, et al. Effects of sodium-glucose linked transporter 2 inhibition with ertugliflozin on mitochondrial function, energetics, and metabolic gene expression in the presence and absence of diabetes mellitus in mice. J Am Heart Assoc 2021;10:e019995. 10.1161/JAHA.120.019995 PubMed DOI PMC
Croteau D, Baka T, Young S, He H, Chambers JM, Qin F, et al. SGLT2 inhibitor ertugliflozin decreases elevated intracellular sodium, and improves energetics and contractile function in diabetic cardiomyopathy. Biomed Pharmacother 2023;160:114310. 10.1016/J.BIOPHA.2023.114310 PubMed DOI PMC
Subramanian M, Sravani V, Krishna SP, Bijjam S, Sunehra C, Yalagudri S, et al. Efficacy of SGLT2 inhibitors in patients with diabetes and nonobstructive hypertrophic cardiomyopathy. Am J Cardiol 2023;188:80–6. 10.1016/J.AMJCARD.2022.10.054 PubMed DOI
Aglan A, Fath AR, Eldaly AS, Anderson AS, Phillips JS, Maron BJ, et al. Impact of sodium-glucose cotransporter 2 inhibitors on mortality in hypertrophic cardiomyopathy. JACC Adv 2024;3:100843. 10.1016/J.JACADV.2024.100843 PubMed DOI PMC
Aksentijević D, Karlstaedt A, Basalay M V, O’Brien BA, Sanchez-Tatay D, Eminaga S, et al. Intracellular sodium elevation reprograms cardiac metabolism. Nat Commun 2020;11:4337. 10.1038/s41467-020-18160-x PubMed DOI PMC
Gong Q, Zhang R, Wei F, Fang J, Zhang J, Sun J, et al. SGLT2 inhibitor-empagliflozin treatment ameliorates diabetic retinopathy manifestations and exerts protective effects associated with augmenting branched chain amino acids catabolism and transportation in db/db mice. Biomed Pharmacother 2022;152:113222. 10.1016/J.BIOPHA.2022.113222 PubMed DOI
Verma S, Rawat S, Ho KL, Wagg CS, Zhang L, Teoh H, et al. Empagliflozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors. JACC Basic Transl Sci 2018;3:575–87. 10.1016/J.JACBTS.2018.07.006 PubMed DOI PMC
Geisterfer-Lowrance AAT, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE, et al. A mouse model of familial hypertrophic cardiomyopathy. Science 1996;272:731–4. 10.1126/SCIENCE.272.5262.731 PubMed DOI
Spindler M, Saupe KW, Christe ME, Sweeney HL, Seidman CE, Seidman JG, et al. Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. J Clin Invest 1998;101:1775–83. 10.1172/JCI1940 PubMed DOI PMC
Sverdlov AL, Elezaby A, Qin F, Behring JB, Luptak I, Calamaras TD, et al. Mitochondrial reactive oxygen species mediate cardiac structural, functional, and mitochondrial consequences of diet-induced metabolic heart disease. J Am Heart Assoc 2016;5:e002555. 10.1161/JAHA.115.002555 PubMed DOI PMC
Luptak I, Qin F, Sverdlov AL, Pimentel DR, Panagia M, Croteau D, et al. Energetic dysfunction is mediated by mitochondrial reactive oxygen species and precedes structural remodeling in metabolic heart disease. Antioxid Redox Signal 2019;31:539–49. 10.1089/ars.2018.7707 PubMed DOI PMC
Luptak I, Sverdlov AL, Panagia M, Qin F, Pimentel DR, Croteau D, et al. Decreased ATP production and myocardial contractile reserve in metabolic heart disease. J Mol Cell Cardiol 2018;116:106–14. 10.1016/j.yjmcc.2018.01.017 PubMed DOI PMC
Luptak I, Yan J, Cui L, Jain M, Liao R, Tian R. Long-term effects of increased glucose entry on mouse hearts during normal aging and ischemic stress. Circulation 2007;116:901–9. 10.1161/CIRCULATIONAHA.107.691253 PubMed DOI
Luptak I, Balschi JA, Xing Y, Leone TC, Kelly DP, Tian R. Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-α-null hearts can be rescued by increasing glucose transport and utilization. Circulation 2005;112:2339–46. 10.1161/CIRCULATIONAHA.105.534594 PubMed DOI
Malloy CR, Sherry AD, Jeffrey H. Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by PubMed DOI
Miller EJ, Calamaras T, Elezaby A, Sverdlov A, Qin F, Luptak I, et al. Partial liver kinase B1 (LKB1) deficiency promotes diastolic dysfunction, de novo systolic dysfunction, apoptosis, and mitochondrial dysfunction with dietary metabolic challenge. J Am Heart Assoc 2015;5:e002277. 10.1161/JAHA.115.002277 PubMed DOI PMC
Goodman JB, Qin F, Morgan RJ, Chambers JM, Croteau D, Siwik DA, et al. Redox-resistant SERCA [sarco(endo)plasmic reticulum calcium ATPase] attenuates oxidant-stimulated mitochondrial calcium and apoptosis in cardiac myocytes and pressure overload-induced myocardial failure in mice. Circulation 2020;142:2459–69. 10.1161/CIRCULATIONAHA.120.048183 PubMed DOI PMC
Liu X, Yin K, Chen L, Chen W, Li W, Zhang T, et al. Lineage-specific regulatory changes in hypertrophic cardiomyopathy unraveled by single-nucleus RNA-seq and spatial transcriptomics. Cell Discov 2023;9:6. 10.1038/S41421-022-00490-3 PubMed DOI PMC
Liu W, Sun D, Yang J. Diastolic dysfunction of hypertrophic cardiomyopathy genotype-positive subjects without hypertrophy is detected by tissue Doppler imaging: a systematic review and meta-analysis. J Ultrasound Med 2017;36:2093–103. 10.1002/JUM.14250 PubMed DOI
Ertz-Berger BR, He H, Dowell C, Factor SM, Haim TE, Nunez S, et al. Changes in the chemical and dynamic properties of cardiac troponin T cause discrete cardiomyopathies in transgenic mice. Proc Natl Acad Sci U S A 2005;102:18219–24. 10.1073/PNAS.0509181102 PubMed DOI PMC
Huang Y, Zhou M, Sun H, Wang Y. Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit? Cardiovasc Res 2011;90:220–3. 10.1093/CVR/CVR070 PubMed DOI PMC
Fine KS, Wilkins JT, Sawicki KT. Circulating branched chain amino acids and cardiometabolic disease. J Am Heart Assoc 2024;13:e031617. 10.1161/JAHA.123.031617 PubMed DOI PMC
Murashige D, Jung JW, Neinast MD, Levin MG, Chu Q, Lambert JP, et al. Extra-cardiac BCAA catabolism lowers blood pressure and protects from heart failure. Cell Metab 2022;34:1749–64.e7. 10.1016/J.CMET.2022.09.008 PubMed DOI PMC
Hooijman P, Stewart MA, Cooke R. A new state of cardiac myosin with very slow ATP turnover: a potential cardioprotective mechanism in the heart. Biophys J 2011;100:1969–76. 10.1016/j.bpj.2011.02.061 PubMed DOI PMC
Sarkar SS, Trivedi DV, Morck MM, Adhikari AS, Pasha SN, Ruppel KM, et al. The hypertrophic cardiomyopathy mutations R403Q and R663H increase the number of myosin heads available to interact with actin. Sci Adv 2020;6:eaax0069. 10.1126/sciadv.aax0069 PubMed DOI PMC
Wijnker PJM, Sequeira V, Kuster DWD, van der Velden J. Hypertrophic cardiomyopathy: a vicious cycle triggered by sarcomere mutations and secondary disease hits. Antioxid Redox Signal 2019;31:318–58. 10.1089/ars.2017.7236 PubMed DOI PMC
Kammermeier H. High energy phosphate of the myocardium: concentration versus free energy change. Basic Res Cardiol 1987;82:31–6. 10.1007/978-3-662-11289-2 PubMed DOI
Tian R, Halow JM, Meyer M, Dillmann WH, Figueredo VM, Ingwall JS, et al. Thermodynamic limitation for Ca PubMed DOI
Tian R, Nascimben L, Ingwall JS, Lorell BH. Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts. Circulation 1997;96:1313–9. 10.1161/01.CIR.96.4.1313 PubMed DOI
Panagia M, He H, Baka T, Pimentel DR, Croteau D, Bachschmid MM, et al. Increasing mitochondrial ATP synthesis with butyrate normalizes ADP and contractile function in metabolic heart disease. NMR Biomed 2020;33:e4258. 10.1002/nbm.4258 PubMed DOI PMC
Louch WE, Hougen K, Mork HK, Swift F, Aronsen JM, Sjaastad I, et al. Sodium accumulation promotes diastolic dysfunction in end-stage heart failure following Serca2 knockout. J Physiol 2010;588:465–78. 10.1113/jphysiol.2009.183517 PubMed DOI PMC
Coppini R, Ferrantini C, Mazzoni L, Sartiani L, Olivotto I, Poggesi C, et al. Regulation of intracellular Na PubMed DOI PMC
Schauer A, Adams V, Kämmerer S, Langner E, Augstein A, Barthel P, et al. Empagliflozin improves diastolic function in HFpEF by restabilizing the mitochondrial respiratory chain. Circ Heart Fail 2024;17:e011107. 10.1161/CIRCHEARTFAILURE.123.011107 PubMed DOI PMC
Liu T, Takimoto E, Dimaano VL, DeMazumder D, Kettlewell S, Smith G, et al. Inhibiting mitochondrial Na PubMed DOI PMC
Liao R, Jain M, Cui L, D’Agostino J, Aiello F, Luptak I, et al. Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation 2002;106:2125–31. 10.1161/01.CIR.0000034049.61181.F3 PubMed DOI
Yurista SR, Silljé HHW, Oberdorf-Maass SU, Schouten EM, Pavez Giani MG, Hillebrands JL, et al. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail 2019;21:862–73. 10.1002/EJHF.1473 PubMed DOI
Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Ishikawa K, Watanabe S, Picatoste B, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol 2019;73:1931–44. 10.1016/J.JACC.2019.01.056 PubMed DOI
Chase D, Eykyn TR, Shattock MJ, Chung YJ. Empagliflozin improves cardiac energetics during ischaemia/reperfusion by directly increasing cardiac ketone utilization. Cardiovasc Res 2023;119:2672–80. 10.1093/CVR/CVAD157 PubMed DOI PMC
Baka T, Croteau D, Chambers J, He H, Balschi J, Qin F, et al. Abstract 10678: Butyrate improves energetics, diastolic function and contractile reserve in hearts from mice with hypertrophic cardiomyopathy due to myosin R403Q mutation. Circulation 2021;144:A10678. 10.1161/CIRC.144.SUPPL_1.10678 DOI
Packer M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol 2023;20:443–62. 10.1038/s41569-022-00824-4 PubMed DOI
Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H. Metabolic gene expression in fetal and failing human heart. Circulation 2001;104:2923–31. 10.1161/HC4901.100526 PubMed DOI
Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res 2017;113:411–21. 10.1093/CVR/CVX017 PubMed DOI PMC
Tran DH, May HI, Li Q, Luo X, Huang J, Zhang G, et al. Chronic activation of hexosamine biosynthesis in the heart triggers pathological cardiac remodeling. Nat Commun 2020;11:1771. 10.1038/s41467-020-15640-y PubMed DOI PMC
Wang W, Wang J, Yao K, Wang S, Nie M, Zhao Y, et al. Metabolic characterization of hypertrophic cardiomyopathy in human heart. Nat Cardiovasc Res 2022;1:445–61. 10.1038/s44161-022-00057-1 PubMed DOI
Gélinas R, Mailleux F, Dontaine J, Bultot L, Demeulder B, Ginion A, et al. AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nat Commun 2018;9:374. 10.1038/s41467-017-02795-4 PubMed DOI PMC
Forelli N, Eaton D, Patel J, Bowman CE, Kawakami R, Kuznetsov IA, et al. SGLT2 inhibitors activate pantothenate kinase in the human heart. bioRxiv, 10.1101/2024.07.26.605401, 27 July 2024, preprint: not peer reviewed. DOI
Baka T, Moore J, Qin F, He H, Chambers JM, Croteau D, et al. Abstract 15515: SGLT2 inhibitor empagliflozin increases fatty acid oxidation, coupling between glycolysis and glucose oxidation, and decreases left ventricular hypertrophy in mice with hypertrophic cardiomyopathy due to myosin R403Q mutation. Circulation 2023;148:A15515. 10.1161/CIRC.148.SUPPL_1.15515 DOI
Karwi QG, Wagg CS, Altamimi TR, Uddin GM, Ho KL, Darwesh AM, et al. Insulin directly stimulates mitochondrial glucose oxidation in the heart. Cardiovasc Diabetol 2020;19:207. 10.1186/S12933-020-01177-3 PubMed DOI PMC
Schuldt M, van Driel B, Algül S, Parbhudayal RY, Barge-Schaapveld DQCM, Güçlü A, et al. Distinct metabolomic signatures in preclinical and obstructive hypertrophic cardiomyopathy. Cells 2021;10:2950. 10.3390/cells10112950 PubMed DOI PMC
Bertero E, Maack C. Calcium signaling and reactive oxygen species in mitochondria. Circ Res 2018;122:1460–78. 10.1161/CIRCRESAHA.118.310082 PubMed DOI
Pogwizd SM, Sipido KR, Verdonck F, Bers DM. Intracellular Na in animal models of hypertrophy and heart failure: contractile function and arrhythmogenesis. Cardiovasc Res 2003;57:887–96. 10.1016/S0008-6363(02)00735-6 PubMed DOI
Wijnker PJM, Dinani R, Laan NVD, Algül S, Knollmann BC, Verkerk AO, et al. Hypertrophic cardiomyopathy dysfunction mimicked in human engineered heart tissue and improved by sodium-glucose cotransporter 2 inhibitors. Cardiovasc Res 2024;120:301–17. 10.1093/CVR/CVAE004 PubMed DOI PMC
Coppini R, Santini L, Olivotto I, Ackerman MJ, Cerbai E. Abnormalities in sodium current and calcium homoeostasis as drivers of arrhythmogenesis in hypertrophic cardiomyopathy. Cardiovasc Res 2020;116:1585–99. 10.1093/CVR/CVAA124 PubMed DOI
Fernandes GC, Fernandes A, Cardoso R, Penalver J, Knijnik L, Mitrani RD, et al. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: a meta-analysis of 34 randomized controlled trials. Heart Rhythm 2021;18:1098–105. 10.1016/J.HRTHM.2021.03.028 PubMed DOI
Bertero E, Prates Roma L, Ameri P, Maack C. Cardiac effects of SGLT2 inhibitors: the sodium hypothesis. Cardiovasc Res 2018;114:12–8. 10.1093/cvr/cvx149 PubMed DOI
Hegyi B, Mira Hernandez J, Shen EY, Habibi NR, Bossuyt J, Bers DM. Empagliflozin reverses late Na PubMed DOI PMC
Philippaert K, Kalyaanamoorthy S, Fatehi M, Long W, Soni S, Byrne NJ, et al. Cardiac late sodium channel current is a molecular target for the sodium/glucose cotransporter 2 inhibitor empagliflozin. Circulation 2021;143:2188–204. 10.1161/CIRCULATIONAHA.121.053350 PubMed DOI PMC
Karmazyn M. NHE-1: still a viable therapeutic target. J Mol Cell Cardiol 2013;61:77–82. 10.1016/j.yjmcc.2013.02.006 PubMed DOI
Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O’Rourke B. Elevated cytosolic Na PubMed DOI PMC
Aragón-Herrera A, Feijóo-Bandín S, Otero Santiago M, Barral L, Campos-Toimil M, Gil-Longo J, et al. Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats. Biochem Pharmacol 2019;170:113677. 10.1016/J.BCP.2019.113677 PubMed DOI
Li X, Lu Q, Qiu Y, Carmo JD, Wang Z, Silva Ad, et al. Direct cardiac actions of the sodium glucose co-transporter 2 inhibitor empagliflozin improve myocardial oxidative phosphorylation and attenuate pressure-overload heart failure. J Am Heart Assoc 2021;10:e018298. 10.1161/JAHA.120.018298 PubMed DOI PMC
Moellmann J, Mann PA, Kappel BA, Kahles F, Klinkhammer BM, Boor P, et al. The sodium-glucose co-transporter-2 inhibitor ertugliflozin modifies the signature of cardiac substrate metabolism and reduces cardiac mTOR signalling, endoplasmic reticulum stress and apoptosis. Diabetes Obes Metab 2022;24:2263–72. 10.1111/DOM.14814 PubMed DOI
Sun H, Olson KC, Gao C, Prosdocimo DA, Zhou M, Wang Z, et al. Catabolic defect of branched-chain amino acids promotes heart failure. Circulation 2016;133:2038–49. 10.1161/CIRCULATIONAHA.115.020226 PubMed DOI PMC
Li T, Zhang Z, Kolwicz SC, Abell L, Roe ND, Kim M, et al. Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury. Cell Metab 2017;25:374–85. 10.1016/J.CMET.2016.11.005 PubMed DOI PMC
Wang W, Zhang F, Xia Y, Zhao S, Yan W, Wang H, et al. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 2016;311:H1160–9. 10.1152/AJPHEART.00114.2016 PubMed DOI
Neishabouri SH, Hutson SM, Davoodi J. Chronic activation of mTOR complex 1 by branched chain amino acids and organ hypertrophy. Amino Acids 2015;47:1167–82. 10.1007/S00726-015-1944-Y PubMed DOI
Du X, Li Y, Wang Y, You H, Hui P, Zheng Y, et al. Increased branched-chain amino acid levels are associated with long-term adverse cardiovascular events in patients with STEMI and acute heart failure. Life Sci 2018;209:167–72. 10.1016/J.LFS.2018.08.011 PubMed DOI
Kimura Y, Okumura T, Kazama S, Shibata N, Oishi H, Arao Y, et al. Usefulness of plasma branched-chain amino acid analysis in predicting outcomes of patients with nonischemic dilated cardiomyopathy. Int Heart J 2020;61:739–47. 10.1536/IHJ.20-010 PubMed DOI
Yu J-Y, Cao N, Rau CD, Lee R-P, Yang J, Flach RJR, et al. Cell-autonomous effect of cardiomyocyte branched-chain amino acid catabolism in heart failure in mice. Acta Pharmacol Sin 2023;44:1380–90. 10.1038/s41401-023-01076-9 PubMed DOI PMC
Uddin GM, Zhang L, Shah S, Fukushima A, Wagg CS, Gopal K, et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc Diabetol 2019;18:86. 10.1186/S12933-019-0892-3 PubMed DOI PMC
Zhang L, Zhang H, Xie X, Tie R, Shang X, Zhao Q, et al. Empagliflozin ameliorates diabetic cardiomyopathy via regulated branched-chain amino acid metabolism and mTOR/p-ULK1 signaling pathway-mediated autophagy. Diabetol Metab Syndr 2023;15:93. 10.1186/S13098-023-01061-6 PubMed DOI PMC
Kappel BA, Lehrke M, Schütt K, Artati A, Adamski J, Lebherz C, et al. Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation 2017;136:969–72. 10.1161/CIRCULATIONAHA.117.029166 PubMed DOI
Pabel S, Hamdani N, Luedde M, Sossalla S. SGLT2 inhibitors and their mode of action in heart failure-has the mystery been unravelled? Curr Heart Fail Rep 2021;18:315–28. 10.1007/S11897-021-00529-8 PubMed DOI PMC
Pabel S, Wagner S, Bollenberg H, Bengel P, Kovács Á, Schach C, et al. Empagliflozin directly improves diastolic function in human heart failure. Eur J Heart Fail 2018;20:1690–700. 10.1002/EJHF.1328 PubMed DOI
Kolijn D, Pabel S, Tian Y, Lódi M, Herwig M, Carrizzo A, et al. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc Res 2021;117:495–507. 10.1093/CVR/CVAA123 PubMed DOI
Marton A, Kaneko T, Kovalik JP, Yasui A, Nishiyama A, Kitada K, et al. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat Rev Nephrol 2021;17:65–77. 10.1038/S41581-020-00350-X PubMed DOI
Arbelo E, Protonotarios A, Gimeno JR, Arbustini E, Arbelo E, Barriales-Villa R, et al. 2023 ESC guidelines for the management of cardiomyopathies. Eur Heart J 2023;44:3503–626. 10.1093/EURHEARTJ/EHAD194 PubMed DOI
Ommen SR, Ho CY, Asif IM, Balaji S, Burke MA, Day SM, et al. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR guideline for the management of hypertrophic cardiomyopathy: a report of the American Heart Association/American College of Cardiology joint committee on clinical practice guidelines. Circulation 2024;149:e1239–311. 10.1161/CIR.0000000000001250 PubMed DOI
Palmer BM, Wang Y, Teekakirikul P, Hinson JT, Fatkin D, Strouse S, et al. Myofilament mechanical performance is enhanced by R403Q myosin in mouse myocardium independent of sex. Am J Physiol Heart Circ Physiol 2008;294:H1939–47. 10.1152/AJPHEART.00644.2007 PubMed DOI
Singh SR, Zech ATL, Geertz B, Reischmann-Düsener S, Osinska H, Prondzynski M, et al. Activation of autophagy ameliorates cardiomyopathy in Mybpc3-targeted knockin mice. Circ Heart Fail 2017;10:e004140. 10.1161/CIRCHEARTFAILURE.117.004140 PubMed DOI PMC
Xu X, Roe ND, Weiser-Evans MCM, Ren J. Inhibition of mammalian target of rapamycin with rapamycin reverses hypertrophic cardiomyopathy in mice with cardiomyocyte-specific knockout of PTEN. Hypertension 2014;63:729–39. 10.1161/HYPERTENSIONAHA.113.02526 PubMed DOI
Sciarretta S, Volpe M, Sadoshima J. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 2014;114:549–64. 10.1161/CIRCRESAHA.114.302022 PubMed DOI PMC
Kim M, Hunter RW, Garcia-Menendez L, Gong G, Yang YY, Kolwicz SC, et al. Mutation in the γ2-subunit of AMP-activated protein kinase stimulates cardiomyocyte proliferation and hypertrophy independent of glycogen storage. Circ Res 2014;114:966–75. 10.1161/CIRCRESAHA.114.302364 PubMed DOI PMC