5-(3,5-Dinitrophenyl)-1,3,4-oxadiazol-2-amine derivatives, their precursors, and analogues: Synthesis and evaluation of novel highly potent antitubercular agent
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40440331
PubMed Central
PMC12121777
DOI
10.1371/journal.pone.0324608
PII: PONE-D-25-04280
Knihovny.cz E-zdroje
- MeSH
- antituberkulotika * farmakologie chemická syntéza chemie toxicita MeSH
- dánio pruhované MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium tuberculosis účinky léků MeSH
- oxadiazoly * farmakologie chemická syntéza chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antituberkulotika * MeSH
- oxadiazoly * MeSH
Drug resistance is a growing problem for many pathogens, including mycobacteria. Small heterocyclic molecules are among the leading scaffolds for developing potential antimycobacterial agents. Therefore, based on the molecular hybridization approach, we have prepared an extensive series of N-substituted 5-(3,5-dinitrophenyl)-1,3,4-oxadiazol-2-amine derivatives. We also investigated their isosteres and acyclic synthetic precursors. The compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis (Mtb) H37Rv, a panel of multidrug- and extensively drug-resistant Mtb isolates and two nontuberculous mycobacterial strains (NTM; M. avium and M. kansasii). The ability to inhibit mycobacterial growth was quantified using minimum inhibitory concentration (MIC) values. Many compounds achieved MIC values ≤ 0.03 µM for NTM and Mtb, regardless of their resistance profile. The highest activity was associated with oxadiazole and thiadiazole scaffolds with benzylamino or C5-C9 alkylamino substitution. The experimentally confirmed mechanism of action of these compounds consists of disruption of mycobacterial cell wall biosynthesis via inhibition of decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1). In vitro toxicity evaluation was performed in a hepatocyte model (HepG2), while in vivo toxicity was evaluated using Danio rerio embryos. These findings identify a promising new chemotype with potent, broad-spectrum and selective antimycobacterial activity, including efficacy against resistant strains, and support its further development as a potential therapeutic candidate.
Zobrazit více v PubMed
World Health Organization. Global Tuberculosis Report 2024. Geneva: WHO; 2024.
World Health Organization. WHO announces updated definitions of extensively drug-resistant tuberculosis. WHO. 2021. Jan 27 [Cited 2025 January 10]. Available from: https://www.who.int/news/item/27-01-2021-who-announces-updated-definitions-of-extensively-drug-resistant-tuberculosis/
Bruchfeld J, Correia-Neves M, Källenius G. Tuberculosis and HIV Coinfection. Cold Spring Harb Perspect Med. 2015;5(7):a017871. doi: 10.1101/cshperspect.a017871 PubMed DOI PMC
World Health Organization. WHO consolidated guidelines on tuberculosis. Module 2: Screening – systematic screening for tuberculosis disease. Geneva: WHO; 2021. PubMed
Rahama O, Thaker H. Atypical mycobacteria: an important differential for the general physician. Clin Med (Lond). 2013;13(5):504–6. doi: 10.7861/clinmedicine.13-5-504 PubMed DOI PMC
Perez-Miranda J, Traversi L, Polverino E. Atypical Mycobacteria in Bronchiectasis. When do we Treat it? Archivos de Bronconeumología (English Edition). 2019;55(4):183–4. doi: 10.1016/j.arbr.2018.10.009 PubMed DOI
Blair HA, Scott LJ. Delamanid: a review of its use in patients with multidrug-resistant tuberculosis. Drugs. 2015;75(1):91–100. doi: 10.1007/s40265-014-0331-4 PubMed DOI
Bakale RD, Phatak PS, Rathod SS, Choudhari PB, Rekha EM, Sriram D, et al.. In vitro and in silico exploration of newly synthesized triazolyl- isonicotinohydrazides as potent antitubercular agents. J Biomol Struct Dyn. 2025;43(3):1372–91. doi: 10.1080/07391102.2023.2291826 PubMed DOI
Mhetre UV, Haval NB, Bondle GM, Rathod SS, Choudhari PB, Kumari J, et al.. Design, synthesis and molecular docking study of novel triazole-quinazolinone hybrids as antimalarial and antitubercular agents. Bioorg Med Chem Lett. 2024;108:129800. doi: 10.1016/j.bmcl.2024.129800 PubMed DOI
Bakale RD, Sulakhe SM, Kasare SL, Sathe BP, Rathod SS, Choudhari PB, et al.. Design, synthesis and antitubercular assessment of 1, 2, 3-triazole incorporated thiazolylcarboxylate derivatives. Bioorg Med Chem Lett. 2024;97:129551. doi: 10.1016/j.bmcl.2023.129551 PubMed DOI
Venkateswara Rao G, Allaka TR, Gandla MK, Veera Venkata Nanda PK, Pindi SR, Vaddi PRR, et al.. Synthesis, antimicrobial activity, and in silico studies of fluoroquinolones bearing 1,3,4‐oxadiazolyl‐triazole derivatives. Journal of Heterocyclic Chem. 2023;60(10):1666–83. doi: 10.1002/jhet.4700 DOI
Allaka TR, Kummari B, Polkam N, Kuntala N, Chepuri K, Anireddy JS. Novel heterocyclic 1,3,4-oxadiazole derivatives of fluoroquinolones as a potent antibacterial agent: Synthesis and computational molecular modeling. Mol Divers. 2022;26(3):1581–96. doi: 10.1007/s11030-021-10287-3 PubMed DOI
Vosátka R, Krátký M, Švarcová M, Janoušek J, Stolaříková J, Madacki J, et al.. New lipophilic isoniazid derivatives and their 1,3,4-oxadiazole analogues: Synthesis, antimycobacterial activity and investigation of their mechanism of action. Eur J Med Chem. 2018;151:824–35. doi: 10.1016/j.ejmech.2018.04.017 PubMed DOI
Navarrete-Vázquez G, Molina-Salinas GM, Duarte-Fajardo ZV, Vargas-Villarreal J, Estrada-Soto S, González-Salazar F, et al.. Synthesis and antimycobacterial activity of 4-(5-substituted-1,3,4-oxadiazol-2-yl)pyridines. Bioorg Med Chem. 2007;15(16):5502–8. doi: 10.1016/j.bmc.2007.05.053 PubMed DOI
Karabanovich G, Němeček J, Valášková L, Carazo A, Konečná K, Stolaříková J, et al.. S-substituted 3,5-dinitrophenyl 1,3,4-oxadiazole-2-thiols and tetrazole-5-thiols as highly efficient antitubercular agents. Eur J Med Chem. 2017;126:369–83. doi: 10.1016/j.ejmech.2016.11.041 PubMed DOI
Salama EE. Synthesis of new 2-amino-1,3,4-oxadiazole derivatives with anti-salmonella typhi activity evaluation. BMC Chem. 2020;14(1):30. doi: 10.1186/s13065-020-00682-6 PubMed DOI PMC
Naclerio GA, Abutaleb NS, Li D, Seleem MN, Sintim HO. Ultrapotent Inhibitor of Clostridioides difficile Growth, Which Suppresses Recurrence In Vivo. J Med Chem. 2020;63(20):11934–44. doi: 10.1021/acs.jmedchem.0c01198 PubMed DOI PMC
Li T, Wen G, Li J, Zhang W, Wu S. A Useful Synthesis of 2-Acylamino-1,3,4-oxadiazoles from Acylthiosemicarbazides Using Potassium Iodate and the Discovery of New Antibacterial Compounds. Molecules. 2019;24(8):1490. doi: 10.3390/molecules24081490 PubMed DOI PMC
Verma SK, Verma R, Verma S, Vaishnav Y, Tiwari SP, Rakesh KP. Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review. Eur J Med Chem. 2021;209:112886. doi: 10.1016/j.ejmech.2020.112886 PubMed DOI
Chandra Sekhar D, Venkata Rao DV, Tejeswara Rao A, Lav Kumar U, Jha A. Design and Synthesis of 1,3,4-Thiadiazole Derivatives as Novel Anticancer and Antitubercular Agents. Russ J Gen Chem. 2019;89(4):770–9. doi: 10.1134/s1070363219040224 DOI
Zhang G, Sheng L, Hegde P, Li Y, Aldrich CC. 8-cyanobenzothiazinone analogs with potent antitubercular activity. Med Chem Res. 2021;30(2):449–58. doi: 10.1007/s00044-020-02676-4 PubMed DOI PMC
Christophe T, Jackson M, Jeon HK, Fenistein D, Contreras-Dominguez M, Kim J, et al.. High content screening identifies decaprenyl-phosphoribose 2’ epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog. 2009;5(10):e1000645. doi: 10.1371/journal.ppat.1000645 PubMed DOI PMC
Imran M, Khan SA, Asdaq SMB, Almehmadi M, Abdulaziz O, Kamal M, et al.. An insight into the discovery, clinical studies, compositions, and patents of macozinone: A drug targeting the DprE1 enzyme of Mycobacterium tuberculosis. J Infect Public Health. 2022;15(10):1097–107. doi: 10.1016/j.jiph.2022.08.016 PubMed DOI
Bhat ZS, Rather MA, Maqbool M, Lah HU, Yousuf SK, Ahmad Z. Cell wall: A versatile fountain of drug targets in Mycobacterium tuberculosis. Biomed Pharmacother. 2017;95:1520–34. doi: 10.1016/j.biopha.2017.09.036 PubMed DOI
Nepali K, Lee H-Y, Liou J-P. Nitro-Group-Containing Drugs. J Med Chem. 2019;62(6):2851–93. doi: 10.1021/acs.jmedchem.8b00147 PubMed DOI
Krátký M, Baranyai Z, Štěpánková Š, Svrčková K, Švarcová M, Stolaříková J, et al.. N-Alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides and Their Analogues: Synthesis and Multitarget Biological Activity. Molecules. 2020;25(10):2268. doi: 10.3390/molecules25102268 PubMed DOI PMC
Yang S-J, Lee S-H, Kwak H-J, Gong Y-D. Regioselective synthesis of 2-amino-substituted 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives via reagent-based cyclization of thiosemicarbazide intermediate. J Org Chem. 2013;78(2):438–44. doi: 10.1021/jo302324r PubMed DOI
Karabanovich G, Dušek J, Savková K, Pavliš O, Pávková I, Korábečný J, et al.. Development of 3,5-Dinitrophenyl-Containing 1,2,4-Triazoles and Their Trifluoromethyl Analogues as Highly Efficient Antitubercular Agents Inhibiting Decaprenylphosphoryl-β-d-ribofuranose 2’-Oxidase. J Med Chem. 2019;62(17):8115–39. doi: 10.1021/acs.jmedchem.9b00912 PubMed DOI
Liu L, Kong C, Fumagalli M, Savková K, Xu Y, Huszár S, et al.. Design, synthesis and evaluation of covalent inhibitors of DprE1 as antitubercular agents. Eur J Med Chem. 2020;208:112773. doi: 10.1016/j.ejmech.2020.112773 PubMed DOI
Foo CS-Y, Lechartier B, Kolly GS, Boy-Röttger S, Neres J, Rybniker J, et al.. Characterization of DprE1-Mediated Benzothiazinone Resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2016;60(11):6451–9. doi: 10.1128/AAC.01523-16 PubMed DOI PMC
Ramappa V, Aithal GP. Hepatotoxicity Related to Anti-tuberculosis Drugs: Mechanisms and Management. J Clin Exp Hepatol. 2013;3(1):37–49. doi: 10.1016/j.jceh.2012.12.001 PubMed DOI PMC
Gore AV, Pillay LM, Venero Galanternik M, Weinstein BM. The zebrafish: A fintastic model for hematopoietic development and disease. Wiley Interdiscip Rev Dev Biol. 2018;7(3):e312. doi: 10.1002/wdev.312 PubMed DOI PMC
Morales EE, Wingert RA. Zebrafish as a Model of Kidney Disease. Results Probl Cell Differ. 2017;60:55–75. doi: 10.1007/978-3-319-51436-9_3 PubMed DOI
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253–310. doi: 10.1002/aja.1002030302 PubMed DOI
Vargas RA, Sarmiento K, Vásquez IC. Zebrafish (Danio rerio): A Potential Model for Toxinological Studies. Zebrafish. 2015;12(5):320–6. doi: 10.1089/zeb.2015.1102 PubMed DOI
Komoike Y, Matsuoka M. Application of Zebrafish Model to Environmental Toxicology. Nihon Eiseigaku Zasshi. 2016;71(3):227–35. doi: 10.1265/jjh.71.227 PubMed DOI
Bambino K, Chu J. Zebrafish in Toxicology and Environmental Health. Curr Top Dev Biol. 2017;124:331–67. doi: 10.1016/bs.ctdb.2016.10.007 PubMed DOI PMC
OECD. Test No. 236: Fish embryo acute toxicity (FET) test. Paris: OECD Publishing; 2013.
Sobanska M, Scholz S, Nyman A-M, Cesnaitis R, Gutierrez Alonso S, Klüver N, et al.. Applicability of the fish embryo acute toxicity (FET) test (OECD 236) in the regulatory context of Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH). Environ Toxicol Chem. 2018;37(3):657–70. doi: 10.1002/etc.4055 PubMed DOI
Dang Z, van der Ven LTM, Kienhuis AS. Fish embryo toxicity test, threshold approach, and moribund as approaches to implement 3R principles to the acute fish toxicity test. Chemosphere. 2017;186:677–85. doi: 10.1016/j.chemosphere.2017.08.047 PubMed DOI
Braunbeck T, Kais B, Lammer E, Otte J, Schneider K, Stengel D, et al.. The fish embryo test (FET): origin, applications, and future. Environ Sci Pollut Res Int. 2015;22(21):16247–61. doi: 10.1007/s11356-014-3814-7 PubMed DOI
Dayan AD. General and applied toxicology. 2nd ed. Occup Environ Med. 2000;57:431.
Pošta M, Soós V, Beier P. Design of photoaffinity labeling probes derived from 3,4,5-trimethylfuran-2(5H)-one for mode of action elucidation. Tetrahedron. 2016;72(27–28):3809–17. doi: 10.1016/j.tet.2016.03.096 DOI
Legouin B, Gayral M, Uriac P, Cupif J, Levoin N, Toupet L, et al.. Molecular Tweezers: Synthesis and Formation of Host–Guest Complexes. Eur J Org Chem. 2010;2010(28):5503–8. doi: 10.1002/ejoc.201000729 DOI
Wyeth LLC, Ayral-Kaloustian S, Mansour TK, Tsou HR, Zhang N, Venkatesan A, et al.. 3-Substituted-1H-pyrrolo[2,3-b]pyridine and 3-substituted-1H-pyrrolo[3,2-b]pyridine compounds, their use as mTOR kinase and pi3 kinase inhibitors, and their syntheses. WO2010/30727 A1; 2010.
Karabanovich G, Roh J, Hrabálek A, Klimešová V, Pávek P. Dinitrophenyl oxadiazole or triazole, its use and a pharmaceutical preparation containing it. CZ306408B6; 2014.
Fernández-Bolaños JG, López Ó, Ulgar V, Maya I, Fuentes J. Synthesis of O-unprotected glycosyl selenoureas. A new access to bicyclic sugar isoureas. Tetrahedron Letters. 2004;45(21):4081–4. doi: 10.1016/j.tetlet.2004.03.143 DOI
Pflégr V, Horváth L, Stolaříková J, Pál A, Korduláková J, Bősze S, et al.. Design and synthesis of 2-(2-isonicotinoylhydrazineylidene)propanamides as InhA inhibitors with high antitubercular activity. Eur J Med Chem. 2021;223:113668. doi: 10.1016/j.ejmech.2021.113668 PubMed DOI
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509. doi: 10.1016/s0021-9258(18)64849-5 PubMed DOI
Brecik M, Centárová I, Mukherjee R, Kolly GS, Huszár S, Bobovská A, et al.. DprE1 Is a Vulnerable Tuberculosis Drug Target Due to Its Cell Wall Localization. ACS Chem Biol. 2015;10(7):1631–6. doi: 10.1021/acschembio.5b00237 PubMed DOI
Aden DP, Fogel A, Plotkin S, Damjanov I, Knowles BB. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature. 1979;282(5739):615–6. doi: 10.1038/282615a0 PubMed DOI