The role of microglia in multiple sclerosis: implications for treatment with Bruton's tyrosine kinase inhibitors
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
40443664
PubMed Central
PMC12119304
DOI
10.3389/fimmu.2025.1495529
Knihovny.cz E-resources
- Keywords
- central nervous system, disease management, microglia, multiple sclerosis, neuroinflammation,
- MeSH
- Protein Kinase Inhibitors * therapeutic use pharmacology MeSH
- Tyrosine Kinase Inhibitors MeSH
- Humans MeSH
- Microglia * drug effects immunology metabolism MeSH
- Agammaglobulinaemia Tyrosine Kinase * antagonists & inhibitors metabolism MeSH
- Multiple Sclerosis * drug therapy immunology etiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- BTK protein, human MeSH Browser
- Protein Kinase Inhibitors * MeSH
- Tyrosine Kinase Inhibitors MeSH
- Agammaglobulinaemia Tyrosine Kinase * MeSH
BACKGROUND: Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central nervous system (CNS), characterized by inflammation and neurodegeneration. The pathophysiology of MS, especially its progressive forms, involves various cellular components, including microglia, the primary resident immune cells of the CNS. This review discusses the role of microglia in neuroinflammation, tissue repair, and neural homeostasis, as well as their involvement in MS and explores potential therapeutic strategies targeting microglial function. METHODS: A literature search conducted in August 2023 and updated in March 2025, using the PubMed database, focused on articles relating to microglia and MS published in 2018-2025. Additionally, ongoing clinical trials of Bruton's tyrosine kinase (BTK) inhibitors were identified through the ClinicalTrials.gov website in November 2023 and updated in March 2025. RESULTS: Microglia are highly adaptive and exhibit various functional states throughout different life stages and play critical roles in neuroinflammation, tissue repair, and neural homeostasis. Their altered activity is a prominent feature of MS, contributing to its pathogenesis. Imaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) provide insights into microglial activity in MS. BTK inhibitors and other novel treatments for MS, including masitinib and frexalimab, show promise in modulating microglial function and influencing the disease progression rate. CONCLUSIONS: The multifaceted roles of microglia in CNS development, immune surveillance, and particularly in the pathogenesis of MS highlight the potential of targeting microglial functions in MS treatment. Emerging research on the involvement of microglia in MS pathophysiology offers promising avenues for developing novel therapies, especially for progressive MS, potentially improving patient outcomes in this debilitating disease.
Brain and Mind Center University of Sydney Sydney NSW Australia
Departamento de Medicina Facultad de Medicina Universidad Complutense de Madrid Madrid Spain
Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
Department of Neurology Ain Shams University Cairo Egypt
Department of Neurology Hospital Clinico San Carlos IdISSC Madrid Spain
Department of Neurology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
Department of Neurology Medical University of Innsbruck Innsbruck Austria
Department of Neurology Medical University of Vienna Vienna Austria
Department of Neurology Palacky University Olomouc Olomouc Czechia
Department of Neuroscience and Rehabilitation University of Ferrara Ferrara Italy
Division of Clinical Neurosciences University of Turku Turku Finland
Hasselt University Belgium Hasselt Belgium
Neurocenter of Turku University Hospital Turku Finland
Revalidatie and Multiple Sclerosis Noorderhart Pelt Belgium
Univ Lille Inserm U1172 LilNCog CHU Lille FHU Precise Lille France
See more in PubMed
Oh J, Vidal-Jordana A, Montalban X. Multiple sclerosis: clinical aspects. Curr Opin Neurol. (2018) 31:752–9. doi: 10.1097/wco.0000000000000622 PubMed DOI
Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol. (2022) 22:734–50. doi: 10.1038/s41577-022-00718-z PubMed DOI
Travers BS, Tsang BK, Barton JL. Multiple sclerosis: Diagnosis, disease-modifying therapy and prognosis. Aust J Gen Pract. (2022) 51:199–206. doi: 10.31128/AJGP-07-21-6103 PubMed DOI
Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, et al. . Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult Scler. (2020) 26:1816–21. doi: 10.1177/1352458520970841 PubMed DOI PMC
Dobson R, Giovannoni G. Multiple sclerosis - a review. Eur J Neurol. (2019) 26:27–40. doi: 10.1111/ene.13819 PubMed DOI
Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. . Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. (2018) 17:162–73. doi: 10.1016/S1474-4422(17)30470-2 PubMed DOI
Faissner S, Plemel JR, Gold R, Yong VW. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat Rev Drug Discov. (2019) 18:905–22. doi: 10.1038/s41573-019-0035-2 PubMed DOI
Voet S, Prinz M, van Loo G. Microglia in central nervous system inflammation and multiple sclerosis pathology. Trends Mol Med. (2019) 25:112–23. doi: 10.1016/j.molmed.2018.11.005 PubMed DOI
Choi S, Guo L, Cordeiro MF. Retinal and brain microglia in multiple sclerosis and neurodegeneration. Cells. (2021) 10:1507. doi: 10.3390/cells10061507 PubMed DOI PMC
Greenberg BM. Bruton’s tyrosine kinase inhibitors for multiple sclerosis treatment: A new frontier. Neurol Clin. (2024) 42:155–63. doi: 10.1016/j.ncl.2023.07.006 PubMed DOI
Allen NJ, Lyons DA. Glia as architects of central nervous system formation and function. Science. (2018) 362:181–5. doi: 10.1126/science.aat0473 PubMed DOI PMC
Sierra A, Paolicelli RC, Kettenmann H. Cien años de microglía: milestones in a century of microglial research. Trends Neurosci. (2019) 42:778–92. doi: 10.1016/j.tins.2019.09.004 PubMed DOI
Prinz M, Masuda T, Wheeler MA, Quintana FJ. Microglia and central nervous system-associated macrophages - from origin to disease modulation. Annu Rev Immunol. (2021) 39:251–77. doi: 10.1146/annurev-immunol-093019-110159 PubMed DOI PMC
Jurga AM, Paleczna M, Kuter KZ. Overview of general and discriminating markers of differential microglia phenotypes. Front Cell Neurosci. (2020) 14:198. doi: 10.3389/fncel.2020.00198 PubMed DOI PMC
Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci. (2014) 124:307–21. doi: 10.3109/00207454.2013.833510 PubMed DOI
Guerrero BL, Sicotte NL. Microglia in multiple sclerosis: Friend or foe? Front Immunol. (2020) 11:374. doi: 10.3389/fimmu.2020.00374 PubMed DOI PMC
Tan YL, Yuan Y, Tian L. Microglial regional heterogeneity and its role in the brain. Mol Psychiatry. (2020) 25:351–67. doi: 10.1038/s41380-019-0609-8 PubMed DOI PMC
Chomyk A, Kucinski R, Kim J, Christie E, Cyncynatus K, Gossman Z, et al. . Transcript profiles of microglia/macrophage cells at the borders of chronic active and subpial gray matter lesions in multiple sclerosis. Ann Neurol. (2024) 95:907–16. doi: 10.1002/ana.26877 PubMed DOI PMC
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. . Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. (2010) 330:841–5. doi: 10.1126/science.1194637 PubMed DOI PMC
Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. (2007) 7:255–66. doi: 10.1038/nri2056 PubMed DOI
Szumilas N, Corneth OBJ, Lehmann CHK, Schmitt H, Cunz S, Cullen JG, et al. . Siglec-H-deficient mice show enhanced type I IFN responses, but do not develop autoimmunity after influenza or LCMV infections. Front Immunol. (2021) 12:698420. doi: 10.3389/fimmu.2021.698420 PubMed DOI PMC
Roeder SS, Barnes TJ, Lee JS, Kato I, Eng DG, Kaverina NV, et al. . Activated ERK1/2 increases CD44 in glomerular parietal epithelial cells leading to matrix expansion. Kidney Int. (2017) 91:896–913. doi: 10.1016/j.kint.2016.10.015 PubMed DOI PMC
Liu Y, Xia Y, Qiu CH. Functions of CD169 positive macrophages in human diseases (Review). BioMed Rep. (2021) 14:26. doi: 10.3892/br.2020.1402 PubMed DOI PMC
Prinz M, Jung S, Priller J. Microglia biology: One century of evolving concepts. Cell. (2019) 179:292–311. doi: 10.1016/j.cell.2019.08.053 PubMed DOI
McNamara NB, Munro DAD, Bestard-Cuche N, Uyeda A, Bogie JFJ, Hoffmann A, et al. . Microglia regulate central nervous system myelin growth and integrity. Nature. (2023) 613:120–9. doi: 10.1038/s41586-022-05534-y PubMed DOI PMC
Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S, et al. . Microglia development follows a stepwise program to regulate brain homeostasis. Science. (2016) 353:aad8670. doi: 10.1126/science.aad8670 PubMed DOI
Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ. Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci U S A. (2008) 105:17151–6. doi: 10.1073/pnas.0806682105 PubMed DOI PMC
Welser-Alves JV, Milner R. Microglia are the major source of TNF-alpha and TGF-beta1 in postnatal glial cultures; regulation by cytokines, lipopolysaccharide, and vitronectin. Neurochem Int. (2013) 63:47–53. doi: 10.1016/j.neuint.2013.04.007 PubMed DOI PMC
Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. (2016) 173:649–65. doi: 10.1111/bph.13139 PubMed DOI PMC
Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A, Ajami B, et al. . Microglia states and nomenclature: A field at its crossroads. Neuron. (2022) 110:3458–83. doi: 10.1016/j.neuron.2022.10.020 PubMed DOI PMC
van Wageningen TA, Vlaar E, Kooij G, Jongenelen CAM, Geurts JJG, van Dam AM. Regulation of microglial TMEM119 and P2RY12 immunoreactivity in multiple sclerosis white and grey matter lesions is dependent on their inflammatory environment. Acta Neuropathol Commun. (2019) 7:206. doi: 10.1186/s40478-019-0850-z PubMed DOI PMC
Garcia-Segura ME, Pluchino S, Peruzzotti-Jametti L. Metabolic control of microglia. Adv Neurobiol. (2024) 37:607–22. doi: 10.1007/978-3-031-55529-9_34 PubMed DOI
Yang S, Qin C, Hu ZW, Zhou LQ, Yu HH, Chen M, et al. . Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system. Neurobiol Dis. (2021) 152:105290. doi: 10.1016/j.nbd.2021.105290 PubMed DOI
Afridi R, Lee WH, Suk K. Microglia gone awry: linking immunometabolism to neurodegeneration. Front Cell Neurosci. (2020) 14:246. doi: 10.3389/fncel.2020.00246 PubMed DOI PMC
Absinta M, Maric D, Gharagozloo M, Garton T, Smith MD, Jin J, et al. . A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature. (2021) 597:709–14. doi: 10.1038/s41586-021-03892-7 PubMed DOI PMC
Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. N Engl J Med. (2018) 378:169–80. doi: 10.1056/NEJMra1401483 PubMed DOI PMC
Lassmann H. The contribution of neuropathology to multiple sclerosis research. Eur J Neurol. (2022) 29:2869–77. doi: 10.1111/ene.15360 PubMed DOI PMC
Kuhlmann T, Moccia M, Coetzee T, Cohen JA, Correale J, Graves J, et al. . Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol. (2023) 22:78–88. doi: 10.1016/s1474-4422(22)00289-7 PubMed DOI PMC
Yong VW. Microglia in multiple sclerosis: Protectors turn destroyers. Neuron. (2022) 110:3534–48. doi: 10.1016/j.neuron.2022.06.023 PubMed DOI
Elliott C, Wolinsky JS, Hauser SL, Kappos L, Barkhof F, Bernasconi C, et al. . Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult Scler. (2019) 25:1915–25. doi: 10.1177/1352458518814117 PubMed DOI PMC
Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain. (2017) 140:1900–13. doi: 10.1093/brain/awx113 PubMed DOI PMC
Hsiao CC, Sankowski R, Prinz M, Smolders J, Huitinga I, Hamann J. GPCRomics of homeostatic and disease-associated human microglia. Front Immunol. (2021) 12:674189. doi: 10.3389/fimmu.2021.674189 PubMed DOI PMC
Healy LM, Stratton JA, Kuhlmann T, Antel J. The role of glial cells in multiple sclerosis disease progression. Nat Rev Neurol. (2022) 18:237–48. doi: 10.1038/s41582-022-00624-x PubMed DOI
Chen JQA, Wever DD, McNamara NB, Bourik M, Smolders J, Hamann J, et al. . Inflammatory microglia correlate with impaired oligodendrocyte maturation in multiple sclerosis. Front Immunol. (2024) 15:1522381. doi: 10.3389/fimmu.2024.1522381 PubMed DOI PMC
Frischer JM, Weigand SD, Guo Y, Kale N, Parisi JE, Pirko I, et al. . Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol. (2015) 78:710–21. doi: 10.1002/ana.24497 PubMed DOI PMC
Tolentino M, Pace F, Perantie DC, Mikesell R, Huecker J, Chahin S, et al. . Cerebrospinal fluid biomarkers as predictors of multiple sclerosis severity. Mult Scler Relat Disord. (2025) 94:106268. doi: 10.1016/j.msard.2025.106268 PubMed DOI
Mwale PF, Hsieh CT, Yen TL, Jan JS, Taliyan R, Yang CH, et al. . Chitinase-3-like-1: a multifaceted player in neuroinflammation and degenerative pathologies with therapeutic implications. Mol Neurodegener. (2025) 20:7. doi: 10.1186/s13024-025-00801-8 PubMed DOI PMC
Duan J, Lv A, Guo Z, Liu Q, Tian C, Yang Y, et al. . CX3CR1(+)/UCHL1(+) microglial extracellular vesicles in blood: a potential biomarker for multiple sclerosis. J Neuroinflammation. (2024) 21:254. doi: 10.1186/s12974-024-03243-z PubMed DOI PMC
Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med. (2004) 52:612–8. doi: 10.1002/mrm.20198 PubMed DOI
Wang Y, Liu T. Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magn Reson Med. (2015) 73:82–101. doi: 10.1002/mrm.25358 PubMed DOI PMC
Neuwelt EA, Várallyay CG, Manninger S, Solymosi D, Haluska M, Hunt MA, et al. . The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system Malignancy: A pilot study. Neurosurgery. (2007) 60:601–11. doi: 10.1227/01.Neu.0000255350.71700.37 PubMed DOI
Hemond CC, Bakshi R. Magnetic resonance imaging in multiple sclerosis. Cold Spring Harb Perspect Med. (2018) 8:a028969. doi: 10.1101/cshperspect.a028969 PubMed DOI PMC
Liu C, Li W, Tong KA, Yeom KW, Kuzminski S. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging. (2015) 42:23–41. doi: 10.1002/jmri.24768 PubMed DOI PMC
Reichenbach JR, Schweser F, Serres B, Deistung A. Quantitative susceptibility mapping: Concepts and applications. Clin Neuroradiol. (2015) 25 Suppl 2:225–30. doi: 10.1007/s00062-015-0432-9 PubMed DOI
Garcia-Hernandez R, Cerdan Cerda A, Trouve Carpena A, Drakesmith M, Koller K, Jones DK, et al. . Mapping microglia and astrocyte activation in vivo using diffusion MRI. Sci Adv. (2022) 8:eabq2923. doi: 10.1126/sciadv.abq2923 PubMed DOI PMC
Gillen KM, Mubarak M, Nguyen TD, Pitt D. Significance and in vivo detection of iron-laden microglia in white matter multiple sclerosis lesions. Front Immunol. (2018) 9:255. doi: 10.3389/fimmu.2018.00255 PubMed DOI PMC
Duarte-Silva E, Meuth SG, Peixoto CA. The role of iron metabolism in the pathogenesis and treatment of multiple sclerosis. Front Immunol. (2023) 14:1137635. doi: 10.3389/fimmu.2023.1137635 PubMed DOI PMC
Marcille M, Hurtado Rúa S, Tyshkov C, Jaywant A, Comunale J, Kaunzner UW, et al. . Disease correlates of rim lesions on quantitative susceptibility mapping in multiple sclerosis. Sci Rep. (2022) 12:4411. doi: 10.1038/s41598-022-08477-6 PubMed DOI PMC
Hemond CC, Reich DS, Dundamadappa SK. Paramagnetic rim lesions in multiple sclerosis: Comparison of visualization at 1.5-T and 3-T MRI. AJR Am J Roentgenol. (2022) 219:120–31. doi: 10.2214/AJR.21.26777 PubMed DOI PMC
La Rosa F, Wynen M, Al-Louzi O, Beck ES, Huelnhagen T, Maggi P, et al. . Cortical lesions, central vein sign, and paramagnetic rim lesions in multiple sclerosis: Emerging machine learning techniques and future avenues. NeuroImage Clin. (2022) 36:103205. doi: 10.1016/j.nicl.2022.103205 PubMed DOI PMC
Absinta M, Sati P, Masuzzo F, Nair G, Sethi V, Kolb H, et al. . Association of chronic active multiple sclerosis lesions with disability. vivo. JAMA Neurol. (2019) 76:1474–83. doi: 10.1001/jamaneurol.2019.2399 PubMed DOI PMC
Preziosa P, Pagani E, Meani A, Moiola L, Rodegher M, Filippi M, et al. . Slowly expanding lesions predict 9-year multiple sclerosis disease progression. Neurol Neuroimmunol Neuroinflamm. (2022) 9:e1139. doi: 10.1212/NXI.0000000000001139 PubMed DOI PMC
Wenzel N, Wittayer M, Weber CE, Schirmer L, Platten M, Gass A, et al. . MRI predictors for the conversion from contrast-enhancing to iron rim multiple sclerosis lesions. J Neurol. (2022) 269:4414–20. doi: 10.1007/s00415-022-11082-2 PubMed DOI PMC
Vellinga MM, Oude Engberink RD, Seewann A, Pouwels PJ, Wattjes MP, van der Pol SM, et al. . Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain. (2008) 131:800–7. doi: 10.1093/brain/awn009 PubMed DOI
Zivadinov R, Schweser F, Dwyer MG, Pol S. Detection of monocyte/macrophage and microglia activation in the TMEV model of chronic demyelination using USPIO-enhanced ultrahigh-field imaging. J Neuroimaging. (2020) 30:769–78. doi: 10.1111/jon.12768 PubMed DOI PMC
Airas L, Yong VW. Microglia in multiple sclerosis - pathogenesis and imaging. Curr Opin Neurol. (2022) 35:299–306. doi: 10.1097/wco.0000000000001045 PubMed DOI
Falk I, Maric D, Leibovitch E, Sati P, Lefeuvre J, Luciano NJ, et al. . Characteristics of TSPO expression in marmoset EAE. J Neuroinflammation. (2025) 22:19. doi: 10.1186/s12974-025-03343-4 PubMed DOI PMC
Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, et al. . The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain. (2000) 123:2321–37. doi: 10.1093/brain/123.11.2321 PubMed DOI
Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. . An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. (2012) 32:1–5. doi: 10.1038/jcbfm.2011.147 PubMed DOI PMC
Kreisl WC, Lyoo CH, McGwier M, Snow J, Jenko KJ, Kimura N, et al. . In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain. (2013) 136:2228–38. doi: 10.1093/brain/awt145 PubMed DOI PMC
Nutma E, Stephenson JA, Gorter RP, de Bruin J, Boucherie DM, Donat CK, et al. . A quantitative neuropathological assessment of translocator protein expression in multiple sclerosis. Brain. (2019) 142:3440–55. doi: 10.1093/brain/awz287 PubMed DOI PMC
Bodini B, Tonietto M, Airas L, Stankoff B. Positron emission tomography in multiple sclerosis - straight to the target. Nat Rev Neurol. (2021) 17:663–75. doi: 10.1038/s41582-021-00537-1 PubMed DOI
Rissanen E, Tuisku J, Rokka J, Paavilainen T, Parkkola R, Rinne JO, et al. . In vivo detection of diffuse inflammation in secondary progressive multiple sclerosis using PET imaging and the radioligand ¹¹C-PK11195. J Nucl Med. (2014) 55:939–44. doi: 10.2967/jnumed.113.131698 PubMed DOI
Bezukladova S, Tuisku J, Matilainen M, Vuorimaa A, Nylund M, Smith S, et al. . Insights into disseminated MS brain pathology with multimodal diffusion tensor and PET imaging. Neurol Neuroimmunol Neuroinflamm. (2020) 7:e691. doi: 10.1212/nxi.0000000000000691 PubMed DOI PMC
Ricigliano VAG, Louapre C, Poirion E, Colombi A, Yazdan Panah A, Lazzarotto A, et al. . Imaging characteristics of choroid plexuses in presymptomatic multiple sclerosis: a retrospective study. Neurol Neuroimmunol Neuroinflamm. (2022) 9:e200026. doi: 10.1212/NXI.0000000000200026 PubMed DOI PMC
Nylund M, Sucksdorff M, Matilainen M, Polvinen E, Tuisku J, Airas L. Phenotyping of multiple sclerosis lesions according to innate immune cell activation using 18 kDa translocator protein-PET. Brain Commun. (2022) 4:fcab301. doi: 10.1093/braincomms/fcab301 PubMed DOI PMC
Saraste M, Matilainen M, Vuorimaa A, Laaksonen S, Sucksdorff M, Leppert D, et al. . Association of serum neurofilament light with microglial activation in multiple sclerosis. J Neurol Neurosurg Psychiatry. (2023) 94:698–706. doi: 10.1136/jnnp-2023-331051 PubMed DOI PMC
Sucksdorff M, Matilainen M, Tuisku J, Polvinen E, Vuorimaa A, Rokka J, et al. . Brain TSPO-PET predicts later disease progression independent of relapses in multiple sclerosis. Brain. (2020) 143:3318–30. doi: 10.1093/brain/awaa275 PubMed DOI PMC
Misin O, Matilainen M, Nylund M, Honkonen E, Rissanen E, Sucksdorff M, et al. . Innate immune cell-related pathology in the thalamus signals a risk for disability progression in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. (2022) 9:e1182. doi: 10.1212/nxi.0000000000001182 PubMed DOI PMC
Polvinen E, Matilainen M, Nylund M, Sucksdorff M, Airas LM. TSPO-detectable chronic active lesions predict disease progression in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. (2023) 10:e200133. doi: 10.1212/nxi.0000000000200133 PubMed DOI PMC
Pengo M, Miante S, Franciotta S, Ponzano M, Torresin T, Bovis F, et al. . Retinal hyperreflecting foci associate with cortical pathology in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. (2022) 9:e1180. doi: 10.1212/nxi.0000000000001180 PubMed DOI PMC
Etebar F, Harkin DG, White AR, Dando SJ. Non-invasive in vivo imaging of brain and retinal microglia in neurodegenerative diseases. Front Cell Neurosci. (2024) 18:1355557. doi: 10.3389/fncel.2024.1355557 PubMed DOI PMC
Klyscz P, Vigiser I, Solorza Buenrostro G, Motamedi S, Leutloff CJ, Schindler P, et al. . Hyperreflective retinal foci are associated with retinal degeneration after optic neuritis in neuromyelitis optica spectrum disorders and multiple sclerosis. Eur J Neurol. (2025) 32:e70038. doi: 10.1111/ene.70038 PubMed DOI PMC
Schneider R, Oh J. Bruton’s tyrosine kinase inhibition in multiple sclerosis. Curr Neurol Neurosci Rep. (2022) 22:721–34. doi: 10.1007/s11910-022-01229-z PubMed DOI PMC
Krämer J, Bar-Or A, Turner TJ, Wiendl H. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat Rev Neurol. (2023) 19:289–304. doi: 10.1038/s41582-023-00800-7 PubMed DOI PMC
Reich DS, Arnold DL, Vermersch P, Bar-Or A, Fox RJ, Matta A, et al. . Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: A phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol. (2021) 20:729–38. doi: 10.1016/s1474-4422(21)00237-4 PubMed DOI PMC
Oh J, Syed S, Orogun L, Xu Z, Turner TJ, Fox RJ. Safety and clinical efficacy outcomes from the long-term extension study of tolebrutinib in patients with relapsing multiple sclerosis: 2-year results (ECTRIMS poster: P308). Mult Scler J. (2022) 28:342. doi: 10.1177/13524585221123687 DOI
Montalban X, Arnold DL, Weber MS, Staikov I, Piasecka-Stryczynska K, Willmer J, et al. . Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N Engl J Med. (2019) 380:2406–17. doi: 10.1056/NEJMoa1901981 PubMed DOI
Montalban X, Piasecka-Stryczynska K, Kuhle J, Benkert P, Arnold DL, Weber MS, et al. . Efficacy and safety results after >3.5 years of treatment with the Bruton’s tyrosine kinase inhibitor evobrutinib in relapsing multiple sclerosis: Long-term follow-up of a phase II randomised clinical trial with a cerebrospinal fluid sub-study. Mult Scler. (2024) 30:558–70. doi: 10.1177/13524585241234783 PubMed DOI PMC
Arnold DL, Elliott C, Martin EC, Hyvert Y, Tomic D, Montalban X. Effect of evobrutinib on slowly expanding lesion volume in relapsing multiple sclerosis: A post hoc analysis of a phase 2 trial. Neurology. (2024) 102:e208058. doi: 10.1212/wnl.0000000000208058 PubMed DOI PMC
Merck KGAA. Merck provides update on phase III results for evobrutinib in relapsing multiple sclerosis(2023). Available online at: https://www.merckgroup.com/en/news/evobrutinib-phase-lll.html.
Dubreuil P, Letard S, Ciufolini M, Gros L, Humbert M, Castéran N, et al. . Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One. (2009) 4:e7258. doi: 10.1371/journal.pone.0007258 PubMed DOI PMC
Vermersch P, Brieva-Ruiz L, Fox RJ, Paul F, Ramio-Torrenta L, Schwab M, et al. . Efficacy and safety of masitinib in progressive forms of multiple sclerosis: A randomized, phase 3, clinical trial. Neurol Neuroimmunol Neuroinflamm. (2022) 9:e1148. doi: 10.1212/nxi.0000000000001148 PubMed DOI PMC
Singhal T, Carter K, Ficke JH, Kukreja P, Rissanen E, Bose G, et al. . Early efficacy of ofatumumab on microglia in patients with relapsing forms of MS: Interim analysis of a 9-month study (ECTRIMS poster: P966). Mult Scler J. (2021) 27:787. doi: 10.1177/13524585211047080 DOI
Vermersch P, Granziera C, Mao-Draayer Y, Cutter G, Kalbus O, Staikov I, et al. . Inhibition of CD40L with frexalimab in multiple sclerosis. N Engl J Med. (2024) 390:589–600. doi: 10.1056/NEJMoa2309439 PubMed DOI
Sucksdorff M, Tuisku J, Matilainen M, Vuorimaa A, Smith S, Keitilä J, et al. . Natalizumab treatment reduces microglial activation in the white matter of the MS brain. Neurol Neuroimmunol Neuroinflamm. (2019) 6:e574. doi: 10.1212/nxi.0000000000000574 PubMed DOI PMC
Lehto J, Sucksdorff M, Nylund M, Raitanen R, Matilainen M, Airas L. PET-measurable innate immune cell activation reduction in chronic active lesions in PPMS brain after rituximab treatment: A case report. J Neurol. (2023) 270:2329–32. doi: 10.1007/s00415-022-11539-4 PubMed DOI