Cytotoxicity and Nanoassembly Characteristics of Aromatic Amides of Oleanolic Acid and Ursolic Acid
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40454037
PubMed Central
PMC12120625
DOI
10.1021/acsomega.5c02760
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
A series of more than 20 new amides of oleanolic acid and ursolic acid with selected aromatic amines were synthesized, and the structures of all compounds were analyzed and elucidated. Moreover, the compounds were subjected to the cytotoxicity assays in four cancer cell lines (CCRF-CEM, MCF7, HeLa, and G-361), using normal human fibroblasts (BJ) as reference cells for determining the toxicity of the investigated compounds. The 1,10-phenanthroline derivatives 4a, 4b, 5a, and 5b showed the highest cytotoxicity in all four cancer cell lines, but they were comparably toxic in human fibroblasts. The most promising results were achieved with 14a and 14b showing high cytotoxicity in the cancer cell lines and no toxicity in human fibroblasts. They were subjected to the investigation of the in vitro cell apoptosis, resulting in a confirmation of activation of apoptotic pathways in the CCRF-CEM cell line. The structure-activity relationships were documented by the cytotoxicity of 14a vs. 16a, and of 14b vs 16b, showing reverse effects in CCRF-CEM and MCF7 cancer cell lines. To investigate nanoassembly, initial screening of the target compounds by ultraviolet (UV) spectrometry was performed. Compounds 9b, 13b, 16b, and 17b, soluble both in methanol and in water, were selected for a more detailed investigation by transmission electron microscopy (TEM) microscopy and were found to form spherical nanoassemblies, frequently interconnected in small agglomerates and/or loose networks, while the other target compounds of this series showed no nanoassembling based on the TEM imaging. For each investigated compound, the nanoassemblies formed in methanol were substantially bigger than those formed in water.
See more in PubMed
Özdemir Z., Wimmer Z.. Selected Plant Triterpenoids and Their Amide Derivatives in Cancer Treatment: A Review. Phytochem. 2022;203:113340. doi: 10.1016/j.phytochem.2022.113340. PubMed DOI
Özdemir Z., Wimmer Z.. Triterpenoid Building Blocks for Functional Nanoscale Assemblies: A Review. ACS Appl. Nano Mater. 2022;5:16264–16277. doi: 10.1021/acsanm.2c03304. DOI
Bildziukevich U., Šlouf M., Rárová L., Šaman D., Wimmer Z.. Nano-Assembly of Cytotoxic Amides of Moronic and Morolic acid. Soft Matter. 2023;19:7625–7634. doi: 10.1039/D3SM01035J. PubMed DOI
Spivak A. Y., Khalitova R. R., Nedopekina D. A., Gubaidullin R. R.. Antimicrobial Properties of Amine- and Guanidine-Functionalized Derivatives of Betulinic, Ursolic and Oleanolic Acids: Synthesis and structure/activity evaluation. Steroids. 2020;154:108530. doi: 10.1016/j.steroids.2019.108530. PubMed DOI
Wimmerová M., Bildziukevich U., Wimmer Z.. Selected Plant Triterpenoids and Their Derivatives as Antiviral Agents. Molecules. 2023;28:7718. doi: 10.3390/molecules28237718. PubMed DOI PMC
Černá L., Bildziukevich U., Rárová L., Trylčová J., Šaman D., Weber J., Lovecká P., Wimmer Z.. Oxime Derivatives of Betulonic Acid and Platanic Acid as Novel Cytotoxic or Antiviral Agents. React. Chem. Eng. 2024;9:1087–1095. doi: 10.1039/D4RE00032C. DOI
Busseron E., Ruff Y., Moulin E., Giuseppone N.. Supramolecular Self-assemblies as Functional Nanomaterials. Nanoscale. 2013;5:7098–7140. doi: 10.1039/c3nr02176a. PubMed DOI
Xu J.-F., Niu L.-Y., Chen Y.-Z., Wu L.-Z., Tung C.-H., Yang Q.-Z.. Hydrogen Bonding Directed Self-Assembly of Small-Molecule Amphiphiles in Water. Org. Lett. 2014;16:4016–4019. doi: 10.1021/ol501841f. PubMed DOI
Sánchez-Iglesias A., Grzelczak M., Altantzis T., Goris B., Pérez-Juste J., Bals S., Van Tendeloo G., Donaldson S. H., Chmelka B. F., Israelachvili J. N., Liz-Marzán L. M.. Hydrophobic Interactions Modulate Self-Assembly of Nanoparticles. ACS Nano. 2012;6:11059–11065. doi: 10.1021/nn3047605. PubMed DOI
Dong M., Miao K., Hu Y., Wu J., Li J., Pang P., Miao X., Deng W.. Cooperating Dipole–Dipole and van der Waals Interactions Driven 2D Self-Assembly of Fluorenone Derivatives: Ester Chain Length Effect. Phys. Chem. Chem. Phys. 2017;19:31113–31120. doi: 10.1039/C7CP06462D. PubMed DOI
Tatikonda R., Bulatov E., Özdemir Z., Nonappa N., Haukka M.. Infinite Coordination Polymer Networks: Metallogelation of Aminopyridine Conjugates and in situ Silver Nanoparticle Formation. Soft Matter. 2019;15:442–451. doi: 10.1039/C8SM02006J. PubMed DOI
Fechner L. E., Albanyan B., Vieira V. M. P., Laurini E., Posocco P., Pricl S., Smith D. K.. Electrostatic Binding of Polyanions Using Self-Assembled Multivalent (SAMul) Ligand Displays – Structure–Activity Effects on DNA/Heparin Binding. Chem. Sci. 2016;7:4653–4659. doi: 10.1039/C5SC04801J. PubMed DOI PMC
Lombardo D., Kiselev M. A., Magazù S., Calandra P.. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Adv. Condens. Matter Phys. 2015;2015:151683. doi: 10.1155/2015/151683. DOI
Wehner M., Röhr M. I. S., Bühler M., Stepanenko V., Wagner W., Würthner F.. Supramolecular Polymorphism in One-Dimensional Self-Assembly by Kinetic Pathway Control. J. Am. Chem. Soc. 2019;141:6092–6107. doi: 10.1021/jacs.9b02046. PubMed DOI
van Esch J. H., Klajn R., Otto S.. Chemical Systems out of Equilibrium. Chem. Soc. Rev. 2017;46:5474–5475. doi: 10.1039/C7CS90088K. PubMed DOI
Colomer I., Morrow S. M., Fletcher S. P.. A Transient Self-Assembling Self-Replicator. Nat. Commun. 2018;9:2239. doi: 10.1038/s41467-018-04670-2. PubMed DOI PMC
Özdemir Z., Šaman D., Bednárová L., Pazderková M., Janovská L., Nonappa, Wimmer Z.. Aging-Induced Structural Transition of Nanoscale Oleanolic Acid Amphiphiles and Selectivity Against Gram-Positive Bacteria. ACS Appl. Nano Mater. 2022;5:3799–3810. doi: 10.1021/acsanm.1c04374. DOI
di Gregorio M. C., Varenik M., Gubitosi M., Travaglini L., Pavel N. V., Jover A., Meijide F., Regev O., Galantini L.. Multi Stimuli Response of a Single Surfactant Presenting a Rich Self-Assembly Behavior. RSC Adv. 2015;5:37800–37806. doi: 10.1039/C5RA01394A. DOI
Wonder E. A., Ewert K. K., Liu C., Steffes V. M., Kwak J., Qahar N., Majzoub R. N., Zhang Z., Carragher B., Potter C. S., Li Y., Qiao W., Safinya C. R.. Assembly of Building Blocks by Double-End-Anchored Polymers in the Dilute Regime Mediated by Hydrophobic Interactions at Controlled Distances. ACS Appl. Mater. Interfaces. 2020;12:45728–45743. doi: 10.1021/acsami.0c10972. PubMed DOI PMC
Sarkar S., Choudhury P., Dinda S., Das P. K.. Tailor-Made Self-Assemblies from Functionalized Amphiphiles: Diversity and Applications. Langmuir. 2018;34:10449–10468. doi: 10.1021/acs.langmuir.8b00259. PubMed DOI
Bildziukevich U., Malík M., Özdemir Z., Rárová L., Janovská L., Šlouf M., Šaman D., Šarek J., Nonappa, Wimmer Z.. Spermine Amides of Selected Triterpenoid Acids: Dynamic Supramolecular System Formation Influences the Cytotoxicity of the Drugs. J. Mater. Chem. B. 2020;8:484–491. doi: 10.1039/C9TB01957J. PubMed DOI
Dichiarante V., Pigliacelli C., Metrangolo P., Baldelli-Bombelli F.. Confined Space Design by Nanoparticle Self-Assembly. Chem. Sci. 2021;12:1632–1646. doi: 10.1039/D0SC05697A. PubMed DOI PMC
Guo M., Jiang M.. Non-Covalently Connected Micelles (NCCMs): The Origins and Development of a New Concept. Soft Matter. 2009;5:495–500. doi: 10.1039/B813556H. DOI
Ma T.-L., Du W.-T., Kuo S.-W.. Construction of Micelles and Hollow Spheres via the Self-Assembly Behavior of Poly(Styrene-Alt-pHPMI) Copolymers with Poly(4-Vinylpyridine) Derivatives Mediated by Hydrogen Bonding Interactions. Soft Matter. 2023;19:4706–4716. doi: 10.1039/D3SM00595J. PubMed DOI
Özdemir Z., Šaman D., Bertula K., Lahtinen M., Bednárová L., Pazderková M., Rárová L., Nonappa, Wimmer Z.. Rapid Self-Healing and Thixotropic Organogelation of Amphiphilic Oleanolic Acid–Spermine Conjugates. Langmuir. 2021;37:2693–2706. doi: 10.1021/acs.langmuir.0c03335. PubMed DOI
Pollier J., Goossens A.. Oleanolic Acid. Phytochem. 2012;77:10–15. doi: 10.1016/j.phytochem.2011.12.022. PubMed DOI
Shanmugam M. K., Dai X., Kumar A. P., Tan B. K. H., Sethi G., Bishayee A.. Oleanolic Acid and Its Synthetic Derivatives for the Prevention and Therapy of Cancer: Preclinical and Clinical Evidence. Cancer Lett. 2014;346:206–216. doi: 10.1016/j.canlet.2014.01.016. PubMed DOI PMC
Xu G. B., Xiao Y. H., Zhang Q. Y., Zhou M., Liao S. G.. Hepatoprotective Natural Triterpenoids. Eur. J. Med. Chem. 2018;145:691–716. doi: 10.1016/j.ejmech.2018.01.011. PubMed DOI
Salvador J. A. R., Leal A. S., Valdeira A. S., Gonçalves B. M. F., Alho D. P. S., Figueiredo S. A. C., Silvestre S. M., Mendes V. I. S.. Oleanane-, Ursane-, and Quinone Methide Friedelane-Type Triterpenoid Derivatives: Recent Advances in Cancer Treatment. Eur. J. Med. Chem. 2017;142:95–130. doi: 10.1016/j.ejmech.2017.07.013. PubMed DOI
Xiao S., Tian Z., Wang Y., Si L., Zhang L., Zhou D.. Recent Progress in the Antiviral Activity and Mechanism Study of Pentacyclic Triterpenoids and Their Derivatives. Med. Res. Rev. 2018;38:951–976. doi: 10.1002/med.21484. PubMed DOI PMC
Liu J.. Oleanolic Acid and Ursolic Acid: Research Perspectives. J. Ethnopharmacol. 2005;100:92–94. doi: 10.1016/j.jep.2005.05.024. PubMed DOI
Patocka J., Bhardwaj K., Klimova B., Nepovimova E., Wu Q., Landi M., Kuca K., Valis M., Wu W.. Malus domestica: A Review on Nutritional Features, Chemical Composition, Traditional and Medicinal Value. Plants. 2020;9:1408. doi: 10.3390/plants9111408. PubMed DOI PMC
Woźniak Ł., Skapska S., Marszalek K.. Ursolic Acid–A Pentacyclic Triterpenoid with a Wide Spectrum of Pharmacological Activities. Molecules. 2015;20:20614–20641. doi: 10.3390/molecules201119721. PubMed DOI PMC
Kashyap D., Tuli H. S., Sharma A. K.. Ursolic Acid (UA): A Metabolite with Promising Therapeutic Potential. Life Sci. 2016;146:201–213. doi: 10.1016/j.lfs.2016.01.017. PubMed DOI
López-Hortas L., Perez-Larran P., Gonzalez-Munoz M. J., Falque E., Domínguez H.. Recent Developments on the Extraction and Application of Ursolic Acid. A Review. Food Res. Int. 2018;103:130–149. doi: 10.1016/j.foodres.2017.10.028. PubMed DOI
Guo Z., Xu Y., Peng Y., Rashid H., Quan W., Xie P., Wu L., Jiang J., Wang L., Liu X.. Design, Synthesis and Evaluation of Novel (S)-Tryptamine Derivatives Containing an Allyl Group and an Aryl Sulfonamide Unit as Anticancer Agents. Bioorg. Med. Chem. Lett. 2019;29:1133–1137. doi: 10.1016/j.bmcl.2019.02.023. PubMed DOI
Bildziukevich U., Kvasnicová M., Šaman D., Rárová L., Wimmer Z.. Novel Oleanolic Acid–Tryptamine and – Fluorotryptamine Amides: From Adaptogens to Agents Targeting in vitro Cell Apoptosis. Plants. 2021;10:2082. doi: 10.3390/plants10102082. PubMed DOI PMC
Choi S.-K., Green D., Ho A., Klein U. D., Marquess D., Taylor R., Taylor R., Turner S.. Designing Selective, High Affinity Ligands of 5-HT1D Receptor by Covalent Dimerization of 5-HT1F Ligands Derived from 4-Fluoro-N-[3-(1-methyl-4-piperidinyl)-1H-indol-5-yl]benzamide. J. Med. Chem. 2008;51:3609–3616. doi: 10.1021/jm7011722. PubMed DOI
Faulkner K. C., Hurley K. A., Weibel D. B.. 5-Alkyloxytryptamines are Membrane-Targeting, Broad-Spectrum Antibiotics. Bioorg. Med. Chem. Lett. 2016;26:5539–5544. doi: 10.1016/j.bmcl.2016.10.004. PubMed DOI PMC
Minrovic B. M., Hubble V. B., Barker W. T., Jania L. A., Melander R. J., Koller B. H., Mellander C.. Second-Generation Tryptamine Derivatives Potently Sensitize Colistin Resistant Bacteria to Colistin. ACS Med. Chem. Lett. 2019;10:828–833. doi: 10.1021/acsmedchemlett.9b00135. PubMed DOI PMC
Fang J., Huang T., Xia M., Deng L., Hao X., Wang Y., Mu S.. Design and Synthesis of Novel Monoterpenoid Indole Alkaloid-like Analogues and Their Antitumour Activities in vitro . Org. Biomol. Chem. 2018;16:3026–3037. doi: 10.1039/C8OB00677F. PubMed DOI
Xiong R., He D., Deng X., Liu J., Lei X., Xie Z., Cao X., Chen Y., Peng J., Tang G.. Design, Synthesis and Biological Evaluation of Tryptamine Salicylic Acid Derivatives as Potential Antitumor Agents. Med. Chem. Commun. 2019;10:573–583. doi: 10.1039/C8MD00484F. PubMed DOI PMC
Araújo A. M., Carvalho F., de Lourdes Bastos M., de Pinho P. G., Carvalho M.. The Hallucinogenic World of Tryptamines: An Updated Review. Arch. Toxicol. 2015;89:1151–1173. doi: 10.1007/s00204-015-1513-x. PubMed DOI
Jose J., Tavares C. D. J., Ebelt N. D., Lodi A., Edupuganti R., Xie X., Devkota A. K., Kaoud T. S., Van Den Berg C. L., Anslyn E. V., Tiziani S., Bartholomeusz C., Dalby K. N.. Serotonin Analogues as Inhibitors of Breast Cancer Cell Growth. ACS Med. Chem. Lett. 2017;8:1072–1076. doi: 10.1021/acsmedchemlett.7b00282. PubMed DOI PMC
Moráň L., Pivetta T., Masuri S., Vašíčková K., Walter F., Prehn J., Elkalaf M., Trnka J., Havel J., Vaňhara P.. Mixed Copper(II)–Phenanthroline Complexes Induce Cell Death of Ovarian Cancer Cells by Evoking the Unfolded Protein Response. Metallomics. 2019;11:1481–1489. doi: 10.1039/c9mt00055k. PubMed DOI
Bildziukevich U., Özdemir Z., Šaman D., Vlk M., Šlouf M., Rárová L., Wimmer Z.. Novel Cytotoxic 1,10-Phenanthroline–Triterpenoid Amphiphiles with Supramolecular Characteristics Capable of Coordinating 64Cu(II) Labels. Org. Biomol. Chem. 2022;20:8157–8163. doi: 10.1039/D2OB01172G. PubMed DOI
Bildziukevich U., Vida N., Rárová L., Kolář M., Šaman D., Havlíček L., Drašar P., Wimmer Z.. Polyamine Derivatives of Betulinic Acid and β-Sitosterol: A Comparative Investigation. Steroids. 2015;100:27–35. doi: 10.1016/j.steroids.2015.04.005. PubMed DOI
Bildziukevich U., Rárová L., Šaman D., Wimmer Z.. Picolyl Amides of Betulinic Acid as Antitumor Agents Causing Tumor Cell Apoptosis. Eur. J. Med. Chem. 2018;145:41–50. doi: 10.1016/j.ejmech.2017.12.096. PubMed DOI
Pospíšilová J., Heger T., Kurka O., Kvasnicová M., Chládková A., Nemec I., Rárová L., Cankař P.. Atropisomeric 1-Phenylbenzimidazoles Affecting Microtubule Organization: Influence of Axial Chirality. Org. Biomol. Chem. 2024;22:6966–6980. doi: 10.1039/D4OB00863D. PubMed DOI
Kolouchova K., Groborz O., Cernochova Z., Skarkova A., Brabek J., Rosel D., Svec P., Starcuk Z., Slouf M., Hruby M.. Thermo- and ROS-Responsive Self-Assembled Polymer Nanoparticle Tracers for 19F MRI Theranostics. Biomacromolecules. 2021;22:2325–2337. doi: 10.1021/acs.biomac.0c01316. PubMed DOI
Škvarla J., Zedník J., Šlouf M., Pispas S., Štěpánek M.. Poly(N-Isopropyl Acrylamide)-block-Poly(n-Butyl Acrylate) Thermoresponsive Amphiphilic Copolymers: Synthesis, Characterization and Self-Assembly Behavior in Aqueous Solutions. Eur. Polym. J. 2014;61:124–132. doi: 10.1016/j.eurpolymj.2014.10.002. DOI
Özdemir Z., Bildziukevich U., Šaman D., Havlíček L., Rárová L., Navrátilová L., Wimmer Z.. Amphiphilic Derivatives of (3β,17β)-3-Hydroxyandrost-5-ene-17-carboxylic acid. Steroids. 2017;128:58–67. doi: 10.1016/j.steroids.2017.10.011. PubMed DOI
Quinn J. F., Razzano D. A., Golden K. C., Gregg B. T.. 1,4-Cyclohexadiene with Pd/C as a Rapid, Safe Transfer Hydrogenation System with Microwave Heating. Tetrahedron Lett. 2008;49:6137–6140. doi: 10.1016/j.tetlet.2008.08.023. DOI
Soldani C., Scovassi A. I.. Poly(ADP-Ribose) Polymerase-1 Cleavage During Apoptosis: An Update. Apoptosis. 2002;7:321–328. doi: 10.1023/A:1016119328968. PubMed DOI