• This record comes from PubMed

Cytotoxicity and Nanoassembly Characteristics of Aromatic Amides of Oleanolic Acid and Ursolic Acid

. 2025 May 27 ; 10 (20) : 20938-20948. [epub] 20250512

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

A series of more than 20 new amides of oleanolic acid and ursolic acid with selected aromatic amines were synthesized, and the structures of all compounds were analyzed and elucidated. Moreover, the compounds were subjected to the cytotoxicity assays in four cancer cell lines (CCRF-CEM, MCF7, HeLa, and G-361), using normal human fibroblasts (BJ) as reference cells for determining the toxicity of the investigated compounds. The 1,10-phenanthroline derivatives 4a, 4b, 5a, and 5b showed the highest cytotoxicity in all four cancer cell lines, but they were comparably toxic in human fibroblasts. The most promising results were achieved with 14a and 14b showing high cytotoxicity in the cancer cell lines and no toxicity in human fibroblasts. They were subjected to the investigation of the in vitro cell apoptosis, resulting in a confirmation of activation of apoptotic pathways in the CCRF-CEM cell line. The structure-activity relationships were documented by the cytotoxicity of 14a vs. 16a, and of 14b vs 16b, showing reverse effects in CCRF-CEM and MCF7 cancer cell lines. To investigate nanoassembly, initial screening of the target compounds by ultraviolet (UV) spectrometry was performed. Compounds 9b, 13b, 16b, and 17b, soluble both in methanol and in water, were selected for a more detailed investigation by transmission electron microscopy (TEM) microscopy and were found to form spherical nanoassemblies, frequently interconnected in small agglomerates and/or loose networks, while the other target compounds of this series showed no nanoassembling based on the TEM imaging. For each investigated compound, the nanoassemblies formed in methanol were substantially bigger than those formed in water.

See more in PubMed

Özdemir Z., Wimmer Z.. Selected Plant Triterpenoids and Their Amide Derivatives in Cancer Treatment: A Review. Phytochem. 2022;203:113340. doi: 10.1016/j.phytochem.2022.113340. PubMed DOI

Özdemir Z., Wimmer Z.. Triterpenoid Building Blocks for Functional Nanoscale Assemblies: A Review. ACS Appl. Nano Mater. 2022;5:16264–16277. doi: 10.1021/acsanm.2c03304. DOI

Bildziukevich U., Šlouf M., Rárová L., Šaman D., Wimmer Z.. Nano-Assembly of Cytotoxic Amides of Moronic and Morolic acid. Soft Matter. 2023;19:7625–7634. doi: 10.1039/D3SM01035J. PubMed DOI

Spivak A. Y., Khalitova R. R., Nedopekina D. A., Gubaidullin R. R.. Antimicrobial Properties of Amine- and Guanidine-Functionalized Derivatives of Betulinic, Ursolic and Oleanolic Acids: Synthesis and structure/activity evaluation. Steroids. 2020;154:108530. doi: 10.1016/j.steroids.2019.108530. PubMed DOI

Wimmerová M., Bildziukevich U., Wimmer Z.. Selected Plant Triterpenoids and Their Derivatives as Antiviral Agents. Molecules. 2023;28:7718. doi: 10.3390/molecules28237718. PubMed DOI PMC

Černá L., Bildziukevich U., Rárová L., Trylčová J., Šaman D., Weber J., Lovecká P., Wimmer Z.. Oxime Derivatives of Betulonic Acid and Platanic Acid as Novel Cytotoxic or Antiviral Agents. React. Chem. Eng. 2024;9:1087–1095. doi: 10.1039/D4RE00032C. DOI

Busseron E., Ruff Y., Moulin E., Giuseppone N.. Supramolecular Self-assemblies as Functional Nanomaterials. Nanoscale. 2013;5:7098–7140. doi: 10.1039/c3nr02176a. PubMed DOI

Xu J.-F., Niu L.-Y., Chen Y.-Z., Wu L.-Z., Tung C.-H., Yang Q.-Z.. Hydrogen Bonding Directed Self-Assembly of Small-Molecule Amphiphiles in Water. Org. Lett. 2014;16:4016–4019. doi: 10.1021/ol501841f. PubMed DOI

Sánchez-Iglesias A., Grzelczak M., Altantzis T., Goris B., Pérez-Juste J., Bals S., Van Tendeloo G., Donaldson S. H., Chmelka B. F., Israelachvili J. N., Liz-Marzán L. M.. Hydrophobic Interactions Modulate Self-Assembly of Nanoparticles. ACS Nano. 2012;6:11059–11065. doi: 10.1021/nn3047605. PubMed DOI

Dong M., Miao K., Hu Y., Wu J., Li J., Pang P., Miao X., Deng W.. Cooperating Dipole–Dipole and van der Waals Interactions Driven 2D Self-Assembly of Fluorenone Derivatives: Ester Chain Length Effect. Phys. Chem. Chem. Phys. 2017;19:31113–31120. doi: 10.1039/C7CP06462D. PubMed DOI

Tatikonda R., Bulatov E., Özdemir Z., Nonappa N., Haukka M.. Infinite Coordination Polymer Networks: Metallogelation of Aminopyridine Conjugates and in situ Silver Nanoparticle Formation. Soft Matter. 2019;15:442–451. doi: 10.1039/C8SM02006J. PubMed DOI

Fechner L. E., Albanyan B., Vieira V. M. P., Laurini E., Posocco P., Pricl S., Smith D. K.. Electrostatic Binding of Polyanions Using Self-Assembled Multivalent (SAMul) Ligand Displays – Structure–Activity Effects on DNA/Heparin Binding. Chem. Sci. 2016;7:4653–4659. doi: 10.1039/C5SC04801J. PubMed DOI PMC

Lombardo D., Kiselev M. A., Magazù S., Calandra P.. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Adv. Condens. Matter Phys. 2015;2015:151683. doi: 10.1155/2015/151683. DOI

Wehner M., Röhr M. I. S., Bühler M., Stepanenko V., Wagner W., Würthner F.. Supramolecular Polymorphism in One-Dimensional Self-Assembly by Kinetic Pathway Control. J. Am. Chem. Soc. 2019;141:6092–6107. doi: 10.1021/jacs.9b02046. PubMed DOI

van Esch J. H., Klajn R., Otto S.. Chemical Systems out of Equilibrium. Chem. Soc. Rev. 2017;46:5474–5475. doi: 10.1039/C7CS90088K. PubMed DOI

Colomer I., Morrow S. M., Fletcher S. P.. A Transient Self-Assembling Self-Replicator. Nat. Commun. 2018;9:2239. doi: 10.1038/s41467-018-04670-2. PubMed DOI PMC

Özdemir Z., Šaman D., Bednárová L., Pazderková M., Janovská L., Nonappa, Wimmer Z.. Aging-Induced Structural Transition of Nanoscale Oleanolic Acid Amphiphiles and Selectivity Against Gram-Positive Bacteria. ACS Appl. Nano Mater. 2022;5:3799–3810. doi: 10.1021/acsanm.1c04374. DOI

di Gregorio M. C., Varenik M., Gubitosi M., Travaglini L., Pavel N. V., Jover A., Meijide F., Regev O., Galantini L.. Multi Stimuli Response of a Single Surfactant Presenting a Rich Self-Assembly Behavior. RSC Adv. 2015;5:37800–37806. doi: 10.1039/C5RA01394A. DOI

Wonder E. A., Ewert K. K., Liu C., Steffes V. M., Kwak J., Qahar N., Majzoub R. N., Zhang Z., Carragher B., Potter C. S., Li Y., Qiao W., Safinya C. R.. Assembly of Building Blocks by Double-End-Anchored Polymers in the Dilute Regime Mediated by Hydrophobic Interactions at Controlled Distances. ACS Appl. Mater. Interfaces. 2020;12:45728–45743. doi: 10.1021/acsami.0c10972. PubMed DOI PMC

Sarkar S., Choudhury P., Dinda S., Das P. K.. Tailor-Made Self-Assemblies from Functionalized Amphiphiles: Diversity and Applications. Langmuir. 2018;34:10449–10468. doi: 10.1021/acs.langmuir.8b00259. PubMed DOI

Bildziukevich U., Malík M., Özdemir Z., Rárová L., Janovská L., Šlouf M., Šaman D., Šarek J., Nonappa, Wimmer Z.. Spermine Amides of Selected Triterpenoid Acids: Dynamic Supramolecular System Formation Influences the Cytotoxicity of the Drugs. J. Mater. Chem. B. 2020;8:484–491. doi: 10.1039/C9TB01957J. PubMed DOI

Dichiarante V., Pigliacelli C., Metrangolo P., Baldelli-Bombelli F.. Confined Space Design by Nanoparticle Self-Assembly. Chem. Sci. 2021;12:1632–1646. doi: 10.1039/D0SC05697A. PubMed DOI PMC

Guo M., Jiang M.. Non-Covalently Connected Micelles (NCCMs): The Origins and Development of a New Concept. Soft Matter. 2009;5:495–500. doi: 10.1039/B813556H. DOI

Ma T.-L., Du W.-T., Kuo S.-W.. Construction of Micelles and Hollow Spheres via the Self-Assembly Behavior of Poly­(Styrene-Alt-pHPMI) Copolymers with Poly­(4-Vinylpyridine) Derivatives Mediated by Hydrogen Bonding Interactions. Soft Matter. 2023;19:4706–4716. doi: 10.1039/D3SM00595J. PubMed DOI

Özdemir Z., Šaman D., Bertula K., Lahtinen M., Bednárová L., Pazderková M., Rárová L., Nonappa, Wimmer Z.. Rapid Self-Healing and Thixotropic Organogelation of Amphiphilic Oleanolic Acid–Spermine Conjugates. Langmuir. 2021;37:2693–2706. doi: 10.1021/acs.langmuir.0c03335. PubMed DOI

Pollier J., Goossens A.. Oleanolic Acid. Phytochem. 2012;77:10–15. doi: 10.1016/j.phytochem.2011.12.022. PubMed DOI

Shanmugam M. K., Dai X., Kumar A. P., Tan B. K. H., Sethi G., Bishayee A.. Oleanolic Acid and Its Synthetic Derivatives for the Prevention and Therapy of Cancer: Preclinical and Clinical Evidence. Cancer Lett. 2014;346:206–216. doi: 10.1016/j.canlet.2014.01.016. PubMed DOI PMC

Xu G. B., Xiao Y. H., Zhang Q. Y., Zhou M., Liao S. G.. Hepatoprotective Natural Triterpenoids. Eur. J. Med. Chem. 2018;145:691–716. doi: 10.1016/j.ejmech.2018.01.011. PubMed DOI

Salvador J. A. R., Leal A. S., Valdeira A. S., Gonçalves B. M. F., Alho D. P. S., Figueiredo S. A. C., Silvestre S. M., Mendes V. I. S.. Oleanane-, Ursane-, and Quinone Methide Friedelane-Type Triterpenoid Derivatives: Recent Advances in Cancer Treatment. Eur. J. Med. Chem. 2017;142:95–130. doi: 10.1016/j.ejmech.2017.07.013. PubMed DOI

Xiao S., Tian Z., Wang Y., Si L., Zhang L., Zhou D.. Recent Progress in the Antiviral Activity and Mechanism Study of Pentacyclic Triterpenoids and Their Derivatives. Med. Res. Rev. 2018;38:951–976. doi: 10.1002/med.21484. PubMed DOI PMC

Liu J.. Oleanolic Acid and Ursolic Acid: Research Perspectives. J. Ethnopharmacol. 2005;100:92–94. doi: 10.1016/j.jep.2005.05.024. PubMed DOI

Patocka J., Bhardwaj K., Klimova B., Nepovimova E., Wu Q., Landi M., Kuca K., Valis M., Wu W.. Malus domestica: A Review on Nutritional Features, Chemical Composition, Traditional and Medicinal Value. Plants. 2020;9:1408. doi: 10.3390/plants9111408. PubMed DOI PMC

Woźniak Ł., Skapska S., Marszalek K.. Ursolic Acid–A Pentacyclic Triterpenoid with a Wide Spectrum of Pharmacological Activities. Molecules. 2015;20:20614–20641. doi: 10.3390/molecules201119721. PubMed DOI PMC

Kashyap D., Tuli H. S., Sharma A. K.. Ursolic Acid (UA): A Metabolite with Promising Therapeutic Potential. Life Sci. 2016;146:201–213. doi: 10.1016/j.lfs.2016.01.017. PubMed DOI

López-Hortas L., Perez-Larran P., Gonzalez-Munoz M. J., Falque E., Domínguez H.. Recent Developments on the Extraction and Application of Ursolic Acid. A Review. Food Res. Int. 2018;103:130–149. doi: 10.1016/j.foodres.2017.10.028. PubMed DOI

Guo Z., Xu Y., Peng Y., Rashid H., Quan W., Xie P., Wu L., Jiang J., Wang L., Liu X.. Design, Synthesis and Evaluation of Novel (S)-Tryptamine Derivatives Containing an Allyl Group and an Aryl Sulfonamide Unit as Anticancer Agents. Bioorg. Med. Chem. Lett. 2019;29:1133–1137. doi: 10.1016/j.bmcl.2019.02.023. PubMed DOI

Bildziukevich U., Kvasnicová M., Šaman D., Rárová L., Wimmer Z.. Novel Oleanolic Acid–Tryptamine and – Fluorotryptamine Amides: From Adaptogens to Agents Targeting in vitro Cell Apoptosis. Plants. 2021;10:2082. doi: 10.3390/plants10102082. PubMed DOI PMC

Choi S.-K., Green D., Ho A., Klein U. D., Marquess D., Taylor R., Taylor R., Turner S.. Designing Selective, High Affinity Ligands of 5-HT1D Receptor by Covalent Dimerization of 5-HT1F Ligands Derived from 4-Fluoro-N-[3-(1-methyl-4-piperidinyl)-1H-indol-5-yl]­benzamide. J. Med. Chem. 2008;51:3609–3616. doi: 10.1021/jm7011722. PubMed DOI

Faulkner K. C., Hurley K. A., Weibel D. B.. 5-Alkyloxytryptamines are Membrane-Targeting, Broad-Spectrum Antibiotics. Bioorg. Med. Chem. Lett. 2016;26:5539–5544. doi: 10.1016/j.bmcl.2016.10.004. PubMed DOI PMC

Minrovic B. M., Hubble V. B., Barker W. T., Jania L. A., Melander R. J., Koller B. H., Mellander C.. Second-Generation Tryptamine Derivatives Potently Sensitize Colistin Resistant Bacteria to Colistin. ACS Med. Chem. Lett. 2019;10:828–833. doi: 10.1021/acsmedchemlett.9b00135. PubMed DOI PMC

Fang J., Huang T., Xia M., Deng L., Hao X., Wang Y., Mu S.. Design and Synthesis of Novel Monoterpenoid Indole Alkaloid-like Analogues and Their Antitumour Activities in vitro . Org. Biomol. Chem. 2018;16:3026–3037. doi: 10.1039/C8OB00677F. PubMed DOI

Xiong R., He D., Deng X., Liu J., Lei X., Xie Z., Cao X., Chen Y., Peng J., Tang G.. Design, Synthesis and Biological Evaluation of Tryptamine Salicylic Acid Derivatives as Potential Antitumor Agents. Med. Chem. Commun. 2019;10:573–583. doi: 10.1039/C8MD00484F. PubMed DOI PMC

Araújo A. M., Carvalho F., de Lourdes Bastos M., de Pinho P. G., Carvalho M.. The Hallucinogenic World of Tryptamines: An Updated Review. Arch. Toxicol. 2015;89:1151–1173. doi: 10.1007/s00204-015-1513-x. PubMed DOI

Jose J., Tavares C. D. J., Ebelt N. D., Lodi A., Edupuganti R., Xie X., Devkota A. K., Kaoud T. S., Van Den Berg C. L., Anslyn E. V., Tiziani S., Bartholomeusz C., Dalby K. N.. Serotonin Analogues as Inhibitors of Breast Cancer Cell Growth. ACS Med. Chem. Lett. 2017;8:1072–1076. doi: 10.1021/acsmedchemlett.7b00282. PubMed DOI PMC

Moráň L., Pivetta T., Masuri S., Vašíčková K., Walter F., Prehn J., Elkalaf M., Trnka J., Havel J., Vaňhara P.. Mixed Copper­(II)–Phenanthroline Complexes Induce Cell Death of Ovarian Cancer Cells by Evoking the Unfolded Protein Response. Metallomics. 2019;11:1481–1489. doi: 10.1039/c9mt00055k. PubMed DOI

Bildziukevich U., Özdemir Z., Šaman D., Vlk M., Šlouf M., Rárová L., Wimmer Z.. Novel Cytotoxic 1,10-Phenanthroline–Triterpenoid Amphiphiles with Supramolecular Characteristics Capable of Coordinating 64Cu­(II) Labels. Org. Biomol. Chem. 2022;20:8157–8163. doi: 10.1039/D2OB01172G. PubMed DOI

Bildziukevich U., Vida N., Rárová L., Kolář M., Šaman D., Havlíček L., Drašar P., Wimmer Z.. Polyamine Derivatives of Betulinic Acid and β-Sitosterol: A Comparative Investigation. Steroids. 2015;100:27–35. doi: 10.1016/j.steroids.2015.04.005. PubMed DOI

Bildziukevich U., Rárová L., Šaman D., Wimmer Z.. Picolyl Amides of Betulinic Acid as Antitumor Agents Causing Tumor Cell Apoptosis. Eur. J. Med. Chem. 2018;145:41–50. doi: 10.1016/j.ejmech.2017.12.096. PubMed DOI

Pospíšilová J., Heger T., Kurka O., Kvasnicová M., Chládková A., Nemec I., Rárová L., Cankař P.. Atropisomeric 1-Phenylbenzimidazoles Affecting Microtubule Organization: Influence of Axial Chirality. Org. Biomol. Chem. 2024;22:6966–6980. doi: 10.1039/D4OB00863D. PubMed DOI

Kolouchova K., Groborz O., Cernochova Z., Skarkova A., Brabek J., Rosel D., Svec P., Starcuk Z., Slouf M., Hruby M.. Thermo- and ROS-Responsive Self-Assembled Polymer Nanoparticle Tracers for 19F MRI Theranostics. Biomacromolecules. 2021;22:2325–2337. doi: 10.1021/acs.biomac.0c01316. PubMed DOI

Škvarla J., Zedník J., Šlouf M., Pispas S., Štěpánek M.. Poly­(N-Isopropyl Acrylamide)-block-Poly­(n-Butyl Acrylate) Thermoresponsive Amphiphilic Copolymers: Synthesis, Characterization and Self-Assembly Behavior in Aqueous Solutions. Eur. Polym. J. 2014;61:124–132. doi: 10.1016/j.eurpolymj.2014.10.002. DOI

Özdemir Z., Bildziukevich U., Šaman D., Havlíček L., Rárová L., Navrátilová L., Wimmer Z.. Amphiphilic Derivatives of (3β,17β)-3-Hydroxyandrost-5-ene-17-carboxylic acid. Steroids. 2017;128:58–67. doi: 10.1016/j.steroids.2017.10.011. PubMed DOI

Quinn J. F., Razzano D. A., Golden K. C., Gregg B. T.. 1,4-Cyclohexadiene with Pd/C as a Rapid, Safe Transfer Hydrogenation System with Microwave Heating. Tetrahedron Lett. 2008;49:6137–6140. doi: 10.1016/j.tetlet.2008.08.023. DOI

Soldani C., Scovassi A. I.. Poly­(ADP-Ribose) Polymerase-1 Cleavage During Apoptosis: An Update. Apoptosis. 2002;7:321–328. doi: 10.1023/A:1016119328968. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...