Off-pore Nup98 condensates mobilize heterochromatic breaks and exclude Rad51
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
P40 OD018537
NIH HHS - United States
P01 CA265794
NCI NIH HHS - United States
P40 OD010949
NIH HHS - United States
R01 GM117376
NIGMS NIH HHS - United States
T32 GM145432
NIGMS NIH HHS - United States
T32 CA148724
NCI NIH HHS - United States
R01 AR077094
NIAMS NIH HHS - United States
T32 GM118289
NIGMS NIH HHS - United States
R35 CA241801
NCI NIH HHS - United States
F31 ES036878
NIEHS NIH HHS - United States
R01 GM124143
NIGMS NIH HHS - United States
PubMed
40480227
PubMed Central
PMC12303331
DOI
10.1016/j.molcel.2025.05.012
PII: S1097-2765(25)00446-0
Knihovny.cz E-resources
- Keywords
- Nup88, Nup98 condensates, Sec13, double-strand break repair, droplets, heterochromatin repair, homologous recombination, nuclear dynamics, nucleoplasmic nucleoporins, phase separation,
- MeSH
- Chromosomal Proteins, Non-Histone metabolism genetics MeSH
- Drosophila melanogaster * genetics metabolism MeSH
- DNA Breaks, Double-Stranded MeSH
- Heterochromatin * genetics metabolism MeSH
- Chromobox Protein Homolog 5 MeSH
- Nuclear Pore Complex Proteins * metabolism genetics MeSH
- Cell Cycle Proteins metabolism genetics MeSH
- Drosophila Proteins * metabolism genetics MeSH
- Recombinational DNA Repair * MeSH
- Rad51 Recombinase * metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chromosomal Proteins, Non-Histone MeSH
- Heterochromatin * MeSH
- Chromobox Protein Homolog 5 MeSH
- Nuclear Pore Complex Proteins * MeSH
- nuclear pore complex protein 98 MeSH Browser
- Cell Cycle Proteins MeSH
- Drosophila Proteins * MeSH
- Rad51 Recombinase * MeSH
Phase separation forms membraneless compartments, including heterochromatin "domains" and repair foci. Pericentromeric heterochromatin mostly comprises repeated sequences prone to aberrant recombination. In Drosophila cells, "safe" homologous recombination (HR) repair of these sequences requires their relocalization to the nuclear periphery before Rad51 recruitment and strand invasion. How this mobilization initiates is unknown, and the contribution of phase separation is unclear. Here, we show that Nup98 nucleoporin is recruited to repair sites before relocalization by Sec13 or Nup88, and downstream of the Smc5/6 complex and heterochromatin protein 1 (HP1). Remarkably, Nup98 condensates are immiscible with HP1 condensates, and they are required and sufficient to mobilize repair sites and exclude Rad51, thus preventing aberrant recombination while promoting HR repair. Disrupting this pathway results in heterochromatin repair defects and widespread chromosome rearrangements, revealing an "off-pore" role for nucleoporins and phase separation in nuclear dynamics and genome integrity in a multicellular eukaryote.
Department of Biology Faculty of Medicine Masaryk University Kamenice 5 A7 Brno 62500 Czech Republic
Department of Biology San Diego State University San Diego CA 92182 USA
Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
See more in PubMed
Smith CD, Shu S, Mungall CJ, and Karpen GH (2007). The Release 5.1 Annotation of Drosophila melanogaster Heterochromatin. Science. PubMed PMC
Ho JW, Jung YL, Liu T, Alver BH, Lee S, Ikegami K, Sohn KA, Minoda A, Tolstorukov MY, Appert A, et al. (2014). Comparative analysis of metazoan chromatin organization. Nature 512, 449–452. 10.1038/nature13415. PubMed DOI PMC
Hoskins RA, Carlson JW, Wan KH, Park S, Mendez I, Galle SE, Booth BW, Pfeiffer BD, George RA, Svirskas R, et al. (2015). The Release 6 reference sequence of the Drosophila melanogaster genome. Genome Res 25, 445–458. 10.1101/gr.185579.114. PubMed DOI PMC
Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, Altemose N, Uralsky L, Gershman A, et al. (2022). The complete sequence of a human genome. Science 376, 44–53. 10.1126/science.abj6987. PubMed DOI PMC
Riddle NC, Minoda A, Kharchenko PV, Alekseyenko AA, Schwartz YB, Tolstorukov MY, Gorchakov AA, Jaffe JD, Kennedy C, Linder-Basso D, et al. (2011). Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res 21, 147–163. 10.1101/gr.110098.110. PubMed DOI PMC
Peng JC, and Karpen GH (2008). Epigenetic regulation of heterochromatic DNA stability. Curr Opin Genet Dev 18, 204–211. S0959–437X(08)00020–8 [pii] 10.1016/j.gde.2008.01.021. PubMed DOI PMC
Amaral N, Ryu T, Li X, and Chiolo I (2017). Nuclear Dynamics of Heterochromatin Repair. Trends Genet 33, 86–100. 10.1016/j.tig.2016.12.004. PubMed DOI PMC
Caridi PC, Delabaere L, Zapotoczny G, and Chiolo I (2017). And yet, it moves: nuclear and chromatin dynamics of a heterochromatic double-strand break. Philos Trans R Soc Lond B Biol Sci 372. 10.1098/rstb.2016.0291. PubMed DOI PMC
Caridi CP, Plessner M, Grosse R, and Chiolo I (2019). Nuclear actin filaments in DNA repair dynamics. Nat Cell Biol 21, 1068–1077. 10.1038/s41556-019-0379-1. PubMed DOI PMC
Rawal CC, Caridi CP, and Chiolo I (2019). Actin' between phase separated domains for heterochromatin repair. DNA Repair 81, 102646. 10.1016/j.dnarep.2019.102646. PubMed DOI PMC
Chiolo I, Minoda A, Colmenares SU, Polyzos A, Costes SV, and Karpen GH (2011). Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144, 732–744. 10.1016/j.cell.2011.02.012. PubMed DOI PMC
Li Q, Tjong H, Li X, Gong K, Zhou XJ, Chiolo I, and Alber F (2017). The three-dimensional genome organization of Drosophila melanogaster through data integration. Genome Biol 18, 145. 10.1186/s13059-017-1264-5. PubMed DOI PMC
Ryu T, Spatola B, Delabaere L, Bowlin K, Hopp H, Kunitake R, Karpen GH, and Chiolo I (2015). Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat Cell Biol 17, 1401–1411. 10.1038/ncb3258. PubMed DOI PMC
Caridi CP, D'Agostino C, Ryu T, Zapotoczny G, Delabaere L, Li X, Khodaverdian VY, Amaral N, Lin E, Rau AR, and Chiolo I (2018). Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature 559, 54–60. 10.1038/s41586-018-0242-8. PubMed DOI PMC
Janssen A, Breuer GA, Brinkman EK, van der Meulen AI, Borden SV, van Steensel B, Bindra RS, LaRocque JR, and Karpen GH (2016). A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin. Genes Dev 30, 1645–1657. 10.1101/gad.283028.116. PubMed DOI PMC
Ryu T, Bonner MR, and Chiolo I (2016). Cervantes and Quijote protect heterochromatin from aberrant recombination and lead the way to the nuclear periphery. Nucleus 7, 485–497. 10.1080/19491034.2016.1239683. PubMed DOI PMC
Dialynas G, Delabaere L, and Chiolo I (2019). Arp2/3 and Unc45 maintain heterochromatin stability in Drosophila polytene chromosomes. Exp Biol Med, 1535370219862282. 10.1177/1535370219862282. PubMed DOI PMC
Jakob B, Splinter J, Conrad S, Voss K-O, Zink D, Durante M, Löbrich M, and Taucher-Scholz G (2011). DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res 10.1093/nar/gkr230. PubMed DOI PMC
Chiolo I, Tang J, Georgescu W, and Costes SV (2013). Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin. Mutat Res 750, 56–66. 10.1016/j.mrfmmm.2013.08.001. PubMed DOI PMC
Tsouroula K, Furst A, Rogier M, Heyer V, Maglott-Roth A, Ferrand A, Reina-San-Martin B, and Soutoglou E (2016). Temporal and Spatial Uncoupling of DNA Double Strand Break Repair Pathways within Mammalian Heterochromatin. Mol Cell 63, 293–305. 10.1016/j.molcel.2016.06.002. PubMed DOI
Spegg V, and Altmeyer M (2021). Biomolecular condensates at sites of DNA damage: More than just a phase. DNA Repair 106, 103179. 10.1016/j.dnarep.2021.103179. PubMed DOI PMC
Mine-Hattab J, Liu S, and Taddei A (2022). Repair Foci as Liquid Phase Separation: Evidence and Limitations. Genes (Basel) 13. 10.3390/genes13101846. PubMed DOI PMC
Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, Burlingame AL, Agard DA, Redding S, and Narlikar GJ (2017). Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin. Nature 547, 236–240. 10.1038/nature22822. PubMed DOI PMC
Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, and Karpen GH (2017). Phase separation drives heterochromatin domain formation. Nature 547, 241–245. 10.1038/nature22989. PubMed DOI PMC
Frey S, Richter RP, and Gorlich D (2006). FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817. 10.1126/science.1132516. PubMed DOI
Frey S, and Gorlich D (2007). A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130, 512–523. 10.1016/j.cell.2007.06.024. PubMed DOI
Patel SS, Belmont BJ, Sante JM, and Rexach MF (2007). Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129, 83–96. 10.1016/j.cell.2007.01.044. PubMed DOI
Schmidt HB, and Gorlich D (2015). Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity. Elife 4. 10.7554/eLife.04251. PubMed DOI PMC
Griffis ER, Altan N, Lippincott-Schwartz J, and Powers MA (2002). Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol Biol Cell 13, 1282–1297. 10.1091/mbc.01-11-0538. PubMed DOI PMC
Capelson M, Liang Y, Schulte R, Mair W, Wagner U, and Hetzer MW (2010). Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140, 372–383. 10.1016/j.cell.2009.12.054. PubMed DOI PMC
Kalverda B, Pickersgill H, Shloma VV, and Fornerod M (2010). Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140, 360–371. 10.1016/j.cell.2010.01.011. PubMed DOI
Kuhn TM, Pascual-Garcia P, Gozalo A, Little SC, and Capelson M (2019). Chromatin targeting of nuclear pore proteins induces chromatin decondensation. J Cell Biol 218, 2945–2961. 10.1083/jcb.201807139. PubMed DOI PMC
Terlecki-Zaniewicz S, Humer T, Eder T, Schmoellerl J, Heyes E, Manhart G, Kuchynka N, Parapatics K, Liberante FG, Muller AC, et al. (2021). Biomolecular condensation of NUP98 fusion proteins drives leukemogenic gene expression. Nat Struct Mol Biol 28, 190–201. 10.1038/s41594-020-00550-w. PubMed DOI PMC
Chandra B, Michmerhuizen NL, Shirnekhi HK, Tripathi S, Pioso BJ, Baggett DW, Mitrea DM, Iacobucci I, White MR, Chen J, et al. (2022). Phase Separation Mediates NUP98 Fusion Oncoprotein Leukemic Transformation. Cancer Discov 12, 1152–1169. 10.1158/2159-8290.CD-21-0674. PubMed DOI PMC
Oka M, Otani M, Miyamoto Y, Oshima R, Adachi J, Tomonaga T, Asally M, Nagaoka Y, Tanaka K, Toyoda A, et al. (2023). Phase-separated nuclear bodies of nucleoporin fusions promote condensation of MLL1/CRM1 and rearrangement of 3D genome structure. Cell Rep 42, 112884. 10.1016/j.celrep.2023.112884. PubMed DOI
Ryu T, Merigliano C, and Chiolo I (2024). Nup153 is not required for anchoring heterochromatic DSBs to the nuclear periphery. microPublication Biology 10.17912/micropub.biology.001176. PubMed DOI PMC
Fornerod M, van Deursen J, van Baal S, Reynolds A, Davis D, Murti KG, Fransen J, and Grosveld G (1997). The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 16, 807–816. 10.1093/emboj/16.4.807. PubMed DOI PMC
Roth P, Xylourgidis N, Sabri N, Uv A, Fornerod M, and Samakovlis C (2003). The Drosophila nucleoporin DNup88 localizes DNup214 and CRM1 on the nuclear envelope and attenuates NES-mediated nuclear export. J Cell Biol 163, 701–706. 10.1083/jcb.200304046. PubMed DOI PMC
Bernad R, van der Velde H, Fornerod M, and Pickersgill H (2004). Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export. Mol Cell Biol 24, 2373–2384. 10.1128/MCB.24.6.2373-2384.2004. PubMed DOI PMC
Rosenblum JS, and Blobel G (1999). Autoproteolysis in nucleoporin biogenesis. Proc Natl Acad Sci U S A 96, 11370–11375. PubMed PMC
Regmi SG, Lee H, Kaufhold R, Fichtman B, Chen S, Aksenova V, Turcotte E, Harel A, Arnaoutov A, and Dasso M (2020). The Nuclear Pore Complex consists of two independent scaffolds. bioRxiv, 2020.2011.2013.381947. 10.1101/2020.11.13.381947. DOI
Stavru F, Hulsmann BB, Spang A, Hartmann E, Cordes VC, and Gorlich D (2006). NDC1: a crucial membrane-integral nucleoporin of metazoan nuclear pore complexes. J Cell Biol 173, 509–519. 10.1083/jcb.200601001. PubMed DOI PMC
Niopek D, Wehler P, Roensch J, Eils R, and Di Ventura B (2016). Optogenetic control of nuclear protein export. Nat Commun 7, 10624. 10.1038/ncomms10624. PubMed DOI PMC
Aksenova V, Smith A, Lee H, Bhat P, Esnault C, Chen S, Iben J, Kaufhold R, Yau KC, Echeverria C, et al. (2020). Nucleoporin TPR is an integral component of the TREX-2 mRNA export pathway. Nat Commun 11, 4577. 10.1038/s41467-020-18266-2. PubMed DOI PMC
Soderholm JF, Bird SL, Kalab P, Sampathkumar Y, Hasegawa K, Uehara-Bingen M, Weis K, and Heald R (2011). Importazole, a small molecule inhibitor of the transport receptor importin-beta. ACS Chem Biol 6, 700–708. 10.1021/cb2000296. PubMed DOI PMC
Haines JD, Herbin O, de la Hera B, Vidaurre OG, Moy GA, Sun Q, Fung HY, Albrecht S, Alexandropoulos K, McCauley D, et al. (2015). Nuclear export inhibitors avert progression in preclinical models of inflammatory demyelination. Nat Neurosci 18, 511–520. 10.1038/nn.3953. PubMed DOI PMC
Enninga J, Levay A, and Fontoura BM (2003). Sec13 shuttles between the nucleus and the cytoplasm and stably interacts with Nup96 at the nuclear pore complex. Mol Cell Biol 23, 7271–7284. PubMed PMC
Bonnin E, Cabochette P, Filosa A, Juhlen R, Komatsuzaki S, Hezwani M, Dickmanns A, Martinelli V, Vermeersch M, Supply L, et al. (2018). Biallelic mutations in nucleoporin NUP88 cause lethal fetal akinesia deformation sequence. PLoS Genet 14, e1007845. 10.1371/journal.pgen.1007845. PubMed DOI PMC
Hsia KC, Stavropoulos P, Blobel G, and Hoelz A (2007). Architecture of a coat for the nuclear pore membrane. Cell 131, 1313–1326. 10.1016/j.cell.2007.11.038. PubMed DOI PMC
Schwartz TU (2005). Modularity within the architecture of the nuclear pore complex. Curr Opin Struct Biol 15, 221–226. 10.1016/j.sbi.2005.03.003. PubMed DOI
Griffis ER, Xu S, and Powers MA (2003). Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes. Mol Biol Cell 14, 600–610. 10.1091/mbc.e02-09-0582. PubMed DOI PMC
Stuwe T, von Borzyskowski LS, Davenport AM, and Hoelz A (2012). Molecular basis for the anchoring of proto-oncoprotein Nup98 to the cytoplasmic face of the nuclear pore complex. J Mol Biol 419, 330–346. 10.1016/j.jmb.2012.03.024. PubMed DOI PMC
Lin DH, and Hoelz A (2019). The Structure of the Nuclear Pore Complex (An Update). Annu Rev Biochem 88, 725–783. 10.1146/annurev-biochem-062917-011901. PubMed DOI PMC
Ren Y, Seo HS, Blobel G, and Hoelz A (2010). Structural and functional analysis of the interaction between the nucleoporin Nup98 and the mRNA export factor Rae1. Proc Natl Acad Sci U S A 107, 10406–10411. 10.1073/pnas.1005389107. PubMed DOI PMC
Pascual-Garcia P, Jeong J, and Capelson M (2014). Nucleoporin Nup98 Associates with Trx/MLL and NSL Histone-Modifying Complexes and Regulates Hox Gene Expression. Cell Rep 9, 1981. 10.1016/j.celrep.2014.11.012. PubMed DOI
Capitanio JS, Montpetit B, and Wozniak RW (2017). Human Nup98 regulates the localization and activity of DExH/D-box helicase DHX9. Elife 6. 10.7554/eLife.18825. PubMed DOI PMC
Chakraborty P, and Hiom K (2021). DHX9-dependent recruitment of BRCA1 to RNA promotes DNA end resection in homologous recombination. Nat Commun 12, 4126. 10.1038/s41467-021-24341-z. PubMed DOI PMC
Liu MY, Lin KR, Chien YL, Yang BZ, Tsui LY, Chu HC, and Wu CP (2023). ATR phosphorylates DHX9 at serine 321 to suppress R-loop accumulation upon genotoxic stress. Nucleic Acids Res. 10.1093/nar/gkad973. PubMed DOI PMC
Thiru A, Nietlispach D, Mott HR, Okuwaki M, Lyon D, Nielsen PR, Hirshberg M, Verreault A, Murzina NV, and Laue ED (2004). Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. EMBO J 23, 489–499. 10.1038/sj.emboj.7600088. PubMed DOI PMC
Liu Y, Qin S, Lei M, Tempel W, Zhang Y, Loppnau P, Li Y, and Min J (2017). Peptide recognition by heterochromatin protein 1 (HP1) chromoshadow domains revisited: Plasticity in the pseudosymmetric histone binding site of human HP1. J Biol Chem 292, 5655–5664. 10.1074/jbc.M116.768374. PubMed DOI PMC
Ohta S, Ohzeki JI, Sato N, Tanizawa H, Chung CY, Noma KI, and Masumoto H (2024). Novel role of zinc-finger protein 518 in heterochromatin formation on alpha-satellite DNA. Nucleic Acids Res 10.1093/nar/gkae1162. PubMed DOI PMC
Brower-Toland B, Findley SD, Jiang L, Liu L, Yin H, Dus M, Zhou P, Elgin SC, and Lin H (2007). Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev 21, 2300–2311. 10.1101/gad.1564307. PubMed DOI PMC
Caridi CP, Delabaere L, Tjong H, Hopp H, Das D, Alber F, and Chiolo I (2018). Quantitative Methods to Investigate the 4D Dynamics of Heterochromatic Repair Sites in Drosophila Cells. Methods Enzymol 601, 359–389. 10.1016/bs.mie.2017.11.033. PubMed DOI PMC
Ribbeck K, and Gorlich D (2002). The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J 21, 2664–2671. 10.1093/emboj/21.11.2664. PubMed DOI PMC
Liu X, Jiang S, Ma L, Qu J, Zhao L, Zhu X, and Ding J (2021). Time-dependent effect of 1,6-hexanediol on biomolecular condensates and 3D chromatin organization. Genome Biol 22, 230. 10.1186/s13059-021-02455-3. PubMed DOI PMC
Shin Y, Berry J, Pannucci N, Haataja MP, Toettcher JE, and Brangwynne CP (2017). Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets. Cell 168, 159–171 e114. 10.1016/j.cell.2016.11.054. PubMed DOI PMC
Kilic S, Lezaja A, Gatti M, Bianco E, Michelena J, Imhof R, and Altmeyer M (2019). Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J 38, e101379. 10.15252/embj.2018101379. PubMed DOI PMC
Spegg V, Panagopoulos A, Stout M, Krishnan A, Reginato G, Imhof R, Roschitzki B, Cejka P, and Altmeyer M (2023). Phase separation properties of RPA combine high-affinity ssDNA binding with dynamic condensate functions at telomeres. Nat Struct Mol Biol 30, 451–462. 10.1038/s41594-023-00932-w. PubMed DOI PMC
Taylor NO, Wei MT, Stone HA, and Brangwynne CP (2019). Quantifying Dynamics in Phase-Separated Condensates Using Fluorescence Recovery after Photobleaching. Biophys J 117, 1285–1300. 10.1016/j.bpj.2019.08.030. PubMed DOI PMC
Lei W, Myers KR, Rui Y, Hladyshau S, Tsygankov D, and Zheng JQ (2017). Phosphoinositide-dependent enrichment of actin monomers in dendritic spines regulates synapse development and plasticity. J Cell Biol 216, 2551–2564. 10.1083/jcb.201612042. PubMed DOI PMC
Wu H, Shen Y, Sivagurunathan S, Weber MS, Adam SA, Shin JH, Fredberg JJ, Medalia O, Goldman R, and Weitz DA (2022). Vimentin intermediate filaments and filamentous actin form unexpected interpenetrating networks that redefine the cell cortex. Proc Natl Acad Sci U S A 119, e2115217119. 10.1073/pnas.2115217119. PubMed DOI PMC
Rabut G, Doye V, and Ellenberg J (2004). Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol 6, 1114–1121. 10.1038/ncb1184. PubMed DOI
Ader C, Frey S, Maas W, Schmidt HB, Gorlich D, and Baldus M (2010). Amyloid-like interactions within nucleoporin FG hydrogels. Proc Natl Acad Sci U S A 107, 6281–6285. 10.1073/pnas.0910163107. PubMed DOI PMC
Hulsmann BB, Labokha AA, and Gorlich D (2012). The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell 150, 738–751. 10.1016/j.cell.2012.07.019. PubMed DOI
Zhang H, Aonbangkhen C, Tarasovetc EV, Ballister ER, Chenoweth DM, and Lampson MA (2017). Optogenetic control of kinetochore function. Nat Chem Biol 13, 1096–1101. 10.1038/nchembio.2456. PubMed DOI PMC
Zhang H, Zhao R, Tones J, Liu M, Dilley RL, Chenoweth DM, Greenberg RA, and Lampson MA (2020). Nuclear body phase separation drives telomere clustering in ALT cancer cells. Mol Biol Cell 31, 2048–2056. 10.1091/mbc.E19-10-0589. PubMed DOI PMC
Shin Y, and Brangwynne CP (2017). Liquid phase condensation in cell physiology and disease. Science 357, 1–11. PubMed
Gouveia B, Kim Y, Shaevitz JW, Petry S, Stone HA, and Brangwynne CP (2022). Capillary forces generated by biomolecular condensates. Nature 609, 255–264. 10.1038/s41586-022-05138-6. PubMed DOI
Papageorgiou AC, Pospisilova M, Cibulka J, Ashraf R, Waudby CA, Kaderavek P, Maroz V, Kubicek K, Prokop Z, Krejci L, and Tripsianes K (2023). Recognition and coacervation of G-quadruplexes by a multifunctional disordered region in RECQ4 helicase. Nat Commun 14, 6751. 10.1038/s41467-023-42503-z. PubMed DOI PMC
Gutierrez-Morton E, and Wang Y (2024). The role of SUMOylation in biomolecular condensate dynamics and protein localization. Cell Insight 3, 100199. 10.1016/j.cellin.2024.100199. PubMed DOI PMC
Spegg V, and Altmeyer M (2021). Biomolecular condensates at sites of DNA damage: More than just a phase. DNA Repair (Amst) 106, 103179. 10.1016/j.dnarep.2021.103179. PubMed DOI PMC
Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM, et al. (2015). A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 162, 1066–1077. 10.1016/j.cell.2015.07.047. PubMed DOI
Altmeyer M, Neelsen KJ, Teloni F, Pozdnyakova I, Pellegrino S, Grofte M, Rask MD, Streicher W, Jungmichel S, Nielsen ML, and Lukas J (2015). Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat Commun 6, 8088. 10.1038/ncomms9088. PubMed DOI PMC
Chappidi N, Quail T, Doll S, Vogel LT, Aleksandrov R, Felekyan S, Kuhnemuth R, Stoynov S, Seidel CAM, Brugues J, et al. (2024). PARP1-DNA co-condensation drives DNA repair site assembly to prevent disjunction of broken DNA ends. Cell 187, 945–961 e918. 10.1016/j.cell.2024.01.015. PubMed DOI
Qin C, Wang YL, Zhou JY, Shi J, Zhao WW, Zhu YX, Bai SM, Feng LL, Bie SY, Zeng B, et al. (2023). RAP80 phase separation at DNA double-strand break promotes BRCA1 recruitment. Nucleic Acids Res 51, 9733–9747. 10.1093/nar/gkad686. PubMed DOI PMC
Frattini C, Promonet A, Alghoul E, Vidal-Eychenie S, Lamarque M, Blanchard MP, Urbach S, Basbous J, and Constantinou A (2021). TopBP1 assembles nuclear condensates to switch on ATR signaling. Mol Cell 81, 1231–1245.e1238. 10.1016/j.molcel.2020.12.049. PubMed DOI
Oshidari R, Huang R, Medghalchi M, Tse EYW, Ashgriz N, Lee HO, Wyatt H, and Mekhail K (2020). DNA repair by Rad52 liquid droplets. Nature Communications 11, 695. 10.1038/s41467-020-14546-z. PubMed DOI PMC
Mine-Hattab J, Heltberg M, Villemeur M, Guedj C, Mora T, Walczak AM, Dahan M, and Taddei A (2021). Single molecule microscopy reveals key physical features of repair foci in living cells. Elife 10. 10.7554/eLife.60577. PubMed DOI PMC
Alghoul E, Paloni M, Takedachi A, Urbach S, Barducci A, Gaillard PH, Basbous J, and Constantinou A (2023). Compartmentalization of the SUMO/RNF4 pathway by SLX4 drives DNA repair. Mol Cell 83, 1640–1658 e1649. 10.1016/j.molcel.2023.03.021. PubMed DOI
Feng LL, Bie SY, Deng ZH, Bai SM, Shi J, Qin CL, Liu HL, Li JX, Chen WY, Zhou JY, et al. (2024). Ubiquitin-induced RNF168 condensation promotes DNA double-strand break repair. Proc Natl Acad Sci U S A 121, e2322972121. 10.1073/pnas.2322972121. PubMed DOI PMC
Singatulina AS, Hamon L, Sukhanova MV, Desforges B, Joshi V, Bouhss A, Lavrik OI, and Pastre D (2019). PARP-1 Activation Directs FUS to DNA Damage Sites to Form PARG-Reversible Compartments Enriched in Damaged DNA. Cell Rep 27, 1809–1821 e1805. 10.1016/j.celrep.2019.04.031. PubMed DOI
Pessina F, Giavazzi F, Yin Y, Gioia U, Vitelli V, Galbiati A, Barozzi S, Garre M, Oldani A, Flaus A, et al. (2019). Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat Cell Biol 21, 1286–1299. 10.1038/s41556-019-0392-4. PubMed DOI PMC
Miné-Hattab J, and Chiolo I (2020). Complex Chromatin Motions for DNA Repair. Frontiers in Genetics 11. 10.3389/fgene.2020.00800. PubMed DOI PMC
Michmerhuizen NL, Klco JM, and Mullighan CG (2020). Mechanistic insights and potential therapeutic approaches for NUP98-rearranged hematologic malignancies. Blood 136, 2275–2289. 10.1182/blood.2020007093. PubMed DOI PMC
Martinez N, Alonso A, Moragues MD, Ponton J, and Schneider J (1999). The nuclear pore complex protein Nup88 is overexpressed in tumor cells. Cancer Res 59, 5408–5411. PubMed
Agudo D, Gomez-Esquer F, Martinez-Arribas F, Nunez-Villar MJ, Pollan M, and Schneider J (2004). Nup88 mRNA overexpression is associated with high aggressiveness of breast cancer. Int J Cancer 109, 717–720. 10.1002/ijc.20034. PubMed DOI
Ryu T, Merigliano C, and Chiolo I (2024). Nup153 is not required for anchoring heterochromatic DSBs to the nuclear periphery. MicroPubl Biol 2024. 10.17912/micropub.biology.001176. PubMed DOI PMC
Pascual-Garcia P, and Capelson M (2014). Nuclear pores as versatile platforms for gene regulation. Curr Opin Genet Dev 25, 110–117. 10.1016/j.gde.2013.12.009. PubMed DOI
Parrott BB, Chiang Y, Hudson A, Sarkar A, Guichet A, and Schulz C (2011). Nucleoporin98–96 function is required for transit amplification divisions in the germ line of Drosophila melanogaster. PLoS One 6, e25087. 10.1371/journal.pone.0025087. PubMed DOI PMC
Breuer M, and Ohkura H (2015). A negative loop within the nuclear pore complex controls global chromatin organization. Genes Dev 29, 1789–1794. 10.1101/gad.264341.115. PubMed DOI PMC
Katsani KR, Karess RE, Dostatni N, and Doye V (2008). In vivo dynamics of Drosophila nuclear envelope components. Mol Biol Cell 19, 3652–3666. 10.1091/mbc.e07-11-1162. PubMed DOI PMC
Lee CF, Melkani GC, Yu Q, Suggs JA, Kronert WA, Suzuki Y, Hipolito L, Price MG, Epstein HF, and Bernstein SI (2011). Drosophila UNC-45 accumulates in embryonic blastoderm and in muscles, and is essential for muscle myosin stability. J Cell Sci 124, 699–705. 10.1242/jcs.078964. PubMed DOI PMC
Spirek M, Mlcouskova J, Belan O, Gyimesi M, Harami GM, Molnar E, Novacek J, Kovacs M, and Krejci L (2018). Human RAD51 rapidly forms intrinsically dynamic nucleoprotein filaments modulated by nucleotide binding state. Nucleic Acids Res 46, 3967–3980. 10.1093/nar/gky111. PubMed DOI PMC
Linhartova K, Falginella FL, Matl M, Sebesta M, Vacha R, and Stefl R (2024). Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7. Nat Commun 15, 9163. 10.1038/s41467-024-53305-2. PubMed DOI PMC
Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, and Tucker CL (2010). Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7, 973–975. 10.1038/nmeth.1524. PubMed DOI PMC
Kowalczyk SW, Kapinos L, Blosser TR, Magalhaes T, van Nies P, Lim RY, and Dekker C (2011). Single-molecule transport across an individual biomimetic nuclear pore complex. Nat Nanotechnol 6, 433–438. 10.1038/nnano.2011.88. PubMed DOI
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17, 261–272. 10.1038/s41592-019-0686-2. PubMed DOI PMC
Ren C, Webster P, Finkel SE, and Tower J (2007). Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab 6, 144–152. 10.1016/j.cmet.2007.06.006. PubMed DOI
Kosugi S, Hasebe M, Matsumura N, Takashima H, Miyamoto-Sato E, Tomita M, and Yanagawa H (2009). Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J Biol Chem 284, 478–485. 10.1074/jbc.M807017200. PubMed DOI
Cassany A, and Gerace L (2009). Reconstitution of nuclear import in permeabilized cells. Methods Mol Biol 464, 181–205. 10.1007/978-1-60327-461-6_11. PubMed DOI PMC
Fontoura BM, Blobel G, and Matunis MJ (1999). A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96. J Cell Biol 144, 1097–1112. 10.1083/jcb.144.6.1097. PubMed DOI PMC
Bosso G, Cipressa F, Moroni ML, Pennisi R, Albanesi J, Brandi V, Cugusi S, Renda F, Ciapponi L, Polticelli F, et al. (2019). NBS1 interacts with HP1 to ensure genome integrity. Cell Death Dis 10, 951. 10.1038/s41419-019-2185-x. PubMed DOI PMC
Shaiken TE, and Opekun AR (2021). Author Correction: Dissecting the cell to nucleus, perinucleus and cytosol. Sci Rep 11, 9178. 10.1038/s41598-021-88968-0. PubMed DOI PMC
See C, Arya D, Lin E, and Chiolo I (2021). Live Cell Imaging of Nuclear Actin Filaments and Heterochromatic Repair foci in Drosophila and Mouse Cells. In Methods in Molecular Biology, Aguilera A, and Carreira A, eds. (Springer US; ), pp. 459–482. 10.1007/978-1-0716-0644-5_32. PubMed DOI PMC
Ibanez de Opakua A, Geraets JA, Frieg B, Dienemann C, Savastano A, Rankovic M, Cima-Omori MS, Schroder GF, and Zweckstetter M (2022). Molecular interactions of FG nucleoporin repeats at high resolution. Nat Chem 14, 1278–1285. 10.1038/s41557-022-01035-7. PubMed DOI PMC
Keenen MM, Brown D, Brennan LD, Renger R, Khoo H, Carlson CR, Huang B, Grill SW, Narlikar GJ, and Redding S (2021). HP1 proteins compact DNA into mechanically and positionally stable phase separated domains. Elife 10. 10.7554/eLife.64563. PubMed DOI PMC
Larracuente AM, and Ferree PM (2015). Simple method for fluorescence DNA in situ hybridization to squashed chromosomes. Journal of visualized experiments : JoVE, 52288. 10.3791/52288. PubMed DOI PMC
Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, et al. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500. 10.1038/s41586-024-07487-w. PubMed DOI PMC
Varadi M, Bertoni D, Magana P, Paramval U, Pidruchna I, Radhakrishnan M, Tsenkov M, Nair S, Mirdita M, Yeo J, et al. (2024). AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res 52, D368–D375. 10.1093/nar/gkad1011. PubMed DOI PMC