Beta-alanine supplementation improves time to exhaustion, but not aerobic capacity, in competitive middle- and long-distance runners

. 2025 Dec ; 22 (1) : 2521336. [epub] 20250617

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, randomizované kontrolované studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid40528157

BACKGROUND: Beta-alanine (βA) is a non-essential amino acid purportedly used to enhance aerobic exercise performance. While previous research indicates the benefits of βA on time to exhaustion (TTE) and aerobic capacity (VO2peak) in adults, evidence is lacking in adolescent athletes. Thus, the purpose of this study was to determine the effects of 4 weeks of βA supplementation on aerobic performance in adolescent runners. METHODS: Twenty-seven middle- and long-distance runners (aged 17.36 ± 2.17 years) were randomly divided into a βA or placebo (PL) group (maltodextrin). Subjects performed maximal graded exercise tests (GXT) and submaximal trials (SMT; 80% of VO2peak for 1500 m) on a treadmill before and after 14 and 28 days of supplementation or PL. Respiratory (VE) metabolic (VO2, RER, lactate [La]), and cardiovascular (HR) variables were measured during the GXT and SMT, along with the first (VT1) and second ventilatory threshold (VT2) and TTE monitored during the GXT only. Within- and between-group differences were assessed using a repeated-measures mixed-model analysis of variance. RESULTS: Findings indicated that despite a trivial increase in VO2peak over 4 weeks, the βA group increased TTE by 6.5% compared to 1.4% in the PL group (d = 0.46). Additionally, small effects in HRmax, VE, [La], and TTE were observed between groups favoring βA. Regarding the SMT, both average HR and RER decreased by 4% in the βA group, with no changes for the PL. CONCLUSIONS: Despite no evidence to suggest increases in VO2peak, practitioners should note that improvements in TTE may be observed after 28 days of βA supplementation in adolescent runners.

Zobrazit více v PubMed

Harris RC, Edwards RHT, Hultman E, et al. The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflügers Arch. 1976;367(2):137–19. doi: 10.1007/BF00585149 PubMed DOI

Hobson RM, Saunders B, Ball G, et al. Effects of β-alanine supplementation on exercise performance: a meta-analysis. Amino Acids. 2012;43(1):25–37. doi: 10.1007/s00726-011-1200-z PubMed DOI PMC

Trivedi B, Danforth WH.. Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem. 1966;241(17):4110–4112. doi: 10.1016/S0021-9258(18)99819-4 PubMed DOI

Usher-Smith JA, Fraser JA, Bailey PS, et al. The influence of intracellular lactate and H+ on cell volume in amphibian skeletal muscle. J Physiol. 2006;573(3):799–818. doi: 10.1113/jphysiol.2006.108316 PubMed DOI PMC

Artioli GG, Gualano B, Smith A, et al. Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med Sci Sports Exerc. 2010;42(6):1162–1173. doi: 10.1249/MSS.0b013e3181c74e38 PubMed DOI

Derave W, Ozdemir MS, Harris RC, et al. β-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol. 2007;103(5):1736–1743. doi: 10.1152/japplphysiol.00397.2007 PubMed DOI

Esteves GP, Swinton P, Sale C, et al. Individual participant data meta-analysis provides no evidence of intervention response variation in individuals supplementing with beta-alanine. Int J Sport Nutr Exerc Metabol. 2021;31(4):305–331. doi: 10.1123/ijsnem.2021-0038 PubMed DOI

Trexler ET, Smith-Ryan AE, Stout JR, et al. International society of sports nutrition position stand: beta-alanine. J Int Soc Sports Nutr. 2015;12(1):30. doi: 10.1186/s12970-015-0090-y PubMed DOI PMC

Culbertson JY, Kreider RB, Greenwood M, et al. Effects of beta-alanine on muscle carnosine and exercise performance: a review of the current literature. Nutrients. 2010;2(1):75–98. doi: 10.3390/nu2010075 PubMed DOI PMC

Harris RC, Tallon MJ, Dunnett M, et al. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006;30(3):279–289. doi: 10.1007/s00726-006-0299-9 PubMed DOI

Hill CA, Harris RC, Kim HJ, et al. Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007;32(2):225–233. doi: 10.1007/s00726-006-0364-4 PubMed DOI

Smith AE, Walter AA, Graef JL, et al. Effects of β-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. J Int Soc Sports Nutr. 2009;6(1):5. doi: 10.1186/1550-2783-6-5 PubMed DOI PMC

Stout JR, Cramer JT, Mielke M, et al. Effects of twenty-eight days of beta-alanine and creatine monohydrate supplementation on the physical working capacity at neuromuscular fatigue threshold. J Strength Cond Res. 2006;20(4):928–931. doi: 10.1519/00124278-200611000-00033 PubMed DOI

Stout JR, Cramer JT, Zoeller RF, et al. Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids. 2007;32(3):381–386. doi: 10.1007/s00726-006-0474-z PubMed DOI

Sale C, Saunders B, Hudson S, et al. Effect of β-alanine plus sodium bicarbonate on high-intensity cycling capacity. Med Sci Sports Exerc. 2011;43(10):1972–1978. doi: 10.1249/MSS.0b013e3182188501 PubMed DOI

Jordan T, Lukaszuk J, Misic M, et al. Effect of beta-alanine supplementation on the onset of blood lactate accumulation (OBLA) during treadmill running: pre/post 2 treatment experimental design. J Int Soc Sports Nutr. 2010;7(1):20. doi: 10.1186/1550-2783-7-20 PubMed DOI PMC

Smith‐Ryan AE, Woessner MN, Melvin MN, et al. The effects of beta‐alanine supplementation on physical working capacity at heart rate threshold. Clin Physiol Funct Imag. 2014;34(5):397–404. doi: 10.1111/cpf.12111 PubMed DOI

Pallarés JG, Morán-Navarro R, Ortega JF, et al. Validity and reliability of ventilatory and blood lactate thresholds in well-trained cyclists. PLOS ONE. 2016;11(9):e0163389. doi: 10.1371/journal.pone.0163389 PubMed DOI PMC

Lucía A, Hoyos J, Pérez M, et al. Heart rate and performance parameters in elite cyclists: a longitudinal study. Med Sci Sports Exerc. 2000;32(10):1777–1782. doi: 10.1097/00005768-200010000-00018 PubMed DOI

Goodwin ML, Harris JE, Hernández A, et al. Blood lactate measurements and analysis during exercise: a guide for clinicians. J Diabetes Sci Tech. 2007;1(4):558–569. doi: 10.1177/193229680700100414 PubMed DOI PMC

Urbaniak GC, Plous S.. Research randomizer (version 4.0) [computer software]. 2013.

Brisola GM, Artioli GG, Papoti M, et al. Effects of four weeks of β-alanine supplementation on repeated sprint ability in water polo players. PLOS ONE. 2016;11(12):e0167968. doi: 10.1371/journal.pone.0167968 PubMed DOI PMC

Claus GM, Redkva PE, Brisola GMP, et al. Beta-alanine supplementation improves throwing velocities in repeated sprint ability and 200-m swimming performance in young water polo players. Pediatr Exerc Sci. 2017;29(2):203–212. doi: 10.1123/pes.2016-0176 PubMed DOI

de Andrade Kratz C, de Salles Painelli V, de Andrade Nemezio KM, et al. Beta-alanine supplementation enhances judo-related performance in highly-trained athletes. J Sci Med Sport. 2017;20(4):403–408. doi: 10.1016/j.jsams.2016.08.014 PubMed DOI

Milioni F, Redkva PE, Barbieri FA, et al. Six weeks of β-alanine supplementation did not enhance repeated-sprint ability or technical performances in young elite basketball players. Nutr Health. 2017;23(2):111–118. doi: 10.1177/0260106017700436 PubMed DOI

Cohen J. Statistical power analysis for the behavioral sciences. New York, NY: Routledge Academic; 1988.

Hopkins WG. A scale of magnitudes for effect statistics. New View Stat. 2002;502:321.

Hopkins WG. How to interpret changes in an athletic performance test. Sportscience. 2004;8:1–7.

Wasserstein RL, Schirm AL, Lazar NA. Moving to a world beyond “ DOI

Zoeller RF, Stout JR, O’kroy JA, et al. Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilatory and lactate thresholds, and time to exhaustion. Amino Acids. 2007;33(3):505–510. doi: 10.1007/s00726-006-0399-6 PubMed DOI

Knaier R, Infanger D, Niemeyer M, et al. In athletes, the diurnal variations in maximum oxygen uptake are more than twice as large as the day-to-day variations. Front Physiol. 2019;10:219. doi: 10.3389/fphys.2019.00219 PubMed DOI PMC

Huerta Ojeda Á, Tapia Cerda C, Poblete Salvatierra MF, et al. Effects of beta-alanine supplementation on physical performance in aerobic–anaerobic transition zones: a systematic review and meta-analysis. Nutrients. 2020;12(9):2490. doi: 10.3390/nu12092490 PubMed DOI PMC

Van Thienen R, Van Proeyen K, Vanden Eynde B, et al. Beta-alanine improves sprint performance in endurance cycling. Med Sci Sports Exerc. 2009;41(4):898–903. doi: 10.1249/MSS.0b013e31818db708 PubMed DOI

Robergs RA, McNulty CR, Minett GM, et al. Lactate, not lactic acid, is produced by cellular cytosolic energy catabolism. Physiology. 2017;33(1):10–12. doi: 10.1152/physiol.00033.2017 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...