• This record comes from PubMed

A European survey on anaerobes from paediatric blood cultures: a comparative analysis with adults

. 2025 Jun 19 ; () : . [epub] 20250619

Status Publisher Language English Country Germany Media print-electronic

Document type Journal Article

Links

PubMed 40537731
DOI 10.1007/s10096-025-05185-7
PII: 10.1007/s10096-025-05185-7
Knihovny.cz E-resources

Infections caused by anaerobes are common in children. However, limited data are available on bloodstream infections caused by these bacteria in Europe. A multicentre retrospective observational study was conducted over a 4-year period (2020-2023) across 44 European hospitals to analyze all anaerobes isolated from blood cultures. The study examined the epidemiology and antimicrobial resistance profiles of anaerobes identified in paediatric patients, comparing the findings with those observed in adults. Among the 14,527 total anaerobic isolates, 186 (1.3%) were detected from paediatric patients. These were predominantly Gram-positive (70%) and Gram-negative (22%) bacilli. The most prevalent species in paediatric patients were Cutibacterium acnes (24.7%), Schaalia odontolytica (9.7%), Actinomyces oris (8.1%), and Bacteroides fragilis (7.5%). Relative feature importance based on the mean SHAP (SHapley Additive exPlanations) values distinguished paediatric patients and adults based on their antibiotic resistance patterns with high accuracy. Compared to those from adult patients, Gram-positive bacilli detected in paediatric samples displayed higher resistance rates for meropenem (15% vs. 9%), metronidazole (52% vs. 24%), and vancomycin (27% vs. 6%), and lower resistance to benzylpenicillin (11% vs. 17%), amoxicillin/clavulanate (9% vs. 17%), and clindamycin (30% vs. 36%). Gram-negative bacilli in paediatric samples displayed lower resistance to benzylpenicillin (18% vs. 29%), piperacillin/tazobactam (26% vs. 33%), and clindamycin (20% vs. 27%), and they were highly susceptible to imipenem, meropenem, and metronidazole as those detected in adult patients. Bacteroides species detected in paediatric and adult patients displayed high resistance to piperacillin/tazobactam (33% vs. 39%) and clindamycin (38% vs. 29%), while they were highly susceptible to metronidazole. Compared to those from adult samples, Cutibacterium acnes in paediatric patients displayed lower resistance to benzylpenicillin (none vs. 15%) and clindamycin (17% vs. 29%). The comparison of species and susceptibility profiles of anaerobes detected in paediatric and adult patients highlighted the importance of reporting antimicrobial susceptibility surveillance data by age group.

Amsterdam UMC Department of Medical Microbiology and Infection Prevention Amsterdam The Netherlands

BIOSS Centre for Biological Signaling Studies University of Freiburg 79104 Freiburg Germany

CIBER de Enfermedades Infecciosas Instituto de Salud Carlos 3 Madrid Spain

Clinical Department for Clinical Microbiology Prevention and Control of Infectious Diseases University of Zagreb School of Medicine University Hospital Centre Zagreb Kispatic Street 12 10000 Zagreb Croatia

Clinical Microbiology Department of Translational Medicine Faculty of Medicine Lund University Malmö Sweden Clinical Microbiology Laboratory Medicine Skåne Lund Sweden

Clinical Microbiology Division Antoni Jurasz University Hospital No 1 in Bydgoszcz 9 Skłodowska Curie St Bydgoszcz 85 094 Poland

Department of Biomedical and Biotechnological Sciences University of Catania 95123 Catania Italy

Department of Clinical Microbiology and Microbial Pathogenesis University Hospital of Heraklion 711 10 Crete Greece

Department of Clinical Microbiology Cliniques Universitaires Saint Luc Brussels Belgium

Department of Clinical Microbiology Copenhagen University Hospital Rigshospitale Copenhagen Denmark

Department of Clinical Microbiology Copenhagen University Hospital Rigshospitalet Copenhagen Denmark Department of Clinical Medicine Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark

Department of Clinical Microbiology University Hospital Antwerp Edegem Belgium

Department of Clinical Microbiology University Hospital of Split Split Croatia

Department of Clinical Microbiology Vall d'Hebron Barcelona Hospital Campus Barcelona Spain

Department of Clinical Pathology Centro Hospitalar Universitário de Lisboa Central Lisbon Portugal

Department of Dental Microbiology Medical University of Warsaw Warsaw Poland Microbiological Laboratory University Center of Laboratory Medicine Medical University of Warsaw Warsaw Poland

Department of Experimental Medicine University of Salento Via Provinciale Monteroni N 165 73100 Lecce Italy

Department of Genetics and Microbiology Universitat Autònoma de Barcelona Bellaterra Spain

Department of Medical and Clinical Pharmacology Toulouse University Hospital Toulouse France

Department of Medical and Surgical Sciences University of Bologna 40126 Bologna Italy

Department of Medical Microbiology 2nd Faculty of Medicine Charles University and Motol University Hospital Prague Czech Republic

Department of Medical Microbiology and Immunology Prof Dr Elissay Yanev Faculty of Medicine Medical University of Plovdiv 4002 Plovdiv Bulgaria

Department of Medical Microbiology and Infectious Diseases Erasmus Medical Center Rotterdam The Netherlands

Department of Microbiology and Infection Control Akershus University Hospital Lørenskog Norway

Department of Microbiology and Laboratory Medical Immunology Medical University of Lodz Lodz Poland

Department of Microbiology Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń 9 Skłodowska Curie St 85 094 Bydgoszcz Poland

Department of Microbiology Medical Faculty Commenius University and University Hospital Bratislava Bratislava Slovakia

Department of Microbiology Medical School University of Patras Patras Greece

Department of Microbiology Oslo University Hospital Oslo Norway

Department of Microbiology St Vincent's University Hospital Elm Park Dublin D04 T6 F4 Ireland

Department of Microbiology University of Oslo Oslo Norway

Department of Molecular Medical Microbiology Faculty of Medicine Jagiellonian University Medical College Krakow Poland

Department of Paediatrics Agios Nikolaos General Hospital 721 00 Crete Greece

Department of Pharmaceutical Microbiology Faculty of Pharmacy Jagiellonian University Medical College Krakow Poland Department of Microbiology University Hospital Krakow Poland

Department of Public Health and Paediatrics University of Torino Turin Italy

Division of Medicine and Laboratory Sciences Institute of Clinical Medicine Faculty of Medicine Department of Microbiology and Infection Control University of Oslo Oslo Norway

Faculdade de Medicina Universidade de Lisboa Lisbon Portugal

Infectious Diseases Service Lausanne University Hospital Lausanne Switzerland

INSERM Immunology and New Concepts in ImmunoTherapy INCIT UMR 1302 Nantes Université Nantes France

Institut de Biologie des Hôpitaux de Nantes Service de Bactériologie et des Contrôles Microbiologiques CHU de Nantes 9 Quai Moncousu 44093 Nantes Cedex 01 France

Institut Micalis UMR 1319 Université Paris Saclay INRAe AgroParisTech Châtenay Malabry France

Institute for Medical Microbiology Immunology and Hygiene University Hospital Cologne and Faculty of Medicine University of Cologne Cologne Germany

Institute of Hygiene and Medical Microbiology Medical University of Innsbruck 6020 Innsbruck Austria

Institute of Laboratory Medicine Semmelweis University Budapest Hungary

Institute of Medical Microbiology and Hygiene Medical Center Univerity of Freiburg Faculty of Medicine 79104 Freiburg Germany

Institute of Medical Microbiology and Virology Carl Von Ossietzky University Oldenburg Oldenburg Germany

Institute of Medical Microbiology and Virology Klinikum Oldenburg Oldenburg Germany

Institute of Medical Microbiology Jena University Hospital Friedrich Schiller University Jena Germany

Institute of Medical Microbiology University of Zurich Zurich Switzerland

Institute of Microbiology and Immunology Faculty of Medicine University of Ljubljana Ljubljana Slovenia

Institute of Microbiology Lausanne University Hospital and University of Lausanne Lausanne Switzerland

Laboratoire de Bactériologie Hygiène CHU de Toulouse Université de Toulouse Toulouse France

Laboratory of Microbiology University Hospital St George Plovdiv 4000 Bulgaria

Microbiological Laboratory University Center of Laboratory Medicine Medical University of Warsaw Warsaw Poland

Microbiology and Virology Unit University Hospital Città Della Salute E Della Scienza Di Torino Turin Italy

Microbiology Department Multidisciplinary Research Center On Antimicrobial Resistance Microbiology Laboratory Pius Branzeu' Emergency Clinical County Hospital 'Victor Babes' University of Medicine and Pharmacy Timisoara Romania

Microbiology Service University Clinical Hospital of Valencia Valencia Spain

Microbiology Unit IRCCS Azienda Ospedaliero Universitaria di Bologna Bologna Italy

Neonatal Intensive Care Unit IRCCS AOU Bologna 40139 Bologna Italy

Regional Department of Clinical Microbiology University Hospital Waterford Waterford Ireland

Service de Microbiologie Clinique Hôpitaux Saint Joseph and Marie Lannelongue Paris France

Service of Microbiology Hospital Universitario de Gran Canaria Dr Negrín Las Palmas Spain

Servicio de Microbiología Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigaciones Sanitarias Madrid Spain

Serviço de Patologia Clínica Centro Hospitalar Universitário Lisboa Norte Lisbon Portugal

U O C Laboratory Analysis Unit A O U Policlinico San Marco Via S Sofia 78 95123 Catania Italy

Université Limoges INSERM CHU Limoges UMR 1092 Limoges France

Vall d'Hebron Institut de Recerca Barcelona Spain

See more in PubMed

Brook I (2024) Overview of anaerobic infections in children and their treatment. J Infect Chemother 30:1104–1113. https://doi.org/10.1016/j.jiac.2024.07.014 PubMed DOI

Freedman SB, Roosevelt GE (2004) Utility of anaerobic blood cultures in a pediatric emergency department. Pediatr Emerg Care 20:433–436. https://doi.org/10.1097/01.pec.0000132215.57976.99 PubMed DOI

Goldstein EJ (1996) Anaerobic bacteremia. Clin Infect Dis 23:S97–101. https://doi.org/10.1093/clinids/23.supplement_1.s97 PubMed DOI

Dien Bard J, McElvania TE (2016) Diagnosis of Bloodstream Infections in Children. J Clin Microbiol 54:1418–1424. https://doi.org/10.1128/JCM.02919-15 PubMed DOI PMC

Dunne WM Jr, Tillman J, Havens PL (1994) Assessing the need for anaerobic medium for the recovery of clinically significant blood culture isolates in children. Pediatr Infect Dis J 13:203–206. https://doi.org/10.1097/00006454-199403000-00007 PubMed DOI

Iwata K, Takahashi M (2008) Is anaerobic blood culture necessary? If so, who needs it? Am J Med Sci 336:58–63. https://doi.org/10.1097/MAJ.0b013e31815dca24 PubMed DOI

Zaidi AK, Knaut AL, Mirrett S, Reller LB (1995) Value of routine anaerobic blood cultures for pediatric patients. J Pediatr 127:263–268. https://doi.org/10.1016/s0022-3476(95)70305-5 PubMed DOI

Lee CS, Hwang B, Chung RL, Tang RB (2000) The assessment of anaerobic blood culture in children. J Microbiol Immunol Infect 33:49–52 PubMed

Paisley JW, Lauer BA (1994) Pediatric blood cultures. Clin Lab Med 14:17–30 PubMed DOI

Baron EJ, Miller JM, Weinstein MP, Richter SS, Gilligan PH, Thomson RB Jr et al (2013) A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)(a). Clin Infect Dis 57:e22–e121. https://doi.org/10.1093/cid/cit278 PubMed DOI PMC

Miller JM, Binnicker MJ, Campbell S, Carroll KC, Chapin KC, Gilligan PH et al (2018) A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis 67:e1–e94. https://doi.org/10.1093/cid/ciy381 PubMed DOI

Shoji K, Komuro H, Watanabe Y, Miyairi I (2013) The utility of anaerobic blood culture in detecting facultative anaerobic bacteremia in children. Diagn Microbiol Infect Dis 76:409–412. https://doi.org/10.1016/j.diagmicrobio.2013.05.003 PubMed DOI

Messbarger N, Neemann K (2018) Role of Anaerobic Blood Cultures in Neonatal Bacteremia. J Pediatric Infect Dis Soc 7:e65–e69. https://doi.org/10.1093/jpids/pix088 PubMed DOI

Dien Bard J, Chang TP, Yee R, Manshadi K, Lichtenfeld N, Choi HJ et al (2020) The Addition of Anaerobic Blood Cultures for Pediatric Patients with Concerns for Bloodstream Infections: Prevalence and Time to Positive Cultures. J Clin Microbiol 58:e01844–e1919. https://doi.org/10.1128/JCM.01844-19 PubMed DOI PMC

Ransom EM, Burnham CD (2022) Routine Use of Anaerobic Blood Culture Bottles for Specimens Collected from Adults and Children Enhances Microorganism Recovery and Improves Time to Positivity. J Clin Microbiol 60:e0050022. https://doi.org/10.1128/jcm.00500-22 PubMed DOI

Kato H, Shoji K, Jinguji M, Nishimura N, Nakagawa S, Miyairi I (2023) The Utility of Performing Anaerobic Blood Cultures in Pediatric Intensive Care Units. J Pediatric Infect Dis Soc 12:372–378. https://doi.org/10.1093/jpids/piad037 PubMed DOI

Noh GY, Park YS, Kim SH, Song SA, Shin JH (2023) Clinical usefulness of anaerobic blood culture in pediatric patients with bacteremia. Anaerobe 84:102804. https://doi.org/10.1016/j.anaerobe.2023.102804 PubMed DOI

Gottschalk A, Coggins S, Dhudasia MB, Flannery DD, Healy T, Puopolo KM et al (2024) Utility of Anaerobic Blood Cultures in Neonatal Sepsis Evaluation. J Pediatric Infect Dis Soc 13:406–412. https://doi.org/10.1093/jpids/piae056 PubMed DOI

Thé T, Curfman A, Burnham CD, Hayes E, Schnadower D; with the Pediatric Emergency Medicine Collaborative Research Committee (PEM-CRC) (2019) Pediatric Anaerobic Blood Culture Practices in Industrialized Countries. J Appl Lab Med 3:553–558. https://doi.org/10.1373/jalm.2018.027128

Hajjar N, Ting JY, Shah PS, Lee KS, Dunn MS, Srigley JA et al (2023) Blood culture collection practices in NICU. Nat Survey Paediatr Child Health 15(28):166–171. https://doi.org/10.1093/pch/pxac112 DOI

Dubreuil LJ (2024) Fifty years devoted to anaerobes: historical, lessons, and highlights. Eur J Clin Microbiol Infect Dis 43:1–15. https://doi.org/10.1007/s10096-023-04708-4 PubMed DOI

Buttery JP. Blood cultures in newborns and children: optimising an everyday test. Arch Dis Child Fetal Neonatal Ed 87:F25–8. https://doi.org/10.1136/fn.87.1.f25

Salonen JH, Eerola E, Meurman O (1998) Clinical significance and outcome of anaerobic bacteremia. Clin Infect Dis 26:1413–1417. https://doi.org/10.1086/516355 PubMed DOI

Boattini M, Bianco G, Bastos P, Mavromanolaki VE, Maraki S, Spiliopoulou A et al (2025) Diagnostic and epidemiological landscape of anaerobic bacteria in Europe, 2020–2023 (ANAEuROBE). Int J Antimicrob Agents 65:107478. https://doi.org/10.1016/j.ijantimicag.2025.107478 PubMed DOI

https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_15.0_Breakpoint_Tables.pdf . Last accessed on 20

https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Guidance_documents/When_there_are_no_breakpoints_2024-09-03.pdf . Last accessed on 20

Brook I (2010) The role of anaerobic bacteria in bacteremia. Anaerobe 16:183–189. https://doi.org/10.1016/j.anaerobe.2009.12.001 PubMed DOI

Brook I (1995) Bacteroides infections in children. J Med Microbiol 43:92–98. https://doi.org/10.1099/00222615-43-2-92 PubMed DOI

Boman J, Nilson B, Sunnerhagen T, Rasmussen M (2022) True infection or contamination in patients with positive Cutibacterium blood cultures-a retrospective cohort study. Eur J Clin Microbiol Infect Dis 41:1029–1037. https://doi.org/10.1007/s10096-022-04458-9 PubMed DOI PMC

Scaggs Huang F, Griffin C, Fenchel M, DuBose M, Ankrum A, Schaffzin JK (2024) An outbreak after all: Cutibacterium acnes among pediatric patients with cerebrospinal fluid diversion device infections highlights gaps in guidelines. Antimicrob Steward Healthc Epidemiol 4:e128. https://doi.org/10.1017/ash.2024.359 PubMed DOI PMC

Reid R, McKnight RR, Secrist E, Clark C (2021) Sternoclavicular Septic Arthritis Caused by Cutibacterium acnes in a Previously Healthy 13-Year-Old Male: A Case Report. JBJS Case Connect 11. https://doi.org/10.2106/JBJS.CC.20.00690

Okabe K, Nakagawa K, Yamamoto E (1995) Factors affecting the occurrence of bacteremia associated with tooth extraction. Int J Oral Maxillofac Surg 24:239–242 PubMed DOI

Mann C, Dertinger S, Hartmann G, Schurz R, Simma B (2002) Actinomyces neuii and neonatal sepsis. Infection 30:178–180. https://doi.org/10.1007/s15010-002-2165-3 PubMed DOI

Abozaid S, Peretz A, Nasser W, Zarfin Y (2013) Rare infection--prolonged A. naeslundii bacteremia caused by severe caries. Harefuah 152:379–380. 435

Sonbol H, Spratt D, Roberts GJ, Lucas VS (2009) Prevalence, intensity and identity of bacteraemia following conservative dental procedures in children. Oral Microbiol Immunol 24:177–182. https://doi.org/10.1111/j.1399-302X.2008.00492.x PubMed DOI

Savoca E, Mehra S, Waldman EH (2019) A case of pediatric cervicofacial actinomyces masquerading as malignancy: Case report and review of the literature. Int J Pediatr Otorhinolaryngol 116:204–208. https://doi.org/10.1016/j.ijporl.2018.11.001 PubMed DOI

Goussard P, Eber E, Rabie H, Nel P, Schubert P (2022) Paediatric pulmonary actinomycosis: A forgotten disease. Paediatr Respir Rev 43:2–10. https://doi.org/10.1016/j.prrv.2021.09.001 PubMed DOI

Wacharachaisurapol N, Bender JM, Wang L, Bliss D, Ponrartana S, Pannaraj PS (2017) Abdominal Actinomycosis in Children: A Case Report and Literature Review. Pediatr Infect Dis J 36:e76–e79. https://doi.org/10.1097/INF.0000000000001416 PubMed DOI PMC

Demirhan S, Orner E, Szymczak W, Lee PJ, Aldrich M (2024) Skin and Soft Tissue Actinomycosis in Children and Adolescents. Pediatr Infect Dis J 43:743–747. https://doi.org/10.1097/INF.0000000000004345 PubMed DOI

Rueda MS, Hefter Y, Stone B, Hahn A, Jantausch B (2021) A Premature Infant With Neonatal Actinomyces odontolyticus Sepsis. J Pediatric Infect Dis Soc 10:533–535. https://doi.org/10.1093/jpids/piaa121 PubMed DOI

Grewing A, Jujjavarapu H, Price C, Eilers LF, Zimmerman S, Hiermandi N et al (2023) Esophageal Lesion Reveals an Aortic Pseudoaneurysm in the Setting of Actinomyces odontolyticus Bacteremia. JACC Case Rep 15:101867. https://doi.org/10.1016/j.jaccas.2023.101867 PubMed DOI PMC

Cannon JP, Lee TA, Bolanos JT, Danziger LH (2005) Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Eur J Clin Microbiol Infect Dis 24:31–40. https://doi.org/10.1007/s10096-004-1253-y PubMed DOI

Wu WH, Lee CC, Chen YC, Chiang MC, Chiu CH (2024) Invasive lactobacillus infection in pediatric patients in a tertiary center in Taiwan - 16 years’ experience and literature review. Pediatr Neonatol 65:282–287. https://doi.org/10.1016/j.pedneo.2023.05.013 PubMed DOI

Gilliam CH, Brazelton de Cardenas J, Carias D, Maron Alfaro G, Hayden RT, Hakim H (2023) Lactobacillus bloodstream infections genetically related to probiotic use in pediatric hematopoietic cell transplant patients. Infect Control Hosp Epidemiol 44:484–487. https://doi.org/10.1017/ice.2021.515

Cavicchiolo ME, Magnani M, Calgaro S, Bonadies L, Castagliulo I, Morelli L et al (2019) Neonatal sepsis associated with Lactobacillus supplementation. J Perinat Med 48:87–88. https://doi.org/10.1515/jpm-2019-0268 PubMed DOI

Land MH, Rouster-Stevens K, Woods CR, Cannon ML, Cnota J, Shetty AK (2005) Lactobacillus sepsis associated with probiotic therapy. Pediatrics 115:178–181. https://doi.org/10.1542/peds.2004-2137 PubMed DOI

De Groote MA, Frank DN, Dowell E, Glode MP, Pace NR (2005) Lactobacillus rhamnosus GG bacteremia associated with probiotic use in a child with short gut syndrome. Pediatr Infect Dis J 24:278–280. https://doi.org/10.1097/01.inf.0000154588.79356.e6 PubMed DOI

Hefter Y, Powell L, Tabulov CE, Sadler ED, Campos J, Hanisch B (2023) An 11-Year Review of Lactobacillus Bacteremia at a Pediatric Tertiary Care Center. Hosp Pediatr 13:e140–e143. https://doi.org/10.1542/hpeds.2022-006892 PubMed DOI

Gouriet F, Million M, Henri M, Fournier PE, Raoult D (2012) Lactobacillus rhamnosus bacteremia: an emerging clinical entity. Eur J Clin Microbiol Infect Dis 31:2469–2480. https://doi.org/10.1007/s10096-012-1599-5 PubMed DOI

Robin F, Paillard C, Marchandin H, Demeocq F, Bonnet R, Hennequin C (2010) Lactobacillus rhamnosus meningitis following recurrent episodes of bacteremia in a child undergoing allogeneic hematopoietic stem cell transplantation. J Clin Microbiol 48:4317–4319. https://doi.org/10.1128/JCM.00250-10 PubMed DOI PMC

Buhl MEJ, Sunnerhagen T, Join-Lambert O, Morris T, Jeverica S, Assous MV et al (2024) Antimicrobial resistance surveillance of Bacteroides fragilis isolated from blood cultures, Europe, 2022 (ReSuBacfrag). Int J Antimicrob Agents 64:107241. https://doi.org/10.1016/j.ijantimicag.2024.107241 PubMed DOI

Beig M, Shirazi O, Ebrahimi E, Banadkouki AZ, Golab N, Sholeh M (2024) Prevalence of antibiotic-resistant Cutibacterium acnes (formerly Propionibacterium acnes) isolates, a systematic review and meta-analysis. J Glob Antimicrob Resist 39:82–91. https://doi.org/10.1016/j.jgar.2024.07.005 PubMed DOI

Williams A, Coombs GW, Bell JM, Daley DA, Mowlaboccus S, Bryant P et al (2024) Antimicrobial resistance in Staphylococcus aureus and Enterococci spp. isolates from bloodstream infections in Australian children, 2013 - 2021. J Pediatric Infect Dis Soc piae110. https://doi.org/10.1093/jpids/piae110

Green MB, Zevallos Barboza A, Mukhopadhyay S, Gerber JS, Morowitz MJ, Puopolo KM, Flannery DD (2024) Anaerobe-targeted antibiotic therapy in the neonatal intensive care unit. J Pediatric Infect Dis Soc piae109. https://doi.org/10.1093/jpids/piae109

Woodford EC, Dhudasia MB, Puopolo KM, Skerritt LA, Bhavsar M, DeLuca J et al (2021) Neonatal blood culture inoculant volume: feasibility and challenges. Pediatr Res 90:1086–1092. https://doi.org/10.1038/s41390-021-01484-9 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...