Improved spatial memory for physical versus virtual navigation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
F32 MH120990
NIMH NIH HHS - United States
R01 MH104606
NIMH NIH HHS - United States
U24 NS113637
NINDS NIH HHS - United States
UH3 NS095495
NINDS NIH HHS - United States
PubMed
40541229
PubMed Central
PMC12247154
DOI
10.1088/1741-2552/ade6aa
Knihovny.cz E-zdroje
- Klíčová slova
- augmented reality, navigation, physical movement, spatial memory, virtual reality,
- MeSH
- augmentovaná realita MeSH
- chůze fyziologie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- prostorová navigace * fyziologie MeSH
- prostorová paměť * fyziologie MeSH
- virtuální realita * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Objective. Virtual reality (VR) has become a key tool for researching spatial memory. Virtual environments offer many advantages for research in terms of logistics, neuroimaging compatibility etc. However, it is well established in animal models that the lack of physical movement in VR impairs some neural representations of space, and this is considered likely to be true in humans as well. Furthermore, it is unclear how big the disruptive effect stationary navigation is-how much does physical movement during encoding and recall affect human spatial memory and representations of space? What effect does the fatigue of actually walking during tasks have on participants-will physical movement decrease performance, or increase perception of difficulty?Approach. We utilize Augmented reality (AR) to enable participants to perform a spatial memory task while physically moving in the real world, compared to a matched VR task performed while stationary. Our task was performed by a group of healthy participants, by a group of stationary epilepsy patients, as they represent the population from which invasive human spatial signals are typically collected, and, in a case study, by a mobile epilepsy patient with an investigational chronic neural implant (Medtronic Summit RC + STM) streaming real-time continuous hippocampal local field potential data.Main results. Participants showed good performance in both conditions, but reported that the walking condition was significantly easier, more immersive, and more fun than the stationary condition. Importantly, memory performance was significantly better in walking vs. stationary in all groups, including epilepsy patients. We also found evidence for an increase in the amplitude of the theta oscillations associated with movement during the walking condition.Significance. Our findings highlight the importance of paradigms that include physical movement and suggest that integrating AR with movement in real environments can lead to improved techniques for spatial memory research.
Department of Biomedical Engineering Ben Gurion University Beer Sheva Israel
Department of Biomedical Engineering Columbia University New York NY United States of America
Department of Neurologic Surgery Mayo Clinic Rochester MN United States of America
Department of Neurological Surgery Columbia University New York NY United States of America
Department of Neurology Mayo Clinic Rochester MN United States of America
Faculty of Biomedical Engineering Czech Technical University Prague Kladno Czech Republic
School of Brain Sciences Ben Gurion University Beer Sheva Israel
Zobrazit více v PubMed
Montana J I, Tuena C, Serino S, Cipresso P, Riva G. Neurorehabilitation of spatial memory using virtual environments: a systematic review. J. Clin. Med. 2019;8:1516. doi: 10.3390/jcm8101516. PubMed DOI PMC
Jonson M, Avramescu S, Chen D, Alam F. The role of virtual reality in screening, diagnosing, and rehabilitating spatial memory deficits. Front. Hum. Neurosci. 2021;15:628818. doi: 10.3389/fnhum.2021.628818. PubMed DOI PMC
Rose F D, Brooks B M, Rizzo A A. Virtual reality in brain damage rehabilitation: review. Cyberpsychol. Behav. 2005;8:241–62. doi: 10.1089/cpb.2005.8.241. PubMed DOI
Starrett M J, Ekstrom A D. Perspective: assessing the flexible acquisition, integration, and deployment of human spatial representations and information. Front. Hum. Neurosci. 2018;12:281. doi: 10.3389/fnhum.2018.00281. PubMed DOI PMC
Aghajan Z M, Acharya L, Moore J J, Cushman J D, Vuong C, Mehta M R. Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality. Nat. Neurosci. 2015;18:121–8. doi: 10.1038/nn.3884. PubMed DOI
Chen G, King J A, Lu Y, Cacucci F, Burgess N. Spatial cell firing during virtual navigation of open arenas by head-restrained mice. elife. 2018;7:e34789. doi: 10.7554/eLife.34789. PubMed DOI PMC
Althoff T, White R W, Horvitz E. Influence of Pokémon Go on physical activity: study and implications. J. Med. Internet Res. 2016;18:e6759. doi: 10.2196/jmir.6759. PubMed DOI PMC
Kangsoo K, Billinghurst M, Bruder G, Duh H, Welch G. Revisiting trends in augmented reality research: a review of the 2nd decade of ISMAR (2008–2017) IEEE Trans.Vis. Comput. Graph. 2018;24:2947–62. doi: 10.1109/TVCG.2018.2868591. PubMed DOI
Milgram P, Kishino F. A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information. 1994;12:1321–9.
Furió D, González-Gancedo S, Juan M-C, Seguí I, Costa M. The effects of the size and weight of a mobile device on an educational game. Comput. Educ. 2013;64:24–41. doi: 10.1016/j.compedu.2012.12.015. DOI
Khademi M, Hondori H M, Dodakian L, Cramer S, Lopes C V. Comparing ‘pick and place’ task in spatial augmented reality versus non-immersive virtual reality for rehabilitation setting. 2013 35th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC); Osaka, Japan. 2013. pp. 4613–6. PubMed DOI
Mousavi Hondori H, Khademi M, Dodakian L, Cramer S C, Lopes C V. Medicine Meets Virtual Reality 20. IOS Press; 2013. A spatial augmented reality rehab system for post-stroke hand rehabilitation; pp. 279–85. PubMed
Jacobs J, et al. Direct recordings of grid-like neuronal activity in human spatial navigation. Nat. Neurosci. 2013;16:1188–90. doi: 10.1038/nn.3466. PubMed DOI PMC
Tsitsiklis M, et al. Single-neuron representations of spatial targets in humans. Curr. Biol. 2020;30:245–53.e4. doi: 10.1016/j.cub.2019.11.048. PubMed DOI PMC
Miller J, et al. Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation. Nat. Commun. 2018;9:2423. doi: 10.1038/s41467-018-04847-9. PubMed DOI PMC
Hasselmo M E. What is the function of hippocampal theta rhythm?—Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus. 2005;15:936–49. doi: 10.1002/hipo.20116. PubMed DOI
Ekstrom A D, Caplan J B, Ho E, Shattuck K, Fried I, Kahana M J. Human hippocampal theta activity during virtual navigation. Hippocampus. 2005;15:881–9. doi: 10.1002/hipo.20109. PubMed DOI
Aghajan Z M, et al. Theta oscillations in the human medial temporal lobe during real-world ambulatory movement. Curr. Biol. 2017;27:3743–51.e3. doi: 10.1016/j.cub.2017.10.062. PubMed DOI PMC
Bohbot V D, Copara M S, Gotman J, Ekstrom A D. Low-frequency theta oscillations in the human hippocampus during real-world and virtual navigation. Nat. Commun. 2017;8:1. doi: 10.1038/ncomms14415. PubMed DOI PMC
Maidenbaum S, Patel A, Stein E, Jacobs J. Spatial memory rehabilitation in virtual reality–extending findings from epilepsy patients to the general population. 2019 Int. Conf. on Virtual Rehabilitation (ICVR); Aviv, Israel. 2019. pp. 1–7. DOI
Maidenbaum S, Miller J, Stein J M, Jacobs J. Grid-like hexadirectional modulation of human entorhinal theta oscillations. Proc. Natl Acad. Sci. 2018;115:10798–803. doi: 10.1073/pnas.1805007115. PubMed DOI PMC
Nowacki P, Woda M. Capabilities of ARCore and ARKit platforms for AR/VR applications. In: Zamojski W, Mazurkiewicz J, Sugier J, Walkowiak T, Kacprzyk J, editors. Engineering in Dependability of Computer Systems and Networks. Springer; 2020. pp. 358–70. Advances in Intelligent Systems and Computing . DOI
Kim P, Kim J, Song M, Lee Y, Jung M, Kim H-G. A benchmark comparison of four off-the-shelf proprietary visual–inertial odometry systems. Sensors. 2022;22:9873. doi: 10.3390/s22249873. PubMed DOI PMC
Kremen V, et al. Integrating brain implants with local and distributed computing devices: a next generation epilepsy management system. IEEE J. Transl. Eng. Health Med. 2018;6:1–12. doi: 10.1109/JTEHM.2018.2869398. PubMed DOI PMC
Gregg N M, et al. Anterior nucleus of the thalamus seizure detection in ambulatory humans. Epilepsia. 2021;62:e158–e64. doi: 10.1111/epi.17047. PubMed DOI PMC
Gilron R, et al. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease. Nat. Biotechnol. 2021;39:9. doi: 10.1038/s41587-021-00897-5. PubMed DOI PMC
Pal Attia T, et al. Epilepsy personal assistant device—a mobile platform for brain state, dense behavioral and physiology tracking and controlling adaptive stimulation. Front. Neurol. 2021;12:704170. doi: 10.3389/fneur.2021.704170. PubMed DOI PMC
Hegarty M, Richardson A E, Montello D R, Lovelace K, Subbiah I. Development of a self-report measure of environmental spatial ability. Intelligence. 2002;30:425–47. doi: 10.1016/S0160-2896(02)00116-2. DOI
Hegarty M, Waller D. A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence. 2004;32:175–91. doi: 10.1016/j.intell.2003.12.001. DOI
Condon D M, Wilt J, Cohen C A, Revelle W, Hegarty M, Uttal D H. Sense of direction: general factor saturation and associations with the Big-Five traits. Pers. Individ. Differ. 2015;86:38–43. doi: 10.1016/j.paid.2015.05.023. DOI
Turano K A, Munoz B, Hassan S E, Duncan D D, Gower E W, Roche K B, Keay L, Munro C A, West S K. Poor sense of direction is associated with constricted driving space in older drivers. J. Gerontol. B. 2009;64:348–55. doi: 10.1093/geronb/gbp017. PubMed DOI PMC
Juan M, Furio D, Alem L, Ashworth P, Cano J. DSpace at University of West Bohemia: aRGreenet and BasicGreenet: two mobile games for learning how to recycle. The 19th Int. Conf. in Central Europe on Computer Graphics, Visualization and Computer; 2011.2011.
Furio D, Gnzalez-Gancedo S, Carmen J, Segui I, Rando N. Evaluation of learning outcomes using an educational iPhone game vs. traditional game—ScienceDirect. Comput. Educ. 2012;64:1–23.
Albrecht U-V, Folta-Schoofs K, Behrends M, Jan U V. Effects of mobile augmented reality learning compared to textbook learning on medical students: randomized controlled pilot study. J. Med. Internet Res. 2013;15:e182. doi: 10.2196/jmir.2497. PubMed DOI PMC
Liu P E, Tsai M. Using augmented‐reality‐based mobile learning material in EFL English composition: an exploratory case study. Br. J. Educ. Technol. 2013;44:E1–E4. doi: 10.1111/j.1467-8535.2012.01302.x. DOI
Montello D R, Waller D, Hegarty M, Richardson A E. Human Spatial Memory. Psychology Press; 2004. pp. 251–85.
Waller D, Hunt E, Knapp D. The transfer of spatial knowledge in virtual environment training. Presence. 1998;7:129–43. doi: 10.1162/105474698565631. DOI
Aronov D, Tank D W. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system. Neuron. 2014;84:442–56. doi: 10.1016/j.neuron.2014.08.042. PubMed DOI PMC
Yassa M A. Brain rhythms: higher-frequency theta oscillations make sense in moving humans. Curr. Biol. 2018;28:R70–2. doi: 10.1016/j.cub.2017.11.045. PubMed DOI PMC
Ruddle R A, Volkova E, Mohler B, Bülthoff H H. The effect of landmark and body-based sensory information on route knowledge. Mem. Cogn. 2011;39:686–99. doi: 10.3758/s13421-010-0054-z. PubMed DOI
Ruddle R A, Volkova E, Bülthoff H H. Learning to walk in virtual reality. ACM Trans. Appl. Percept. 2013;10:1–17. doi: 10.1145/2465780.2465785. DOI
Paris R, Joshi M, He Q, Narasimham G, McNamara T P, Bodenheimer B. Acquisition of survey knowledge using walking in place and resetting methods in immersive virtual environments. Proc. ACM Symp. on Applied Perception; ACM; 2017. pp. 1–8. DOI
Souman J L, Giordano P R, Frissen I, Luca A D, Ernst M O. Making virtual walking real: perceptual evaluation of a new treadmill control algorithm. ACM Trans. Appl. Percept. 2010;7:1–14. doi: 10.1145/1670671.1670675. DOI
Hejtmanek L, Starrett M, Ferrer E, Ekstrom A D. How much of what we learn in virtual reality transfers to real-world navigation? Multisensory Res. 2020;33:479–503. doi: 10.1163/22134808-20201445. PubMed DOI
Sachs G. Virtual & augmented reality: the next big computing platform. Equity Res. 2016.
Chicchi Giglioli I A, Pallavicini F, Pedroli E, Serino S, Riva G. Augmented reality: a brand new challenge for the assessment and treatment of psychological disorders. Comput. Math. Methods Med. 2015;2015:1–12. doi: 10.1155/2015/862942. PubMed DOI PMC
Koenig S T, Krch D, Lange B S, Rizzo A. Virtual reality and rehabilitation. 2019. (available at: https://psycnet.apa.org/record/2019-25330-032) (Accessed 9 February 2024)
Nincarean D, Alia M B, Halim N D A, Rahman M H A. Mobile augmented reality: the potential for education. Proc. Soc. Behav. Sci. 2013;103:657–64. doi: 10.1016/j.sbspro.2013.10.385. DOI
Vinci C, Brandon K O, Kleinjan M, Brandon T H. The clinical potential of augmented reality. Clin. Psychol. Sci. Pract. 2020;27:110. doi: 10.1111/cpsp.12357. PubMed DOI PMC
Krucoff M O, Wozny T A, Lee A T, Rao V R, Chang E F. Operative technique and lessons learned from surgical implantation of the neuropace responsive neurostimulation® system in 57 consecutive patients. Oper. Neurosurg. 2021;20:E98–109. doi: 10.1093/ons/opaa300. PubMed DOI
Gorman C, Gustafsson L. The use of augmented reality for rehabilitation after stroke: a narrative review. Disabil. Rehabil. Assist. Technol. 2022;17:409–17. doi: 10.1080/17483107.2020.1791264. PubMed DOI
Denche-Zamorano A, Rodriguez-Redondo Y, Barrios-Fernandez S, Mendoza-Muñoz M, Castillo-Paredes A, Rojo-Ramos J, Garcia-Gordillo M A, Adsuar J C. Rehabilitation is the main topic in virtual and augmented reality and physical activity research: a bibliometric analysis. Sensors. 2023;23:6. doi: 10.3390/s23062987. PubMed DOI PMC