Systematic review of the training process of minimally invasive surgery in neonates and infants
Language English Country Germany Media electronic
Document type Journal Article, Systematic Review
PubMed
40569468
PubMed Central
PMC12202564
DOI
10.1007/s00383-025-06095-7
PII: 10.1007/s00383-025-06095-7
Knihovny.cz E-resources
- Keywords
- (MIS) in neonates and infants, Laparoscopic surgery, Minimally invasive surgery, Simulation models, Simulation-based training, Thoracoscopic surgery,
- MeSH
- Clinical Competence MeSH
- Infant MeSH
- Humans MeSH
- Minimally Invasive Surgical Procedures * education MeSH
- Infant, Newborn MeSH
- Pediatrics * education MeSH
- Simulation Training * methods MeSH
- Check Tag
- Infant MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Publication type
- Journal Article MeSH
- Systematic Review MeSH
PURPOSE: Minimally invasive surgery (MIS) in neonates and infants presents technical challenges and is still unfamiliar to many paediatrics surgeons. This study aims to identify currently available simulators for neonatal/infant MIS training, to assess their validity, level of evidence, and related recommendations. METHODS: The review followed PRISMA guidelines and was registered in PROSPERO (CRD420250581050). Electronic search limited to English articles was performed through PubMed/MEDLINE, SCOPUS, Web of Science and Cochrane Database from January 2010 to June 2024. RESULTS: Out of 1084 identified records, 72 studies met the inclusion criteria and were analysed across general, gastrointestinal, thoracic, and urological MIS specialties. Recent efforts have led to the development of 3D-printed, animal-based, and hybrid models several of which showed high fidelity, skill differentiation, and educational value. Despite promising results, no universal MIS training model exists for neonate/infant patients, highlighting the need for structured, proficiency-based curricula. Overall, studies demonstrated moderate levels of evidence and recommendation, supporting integration of cost-effective simulation into paediatrics MIS training CONCLUSION: This systematic review highlights the need for validated, standardized simulation models and proficiency-based curricula to optimize neonate and infant MIS training and guide future research toward improving model fidelity, accessibility, and long-term educational outcomes.
See more in PubMed
Davidson EL, Penniston KL, Farhat WA (2024) Advancements in surgical education: exploring animal and simulation models in fetal and neonatal surgery training. Front Pediatr 12:1402596. 10.3389/fped.2024.1402596 PubMed PMC
Keeley FX, Tolley DA (1998) A review of our first 100 cases of laparoscopic nephrectomy: defining risk factors for complications. Br J Urol 82:615–618. 10.1046/j.1464-410x.1998.00847.x PubMed
Markel M, Lacher M, Hall NJ et al (2023) Training in minimally invasive surgery: experience of paediatric surgery trainees in Europe. Br J Surg 110:1397–1399. 10.1093/bjs/znad245 PubMed
Zahradniková P, Babala J, Pechanová R et al (2023) Inanimate 3D printed model for thoracoscopic repair of esophageal atresia with tracheoesophageal fistula. Front Pediatr 11:1286946. 10.3389/fped.2023.1286946 PubMed PMC
Sawyer T, White M, Zaveri P et al (2015) Learn, see, practice, prove, do, maintain: an evidence-based pedagogical framework for procedural skill training in medicine. Acad Med 90:1025–1033. 10.1097/ACM.0000000000000734 PubMed
Muri J, Makovicky P, Kamarad V et al (2024) Pulmonary sequestration in adulthood: clinical-morphological study. Bratisl Lek Listy 125:153–158. 10.4149/BLL_2023_140 PubMed
Dawe SR, Pena GN, Windsor JA et al (2014) Systematic review of skills transfer after surgical simulation-based training. Br J Surg 101:1063–1076. 10.1002/bjs.9482 PubMed
Nasr A, Carrillo B, Gerstle JT et al (2014) Motion analysis in the pediatric laparoscopic surgery (PLS) simulator: validation and potential use in teaching and assessing surgical skills. J Pediatr Surg 49:791–794. 10.1016/j.jpedsurg.2014.02.063 PubMed
Graafland M, Schraagen JMC, Boermeester MA et al (2015) Training situational awareness to reduce surgical errors in the operating room. Br J Surg 102:16–23. 10.1002/bjs.9643 PubMed
Morgan M, Aydin A, Salih A et al (2017) Current status of simulation-based training tools in orthopedic surgery: a systematic review. J Surg Educ 74:698–716. 10.1016/j.jsurg.2017.01.005 PubMed
Knowlin LT, Laskay NMB, Jules NP, et al. Advances in pediatric surgery simulation-based training. Children (Basel) 2023;11. 10.3390/children11010034 PubMed PMC
Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Rev Esp Cardiol (Engl Ed) 74:790–799. 10.1016/j.rec.2021.07.010 PubMed
Wolff RF, Moons KGM, Riley RD et al (2019) PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med 170:51–58. 10.7326/M18-1376 PubMed
Azzie G, Gerstle JT, Nasr A et al (2011) Development and validation of a pediatric laparoscopic surgery simulator. J Pediatr Surg 46:897–903. 10.1016/j.jpedsurg.2011.02.026 PubMed
Retrosi G, Cundy T, Haddad M et al (2015) Motion analysis-based skills training and assessment in pediatric laparoscopy: construct, concurrent, and content validity for the eoSim simulator. J Laparoendosc Adv Surg Tech A 25:944–950. 10.1089/lap.2015.0069 PubMed
Baumann LM, Barsness KA (2018) The case for simulation-based mastery learning education courses for practicing surgeons. J Laparoendosc Adv Surg Tech 28:1125–1128. 10.1089/lap.2017.0656 PubMed
Fahy AS, Jamal L, Gavrilovic B et al (2018) The impact of simulator size on forces generated in the performance of a defined intracorporeal suturing task: a pilot study. J Laparoendosc Adv Surg Tech 28:1520–1524. 10.1089/lap.2018.0255 PubMed
Gause CD, Hsiung G, Schwab B et al (2016) Advances in pediatric surgical education: a critical appraisal of two consecutive minimally invasive pediatric surgery training courses. J Laparoendosc Adv Surg Tech A 26:663–670. 10.1089/lap.2016.0249 PubMed
Watanabe Y, McKendy KM, Bilgic E et al (2016) New models for advanced laparoscopic suturing: taking it to the next level. Surg Endosc 30:581–587. 10.1007/s00464-015-4242-6 PubMed
Murakami M, Nishida N, Nagano A et al (2024) Evaluation of skill acquisition characteristics depending on the size of a dry box. Minim Invasive Ther Allied Technol 33:224–231. 10.1080/13645706.2024.2321950 PubMed
Oquendo YA, Riddle EW, Hiller D et al (2018) Automatically rating trainee skill at a pediatric laparoscopic suturing task. Surg Endosc 32:1840–1857. 10.1007/s00464-017-5873-6 PubMed PMC
Weisser N, Küppers J, Lindner A et al (2023) SuSiPed: an initial step towards a universal, low-cost, 3D-printable platform for pediatric minimal-invasive surgery training. J Pediatr Surg 58:675–678. 10.1016/j.jpedsurg.2022.12.018 PubMed
Haehl J, Jahrstorfer S, Lindner A et al (2024) SuSiPed 2.0: the next step towards a future practical examination for pediatric minimally invasive surgery. J Surg Simul 2024:35–42. 10.1102/2051-7726.2024.0004
Bauer F, Rommel N, Kreutzer K et al (2014) A novel approach to teaching surgical skills to medical students using an ex vivo animal training model. J Surg Educ 71:459–465. 10.1016/j.jsurg.2014.01.017 PubMed
Zimmermann P, Wiseman AX, Sanchez O et al (2019) The avian model: a novel and cost-effective animal tissue model for training in neonatal laparoscopic surgery. J Pediatr Endosc Surg 1:99–105. 10.1007/s42804-019-00027-8
Esposito C, Escolino M, Draghici I et al (2016) Training models in pediatric minimally invasive surgery: rabbit model versus porcine model: a comparative study. J Laparoendosc Adv Surg Tech A 26:79–84. 10.1089/lap.2015.0229 PubMed
Kirlum H-J, Heinrich M, Tillo N et al (2005) Advanced paediatric laparoscopic surgery: repetitive training in a rabbit model provides superior skills for live operations. Eur J Pediatr Surg 15:149–152. 10.1055/s-2005-837600 PubMed
Bailez MM, Maricic M, Aguilar JJ et al (2016) Low-cost simulation model for training mis repair of duodenal atresia combined with telementoring technology: initial assessment. Videoscopy 2016;26:vor.2016.0381. 10.1089/vor.2016.0381
Bailez MM, Falcioni G, Yang H et al (2019) Developing a gruyere-like trainer to use in the transition between basic and neonatal simulation-based minimally invasive surgery education. Videoscopy 2019;29:vor.2019.0583. 10.1089/vor.2019.0583.
Marcela BM, Alejo MM, Georgina FA et al (2023) Development of a simulation minimally invasive surgery (MIS) training program in a curricula of pediatric surgery: a replicable experience. J Pediatr Surgery Open 3:100052. 10.1016/j.yjpso.2023.100052
Maricic MA, Bailez MM, Rodriguez SP (2016) Validation of an inanimate low cost model for training minimal invasive surgery (MIS) of esophageal atresia with tracheoesophageal fistula (AE/TEF) repair. J Pediatr Surg 51:1429–1435. 10.1016/j.jpedsurg.2016.04.018 PubMed
Falcioni AG, Yang HC, Bailez MM et al (2023) Validation of a low-cost model for training laparoscopic ovary-sparing surgery (LOSS) in ovarian mature teratomas. J Pediatric Surg Open 4:100090. 10.1016/j.yjpso.2023.100090
Ruiz J, Lopez Imizcoz F, Falcioni G et al (2020) Developing simulation models for minimally invasive surgery in pediatric urology. Videoscopy 30:vor.2020.0678. 10.1089/vor.2020.0678
Falcioni AG, Yang HC, de Mattos E Silva E et al (2023) Comparative effectiveness of telesimulation versus standard simulation for pediatric Minimally Invasive Surgery (MIS) essential skills training. J Pediatr Surg 58:669–674. 10.1016/j.jpedsurg.2022.12.013 PubMed PMC
Falcioni AG, Yang HC, Maricic MA et al (2022) Effectiveness of telesimulation for pediatric minimally invasive surgery essential skills training. J Pediatr Surg 57:1092–1098. 10.1016/j.jpedsurg.2022.01.041 PubMed PMC
Reino-Pires P, Lopez M (2018) Validation of a low-cost do-it-yourself model for neonatal thoracoscopic congenital diaphragmatic hernia repair. J Surg Educ 75:1658–1663. 10.1016/j.jsurg.2018.04.005 PubMed
Bökkerink GM, Joosten M, Leijte E et al (2021) Validation of low-cost models for minimal invasive surgery training of congenital diaphragmatic hernia and esophageal atresia. J Pediatr Surg 56:465–470. 10.1016/j.jpedsurg.2020.05.045 PubMed
Paediatric Surgical Trainees Research Network (PSTRN), SurgeryLabs PSTRN (2023) Development of a 3D-printed neonatal congenital diaphragmatic hernia model and standardisation of intra-operative measurement. Pediatr Surg Int 40:28. 10.1007/s00383-023-05600-0 PubMed PMC
Pérez-Merino EM, Usón-Casaús JM, Zaragoza-Bayle C et al (2014) Development of an optimal diaphragmatic hernia rabbit model for pediatric thoracoscopic training. Exp Anim 63:93–98. 10.1538/expanim.63.93 PubMed PMC
Takimoto H, Miwa Y (2019) A retrospective study of diaphragmatic hernia in rabbits (oryctolagus cuniculus): 16 cases (2009 to 2016). J Exot Pet Med 30:17–21. 10.1053/j.jepm.2018.01.007
Ljuhar D, Alexander S, Martin S et al (2018) The laparoscopic inguinal and diaphragmatic defect (LIDD) model: a validation study of a novel box trainer model. Surg Endosc 32:4813–4819. 10.1007/s00464-018-6232-y PubMed
Barsness KA, Rooney DM, Davis LM (2013) The development and evaluation of a novel thoracoscopic diaphragmatic hernia repair simulator. J Laparoendosc Adv Surg Tech A 23:714–718. 10.1089/lap.2013.0196 PubMed
Davis LM, Hawkinson EK, Barsness KA (2014) The evolution of design: a novel thoracoscopic diaphragmatic hernia repair simulator. Stud Health Technol Inform 196:89–95 PubMed
Obata S, Ieiri S, Uemura M et al (2015) An endoscopic surgical skill validation system for pediatric surgeons using a model of congenital diaphragmatic hernia repair. J Laparoendosc Adv Surg Tech A 25:775–781. 10.1089/lap.2014.0259 PubMed
Barsness KA, Rooney DM, Davis LM et al (2015) Evaluation of three sources of validity evidence for a synthetic thoracoscopic esophageal atresia/tracheoesophageal fistula repair simulator. J Laparoendosc Adv Surg Tech A 25:599–604. 10.1089/lap.2014.0370 PubMed
Deie K, Ishimaru T, Takazawa S et al (2017) Preliminary study of video-based pediatric endoscopic surgical skill assessment using a neonatal esophageal atresia/tracheoesophageal fistula model. J Laparoendosc Adv Surg Tech 27:76–81. 10.1089/lap.2016.0214 PubMed
Barsness KA, Rooney DM, Davis LM et al (2014) Validation of measures from a thoracoscopic esophageal atresia/tracheoesophageal fistula repair simulator. J Pediatr Surg 49:29–32; discussion 32–3. 10.1016/j.jpedsurg.2013.09.069 PubMed
Takazawa S, Ishimaru T, Harada K et al (2016) Pediatric thoracoscopic surgical simulation using a rapid-prototyped chest model and motion sensors can better identify skilled surgeons than a conventional box trainer. J Laparoendosc Adv Surg Tech A 26:740–747. 10.1089/lap.2016.0131 PubMed
Wells JM, Nair D, Cook N et al (2020) End-user input into the design and validation of a synthetic thoracoscopic esophageal atresia/tracheo-esophageal fistula simulator. J Laparoendosc Adv Surg Tech A 30:685–691. 10.1089/lap.2019.0600 PubMed
Liddy HJ, Choi C, Luenenschloss N et al (2023) Longitudinal force measurement and its relationship to technical competence for esophageal anastomosis in a thoracoscopic esophageal atresia/tracheo-esophageal fistula simulator. J Pediatr Surg 58:1306–1310. 10.1016/j.jpedsurg.2023.02.026 PubMed
Choi C, Wells J, Luenenschloss N et al (2022) The role of motion tracking in assessing technical skill acquisition using a neonatal 3D-printed thoracoscopic esophageal atresia/tracheo-esophageal fistula simulator. J Pediatr Surg 57:1087–1091. 10.1016/j.jpedsurg.2022.01.029 PubMed
Williams A, McWilliam M, Ahlin J et al (2018) A simulated training model for laparoscopic pyloromyotomy: is 3D printing the way of the future? J Pediatr Surg 53:937–941. 10.1016/j.jpedsurg.2018.02.016 PubMed
Ballouhey Q, Micle L, Grosos C et al (2018) A simulation model to support laparoscopic pyloromyotomy teaching. J Laparoendosc Adv Surg Tech A 28:760–765. 10.1089/lap.2017.0263 PubMed
Plymale M, Ruzic A, Hoskins J et al (2010) A middle fidelity model is effective in teaching and retaining skill set needed to perform a laparoscopic pyloromyotomy. J Laparoendosc Adv Surg Tech A 20:569–573. 10.1089/lap.2009.0406 PubMed
Gogolova-Bujnova B, Brucknerova J, Brucknerova I (2024) Extremely rare complication in high-risk newborn on long-term parenteral nutrition and large stool losses through ileostomy. Bratisl Lek Listy 125:558–563. 10.4149/BLL_2024_87 PubMed
Mentessidou A, Saxena AK (2017) Laparoscopic repair of duodenal atresia: systematic review and meta-analysis. World J Surg 41:2178–2184. 10.1007/s00268-017-3937-3 PubMed
Ordorica-Flores R, Orpinel-Armendariz E, Rodríguez-Reyna R et al (2019) Development and preliminary validation of a rabbit model of duodenal atresia for training in pediatric surgical skills. Surg Innov 26:738–743. 10.1177/1553350619881068 PubMed
Barsness KA, Rooney DM, Davis LM et al (2015) Evaluation of three sources of validity evidence for a laparoscopic duodenal atresia repair simulator. J Laparoendosc Adv Surg Tech A 25:256–260. 10.1089/lap.2014.0358 PubMed
Etlinger P, Barroso C, Miranda A et al (2022) Characterization of technical skill progress in a standardized rabbit model for training in laparoscopic duodenal atresia repair. Surg Endosc 36:2456–2465. 10.1007/s00464-021-08530-x PubMed PMC
Fyhn TJ, Knatten CK, Edwin B et al (2020) Short-term parent reported recovery following open and laparoscopic fundoplication. J Pediatr Surg 55:1796–1801. 10.1016/j.jpedsurg.2019.11.006 PubMed
Ieiri S, Ishii H, Souzaki R et al (2013) Development of an objective endoscopic surgical skill assessment system for pediatric surgeons: suture ligature model of the crura of the diaphragm in infant fundoplication. Pediatr Surg Int 29:501–504. 10.1007/s00383-013-3276-x PubMed
Yamada K, Nakazono R, Murakami M et al (2023) The experimental evaluation of the effects of display size on forceps manipulation and eye and head movement of endoscopic surgery using a pediatric laparoscopic fundoplication simulator. J Pediatr Surg 58:664–668. 10.1016/j.jpedsurg.2022.12.023 PubMed
Jimbo T, Ieiri S, Obata S et al (2017) A new innovative laparoscopic fundoplication training simulator with a surgical skill validation system. Surg Endosc 31:1688–1696. 10.1007/s00464-016-5159-4 PubMed
Onishi S, Ikee T, Murakami M et al (2019) A comparison of the effectiveness between three different endoscopic surgical skill training programs for medical students using the infant laparoscopic fundoplication simulator: a randomized controlled trial. J Laparoendosc Adv Surg Tech A 29:1252–1258. 10.1089/lap.2019.0212 PubMed
Krauss A, Muensterer OJ, Neumuth T et al (2009) Workflow analysis of laparoscopic Nissen fundoplication in infant pigs—a model for surgical feedback and training. J Laparoendosc Adv Surg Tech A 19(Suppl 1):S117–S122. 10.1089/lap.2008.0198.supp PubMed
Jimbo T, Ieiri S, Obata S et al (2016) Preoperative simulation regarding the appropriate port location for laparoscopic hepaticojejunostomy: a randomized study using a disease-specific training simulator. Pediatr Surg Int 32:901–907. 10.1007/s00383-016-3937-7 PubMed
Yamada K, Muto M, Murakami M et al (2023) An analysis of the correlation between the efficacy of training using a high-fidelity disease-specific simulator and the clinical outcomes of laparoscopic surgery for congenital biliary dilatation in pediatric patients. Int J Comput Assist Radiol Surg 18:55–61. 10.1007/s11548-022-02793-y PubMed
Burdall OC, Makin E, Davenport M et al (2016) 3D printing to simulate laparoscopic choledochal surgery. J Pediatr Surg 51:828–831. 10.1016/j.jpedsurg.2016.02.093 PubMed
Santos BF, Reif TJ, Soper NJ et al (2012) Development and evaluation of a laparoscopic common bile duct exploration simulator and procedural rating scale. Surg Endosc 26:2403–2415. 10.1007/s00464-012-2213-8 PubMed
Schwab B, Rooney DM, Hungness ES et al (2016) Preliminary evaluation of a laparoscopic common bile duct simulator for pediatric surgical education. J Laparoendosc Adv Surg Tech A 26:831–835. 10.1089/lap.2016.0248 PubMed
Harada K, Takazawa S, Tsukuda Y et al (2015) Quantitative pediatric surgical skill assessment using a rapid-prototyped chest model. Minim Invasive Ther Allied Technol 24:226–232. 10.3109/13645706.2014.996161 PubMed
Barsness KA, Rooney DM, Davis LM et al (2015) Preliminary evaluation of a novel thoracoscopic infant lobectomy simulator. J Laparoendosc Adv Surg Tech A 25:429–434. 10.1089/lap.2014.0364 PubMed
Marecos MC, Torres RA, Bailez MM et al (2006) Pediatric thoracoscopic training in an experimental pleural empyema rabbit model. J Laparoendosc Adv Surg Tech A 16:397–399. 10.1089/lap.2006.16.397 PubMed
Kirlum H-J, Heinrich M, Till H (2005) The rabbit model serves as a valuable operative experience and helps to establish new techniques for abdominal and thoracic endosurgery. Pediatr Surg Int 21:91–93. 10.1007/s00383-004-1330-4 PubMed
Cheung CL, Looi T, Lendvay TS et al (2014) Use of 3-dimensional printing technology and silicone modeling in surgical simulation: development and face validation in pediatric laparoscopic pyeloplasty. J Surg Educ 71:762–767. 10.1016/j.jsurg.2014.03.001 PubMed
Jhala T, Zundel S, Szavay P (2021) Surgical simulation of pediatric laparoscopic dismembered pyeloplasty: reproducible high-fidelity animal-tissue model. J Pediatr Urol 17:833.e1-833.e4. 10.1016/j.jpurol.2021.09.015 PubMed
Cabarcas Maciá L, Marmolejo Franco F, Siu Uribe A et al (2022) Pilot study for low-cost model validation in laparoscopic pediatric pyeloplasty simulation. Cirugía Pediátrica 35:141–145. 10.54847/cp.2022.03.18 PubMed
Cabarcas Maciá L, Marmolejo Franco F, Siu Uribe A et al (2022) Pilot study for low-cost model validation in laparoscopic pediatric pyeloplasty simulation. Cir Pediatr 35:141–145. 10.54847/cp.2022.03.18 PubMed
Correa Restrepo J, Romero Espitía W, Chams Anturi A et al (2023) Development and validation of a laparoscopy simulation model of pyeloplasty for pediatric patients. J Laparoendosc Adv Surg Tech A 33:101–109. 10.1089/lap.2021.0852 PubMed
Krois W, Schmölz L, Wagner M et al (2022) Cysto-vaginoscopy of a 3D-printed cloaca model: a step toward personalized noninvasive preoperative assessment in patients with complex anorectal malformations. Eur J Pediatr Surg 32:210–214. 10.1055/s-0041-1726424 PubMed
Zubair U, Zubair Z (2020) Surgical resident training in Pakistan and benefits of simulation based training. J Pak Med Assoc 70:904–908. 10.5455/JPMA.282116 PubMed
Brucknerova I, Dobos D, Bibza J et al (2023) Prenatal and postnatal peculiarities and consequences of intestinal loop patency disorder with expansive giant cystic abdominal mass in a preterm newborn. Bratisl Lek Listy 124:493–497. 10.4149/BLL_2023_075 PubMed
Trudeau MO, Carrillo B, Nasr A et al (2017) Educational role for an advanced suturing task in the pediatric laparoscopic surgery simulator. J Laparoendosc Adv Surg Tech 27:441–446. 10.1089/lap.2016.0516 PubMed
Heinrich M, Tillo N, Kirlum H-J et al (2006) Comparison of different training models for laparoscopic surgery in neonates and small infants. Surg Endosc 20:641–644. 10.1007/s00464-004-2040-7 PubMed
Nair D, Wells JM, Cook N et al (2021) Construct validation of a 3D printed neonatal thoracoscopic simulator: can it measure expertise? J Pediatr Surg 56:1962–1965. 10.1016/j.jpedsurg.2021.03.054 PubMed
Hawkinson EK, Davis LM, Barsness KA (2014) Design and development of low-cost tissue replicas for simulation of rare neonatal congenital defects. Stud Health Technol Inform 196:159–162 PubMed
Davis LM, Barsness KA, Rooney DM (2013) Design and development of a novel thoracoscopic tracheoesophageal fistula repair simulator. Stud Health Technol Inform 184:114–116 PubMed
Feng X, Morandi A, Imvised T et al (2015) Three-dimensional versus two-dimensional imaging in adult versus pediatric laparoscopy: a simulator box study. J Laparoendosc Adv Surg Tech A 25:1051–1056. 10.1089/lap.2015.0085 PubMed
Torres A, Inzunza M, Jarry C et al (2020) Development and validation of a new laparoscopic endotrainer for neonatal surgery and reduced spaces. ABCD Arquivos Brasileiros de Cirurgia Digestiva (São Paulo), 33. 10.1590/0102-672020200004e1559 PubMed PMC
Narayanan SK, Cohen RC, Shun A (2014) Technical tips and advancements in pediatric minimally invasive surgical training on porcine based simulations. Pediatr Surg Int 30:655–661. 10.1007/s00383-014-3502-1 PubMed
Simforoosh N, Khazaeli M, Nouralizadeh A et al (2011) Laparoscopic animal surgery for training without sacrificing animals; introducing the rabbit as a model for infantile laparoscopy. J Laparoendosc Adv Surg Tech A 21:929–933. 10.1089/lap.2011.0308 PubMed
Okata Y, Murakami M, Uemura M et al (2024) Endosurgery workshop to improve the confidence of novice pediatric surgeons in performing laparoscopic hepaticojejunostomy. Pediatr Surg Int 40:45. 10.1007/s00383-024-05631-1 PubMed
Davidson EL, Penniston KL, Farhat WA (2024) Advancements in surgical education: exploring animal and simulation models in fetal and neonatal surgery training. Front Pediatr 12. 10.3389/fped.2024.1402596 PubMed PMC
Robinson NB, Krieger K, Khan FM et al (2019) The current state of animal models in research: a review. Int J Surg 72:9–13. 10.1016/j.ijsu.2019.10.015 PubMed
Reduce, refine, replace. Nat Immunol 11:971 (2010). 10.1038/ni1110-971 PubMed
Holmes AM, Rudd JA, Tattersall FD et al (2009) Opportunities for the replacement of animals in the study of nausea and vomiting. Br J Pharmacol 157:865–880. 10.1111/j.1476-5381.2009.00176.x PubMed PMC
Ntakakis G, Plomariti C, Frantzidis C et al (2023) Exploring the use of virtual reality in surgical education. World J Transplant 13:36–43. 10.5500/wjt.v13.i2.36 PubMed PMC
Bilimoria KY, Chung JW, Hedges LV et al (2016) National cluster-randomized trial of duty-hour flexibility in surgical training. N Engl J Med 374:713–727. 10.1056/NEJMoa1515724 PubMed
Shaaruddin J, Mohamad M (2017) Identifying the effectiveness of active learning strategies and benefits in curriculum and pedagogy course for undergraduate TESL students. Creat Educ 08:2312–2324. 10.4236/ce.2017.814158
Malau-Aduli BS, Alele FO, Heggarty P et al (2019) Perceived clinical relevance and retention of basic sciences across the medical education continuum. Adv Physiol Educ 43:293–299. 10.1152/advan.00012.2019 PubMed
Matveev AV, Milter RG (2010) An implementation of active learning: assessing the effectiveness of the team infomercial assignment. Innov Educ Teach Int 47:201–213. 10.1080/14703291003718935
Jimbo T, Ieiri S, Obata S et al (2015) Effectiveness of short-term endoscopic surgical skill training for young pediatric surgeons: a validation study using the laparoscopic fundoplication simulator. Pediatr Surg Int 31:963–969. 10.1007/s00383-015-3776-y PubMed