Modification of the Mechanical Properties of Photosensitive Resin by Using Biobased Fillers During Stereolithography (SLA) 3D Printing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2024:31140/1312/3102
Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague grant no. 2024:31140/1312/3102: "Research of factors affecting ecological processing and use of polymer composite materials based on natural fillers"
2025:31140/1312/3104
Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague grant no. 2025:31140/1312/3104: "Research into the production of composite polymer materials with a focus on improving performance".
PubMed
40572831
PubMed Central
PMC12194099
DOI
10.3390/ma18122699
PII: ma18122699
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, additive manufacturing technologies, biological fillers, composite, mechanical properties, stereolithography (SLA),
- Publikační typ
- časopisecké články MeSH
This paper is focused on the modification of commercial resin by using biobased fillers during stereolithography (SLA) 3D printing. This research aims to create a composite material with a matrix made of commercially available photosensitive resin modified with a filler based on secondary raw materials and materials formed as by-products in the processing of biological materials. The research determines the effect of different fillers on the tensile properties and hardness of samples printed using SLA 3D printing, and it also investigates their integrity using SEM analysis. This study aims to evaluate the feasibility of using these fillers for producing 3D-printed parts with SLA technology. The results of this study open up new possibilities for designing modified composite materials based on additive SLA 3D-printing technology using biological fillers. Within the framework of research activities, a positive effect on tensile properties and an improved interfacial interface between the matrix and the filler was demonstrated for several tested fillers. Significant increases in tensile strength of up to 22% occurred in composite systems filled with cotton flakes (CF), miscanthus (MS), walnut (WN), spruce tree (SB), wheat (WT) and eggshells (ES). Significant potential for further research activities and added value was shown by most of the tested bio-fillers. A significant contribution of the current research is the demonstration of the improved mechanical performance of photosensitive resin modified with natural fillers.
Zobrazit více v PubMed
Memarzadeh A., Safaei B., Tabak A., Sahmani S., Kizilors C. Advancements in additive manufacturing of polymer matrix composites: A systematic review of techniques and properties. Mater. Today Commun. 2023;36:106449. doi: 10.1016/j.mtcomm.2023.106449. DOI
Jirků P., Urban J., Müller M., Kolář V., Chandan V., Svobodová J., Mishra R.K., Jamshaid H. Evaluation of Mechanical Properties and Filler Interaction in the Field of SLA Polymeric Additive Manufacturing. Materials. 2023;16:4955. doi: 10.3390/ma16144955. PubMed DOI PMC
Niendorf K., Raeymaekers B. Quantifying macro- and microscale alignment of carbon microfibers in polymer-matrix composite materials fabricated using ultrasound directed self-assembly and 3D-printing. Compos. Part A Appl. Sci. Manuf. 2020;29:105713. doi: 10.1016/j.compositesa.2019.105713. DOI
Müller M., Valášek P., Kolář V., Šleger V., Gürdil G.A.K., Hromasová M., Hloch S., Moravec J., Pexa M. Material Utilization of Cotton Post-Harvest Line Residues in Polymeric Composites. Polymers. 2019;11:1106. doi: 10.3390/polym11071106. PubMed DOI PMC
Dizon J.R.C., Espera A.H., Jr., Chen Q., Advincula R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2018;20:44–67. doi: 10.1016/j.addma.2017.12.002. DOI
Eng H., Maleksaeedi S., Yu S., Choong Y., Wiria F., Tan C., Su P., Wei J. 3D Stereolithography of Polymer Composites Reinforced with Orientated Nanoclay. Procedia Eng. 2017;216:1–7. doi: 10.1016/j.proeng.2018.02.080. DOI
Kabir A., Chowdhury M.A., Hossain N., Islam M.A., Aoyon H., Rana M. Graphene reinforced 3D printed polymer nanocomposites for diverse applications. Results Chem. 2023;6:101197. doi: 10.1016/j.rechem.2023.101197. DOI
Nakamoto T., Kojima S. Layered Thin Film Micro Parts Reinforced with Aligned Short Fibers in Laser Stereolithography by Applying Magnetic Field. J. Adv. Mech. Design., Syst. Manuf. 2012;6:849–858. doi: 10.1299/jamdsm.6.849. DOI
Islam M.A., Mobarak M.H., Rimon M.I.H., Al Mahmud M.Z., Ghosh J., Ahmed M.M.S., Hossain N. Additive manufacturing in polymer research: Advances, synthesis, and applications. Polym. Test. 2024;132:108364. doi: 10.1016/j.polymertesting.2024.108364. DOI
Melentiev R., Melentieva M., Yu N. Top 10 directions in lithography 3D printing. Bioprinting. 2024;40:e00343. doi: 10.1016/j.bprint.2024.e00343. DOI
Shahar F.S., Sultan M.T.H., Safri S.N.A., Jawaid M., Abu Talib A.R., Basri A.A., Shah A.U.M. Fatigue and impact properties of 3D printed PLA reinforced with kenaf particles. J. Mater. Res. Technol. 2022;16:461–470. doi: 10.1016/j.jmrt.2021.12.023. DOI
Bhagia S., Bornani K., Agrawal R., Satlewal A., Ďurkovič J., Lagaňa R., Bhagia M., Yoo C.G., Zhao X., Kunc V., et al. Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Appl. Mater. Today. 2021;24:101078. doi: 10.1016/j.apmt.2021.101078. DOI
Ayrilmis N. Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament. Polym. Test. 2018;71:163–166. doi: 10.1016/j.polymertesting.2018.09.009. DOI
Sagias V.D., Giannakopoulos K.L., Stergiou C. Mechanical properties of 3D printed polymer specimens. Procedia Struct. Integr. 2018;10:85–90. doi: 10.1016/j.prostr.2018.09.013. DOI
Wu H., Fahy W.P., Kim S., Kim H., Zhao N., Pilato L., Kafi A., Bateman S., Koo J. Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog. Mater. Sci. 2020;111:100638. doi: 10.1016/j.pmatsci.2020.100638. DOI
Zhang S., Bhagia S., Li M., Meng X., Ragauskas A.J. Wood-reinforced composites by stereolithography with the stress whitening behavior. Mater. Des. 2021;206:109773. doi: 10.1016/j.matdes.2021.109773. DOI
Quan H., Zhang T., Xu H., Luo S., Nie J., Zhu X. Photo-curing 3D printing technique and its challenges. Bioact. Mater. 2020;5:110–115. doi: 10.1016/j.bioactmat.2019.12.003. PubMed DOI PMC
Mukhtarkhanov M., Perveen A., Talamona D. Application of Stereolithography Based 3D Printing Technology in Investment Casting. Micromachines. 2020;11:946. doi: 10.3390/mi11100946. PubMed DOI PMC
Nagaraju D.S., Krupakaran R.L., Sripadh C., Nitin G., Emmanuel G.J.J. Mechanical properties of 3D printed specimen using FDM (Fused deposition modelling) and SLA (Stereolithography) technologies. Mater. Today Proc. 2023:1–15. doi: 10.1016/j.matpr.2023.09.223. DOI
Shah D.M., Morris J., Plaisted T.A., Amirkhizi A.V., Hansen C.J. Highly filled resins for DLP-based printing of low density, high modulus materials. Addit. Manuf. 2021;37:101736. doi: 10.1016/j.addma.2020.101736. DOI
Zhang X., Jiang X.N., Sun C. Micro-stereolithography of polymeric and ceramic microstructures. Sens. Actuators A Phys. 1999;77:149–156. doi: 10.1016/S0924-4247(99)00189-2. DOI
Moumen A.E., Tarfaoui M., Lafdi K. Additive manufacturing of polymer composites: Processing and modeling approaches. Compos.Part B. Eng. 2019;171:166–182. doi: 10.1016/j.compositesb.2019.04.029. DOI
Roques-Carmes T., Marchal P., Gigante A., Corbel S. Stereolithography fabrication and characterization of syntactic foams containing hollow glass microspheres. Russ. Chem. Rev. 2009;78:375–386. doi: 10.1070/RC2009v078n04ABEH003897. DOI
Arora N., Dua S., Singh V.K., Singh S.K., Senthilkumar T. A comprehensive review on fillers and mechanical properties of 3D printed polymer composites. Mater. Today Commun. 2024;40:109617. doi: 10.1016/j.mtcomm.2024.109617. DOI
Yang T., Xiong X., Venkataraman M., Mishra R., Novák J., Militký J. Investigation on sound absorption properties of aerogel/polymer nonwovens. J. Text. Inst. 2018;110:196–201. doi: 10.1080/00405000.2018.1472540. DOI
Palacio A., Baniasadi M., Kardel K. Investigating Mechanical Properties of Fabricated Carbon-Fiber-Reinforced Composites via LCD Additive Manufacturing. Polymers. 2023;15:4556. doi: 10.3390/polym15234556. PubMed DOI PMC
Lu L., Zhang Z., Xu J., Pan Y. 3D-printed polymer composites with acoustically assembled multidimensional filler networks for accelerated heat dissipation. Compos.Part B Eng. 2019;174:106991. doi: 10.1016/j.compositesb.2019.106991. DOI
Orji B.O., Thie C., Baker K., Maughan M.R., McDonald A.G. Wood fiber-sodium silicate mixtures for additive manufacturing of composite materials. Eur. J. Wood Wood Prod. 2023;81:45–58. doi: 10.1007/s00107-022-01861-z. DOI
Taylor A.A., Freeman E., Ploeg M. Regulatory developments and their impacts to the nano-industry: A case study for nano-additives in 3D printing. Ecotoxicol. Environ. Saf. 2021;207:111458. doi: 10.1016/j.ecoenv.2020.111458. PubMed DOI
Romero-Ocaña I., Delgado N., Molina S.I. Biomass waste from rice and wheat straw for developing composites by stereolithography additive manufacturing. Ind. Crops Prod. 2022;189:115832. doi: 10.1016/j.indcrop.2022.115832. DOI
Boey J.Y., Lee C.K., Tay G.S. Factors Affecting Mechanical Properties of Reinforced Bioplastics: A Review. Polymers. 2022;14:3737. doi: 10.3390/polym14183737. PubMed DOI PMC
Romero-Ocaña I., Molina S.I. Cork photocurable resin composite for stereolithography (SLA): Influence of cork particle size on mechanical and thermal properties. Add. Manuf. 2022;51:102586. doi: 10.1016/j.addma.2021.102586. DOI
Quagliato L., Kim S.Y., Ryu S.C. Quasi-ductile to brittle transitional behavior and material properties gradient for additively manufactured SLA acrylate. Mater. Lett. 2022;329:133121. doi: 10.1016/j.matlet.2022.133121. DOI
Vázquez-Hernández C., Ramos-Galicia L., Velasco-Santos C., Bertolacci L., Zahid M., Yañez-Limón J.M., Perotto G., Martinez-Hernandez A.L. Effect of keratin-rich fibers from rabbit hair in two polymers processed using additive manufacturing: FDM and SLA. J. Manuf. Process. 2024;120:1104–1114. doi: 10.1016/j.jmapro.2024.04.075. DOI
Manapat J.Z., Chen Q., Ye P., Advincula R.C. 3D Printing of Polymer Nanocomposites via Stereolithography. Macromol. Mater. Eng. 2017;302:1600553. doi: 10.1002/mame.201600553. DOI
Miturska-Barańska I., Rudawska A., Sobotova L., Badida M., Olewnik-Kruszkowska E., Müller M., Hromasová M. Analysis of Acoustic Absorption Coefficients and Characterization of Epoxy Adhesive Compositions Based on the Reaction Product of Bisphenol A with Epichlorohydrin Modified with Fillers. Materials. 2024;17:4452. doi: 10.3390/ma17184452. PubMed DOI PMC
Kariz M., Sernek M., Obućina M., Kuzman M.K. Effect of wood content in FDM filament on properties of 3D printed parts. Mater. Today Commun. 2018;14:135–140. doi: 10.1016/j.mtcomm.2017.12.016. DOI
Palaganas N.B., Mangadlao J.D., de Leon A.C.C., Palaganas J.O., Pangilinan K.D., Lee Y.J., Advincula R.C. 3D Printing of Photocurable Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography. ACS Appl. Mater. Interfaces. 2017;9:34314–34324. doi: 10.1021/acsami.7b09223. PubMed DOI
Feng X., Yang Z., Chmely S., Wang Q., Wang S., Xie Y. Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization. Carbohydr. Polym. 2017;169:272–281. doi: 10.1016/j.carbpol.2017.04.001. PubMed DOI
Zhang S., Li M., Hao N., Ragauskas A.J. Stereolithography 3D Printing of Lignin-Reinforced Composites with Enhanced Mechanical Properties. ACS Omega. 2019;4:20197–201204. doi: 10.1021/acsomega.9b02455. PubMed DOI PMC
Mallick P.K. Comprehensive Composite Materials II. Elsevier; Amsterdam, The Netherlands: 2018. Particulate Filled and Short Fiber Reinforced Polymer Composites; pp. 360–400. DOI
Debnath S., Ranade R., Wunder S., Mccool J., Boberick K., Baran G. Interface effects on mechanical properties of particle-reinforced composites. Dent. Mater. 2004;20:677–686. doi: 10.1016/j.dental.2003.12.001. PubMed DOI
Ruggiero A., Valášek P., Müller M., D’Amato R. Tribological investigation of epoxy/seed particle composite obtained from residues of processing Jatropha Curcas L. Fruits. Compos. Part B Eng. 2019;167:654–667. doi: 10.1016/j.compositesb.2019.03.041. DOI
Muller M., Choteborsky R., Valasek P., Hloch S. Unusual possibility of wear resistence increase research in the sphere of soil cultivation. Tech. Vjesn.-Tech. Gaz. 2013;20:641–646.
Roy M., Tran P., Dickens T., Quaife B.D. Effects of geometry constraints and fiber orientation in field assisted extrusion-based processing. Addit. Manuf. 2020;32:101022. doi: 10.1016/j.addma.2019.101022. DOI
Jamshaid H., Mishra R., Basra S., Rajput A.W., Hassan T., Petru M., Choteborsky R., Muller M. Lignocellulosic Natural Fiber Reinforced Bisphenol F Epoxy Based Bio-composites: Characterization of Mechanical Electrical Performance. J. Natur. Fibers. 2022;19:3317–3332. doi: 10.1080/15440478.2020.1843586. DOI
Kalia S., Kaith B.S., Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polym. Eng. Sci. 2009;49:1253–1272. doi: 10.1002/pen.21328. DOI
Cai M., Takagi H., Nakagaito A.N., Katoh M., Ueki T., Waterhouse G.I., Li Y. Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Ind. Crops Prod. 2015;65:27–35. doi: 10.1016/j.indcrop.2014.11.048. DOI
Agarwal B., Broutman L., Chandrashekhara K. Analysis and Performance of Fiber Composites, 3rd ed. Wiley; New Delhi, India: 2006.
Wang X., Jiang M., Zhou Z., Gou J., Hui D. 3D printing of polymer matrix composites: A review and prospective. Compos. Part B Eng. 2017;110:442–458. doi: 10.1016/j.compositesb.2016.11.034. DOI
Cha J., Jun G.H., Park J.K., Kim J.C., Ryu H.J., Hong S.H. Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes. Compos. Part B Eng. 2017;129:169–179. doi: 10.1016/j.compositesb.2017.07.070. DOI
Yadollahi A., Shamsaei N. Additive manufacturing of fatigue resistant materials: Challenges and opportunities. Int. J. Fatigue. 2017;98:14–31. doi: 10.1016/j.ijfatigue.2017.01.001. DOI
Hasanah U., Setiaji B., Triyono T., Anwar C. The Chemical Composition and Physical Properties of the Light and Heavy Tar Resulted from Coconut Shell Pyrolysis. J. Pure Appl. Chem. Res. 2012;1:26–32. doi: 10.21776/ub.jpacr.2012.001.01.102. DOI
Markandan K., Lai C.Q. Enhanced mechanical properties of 3D printed graphene-polymer composite lattices at very low graphene concentrations. Compos. Part A Appl. Sci. Manuf. 2020;129:105726. doi: 10.1016/j.compositesa.2019.105726. DOI
Hassan T., Jamshaid H., Mishra R., Khan M.Q., Petru M., Tichy M., Muller M. Factors Affecting Acoustic Properties of Natural-Fiber-Based Materials and Composites: A Review. Textiles. 2021;1:55–85. doi: 10.3390/textiles1010005. DOI