Epigenetic cellular memory in Pseudomonas aeruginosa generates phenotypic variation in response to host environments
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
18OC0033946
Novo Nordisk Fonden (NNF)
724290
EC | European Research Council (ERC)
390874280
Deutsche Forschungsgemeinschaft (DFG)
PubMed
40591601
PubMed Central
PMC12260416
DOI
10.1073/pnas.2415345122
Knihovny.cz E-zdroje
- Klíčová slova
- GlpD, Pseudomonas aeruginosa, epigenetic memory, glycerol metabolism, single-cell,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- epigenetická paměť MeSH
- epigeneze genetická * MeSH
- fenotyp MeSH
- genové regulační sítě MeSH
- interakce hostitele a patogenu * genetika MeSH
- pseudomonádové infekce mikrobiologie MeSH
- Pseudomonas aeruginosa * genetika patogenita MeSH
- regulace genové exprese u bakterií MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
Phenotypic diversification within pathogen populations can enhance survival in stressful environments, broaden niche colonization, and expand the ecological range of infectious diseases due to emerging collective pathogenicity characteristics. We describe a gene regulatory network property in the opportunistic pathogen Pseudomonas aeruginosa that generates diversity of gene expression and pathogenicity behavior at the single-cell level and that is stabilized by epigenetic cellular memory. The resulting heterogeneity in the expression of the glpD gene-an indicator of host-derived glycerol metabolism and intra-host presence-shapes adaptive processes that are subject to natural selection. Our work on how epigenetics generates phenotypic variation in response to the environment and how these changes are inherited to the next generation provides insights into phenotypic diversity and the emergence of unique functionalities at higher levels of organization. These could be crucial for controlling infectious disease outcomes.
Department of Cell Biology Helmholtz Centre for Infection Research Braunschweig 38124 Germany
Department of Systems Immunology Helmholtz Centre for Infection Research Braunschweig 38124 Germany
Leibniz Institute Deutsche Sammlung von Mikroorganismen und Zellkulturen Braunschweig 38124 Germany
Zobrazit více v PubMed
Choi P. J., Cai L., Frieda K., Xie X. S., A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322, 442–446 (2008). PubMed PMC
Elowitz M. B., Levine A. J., Siggia E. D., Swain P. S., Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002). PubMed
Pedraza J. H., Van Oudenaarden A., Noise propagations in gene networks. Science 307, 1965–1969 (2005). PubMed
Ozbudak E. M., Thattai M., Kurtser I., Grossman A. D., Van Oudenaarden A., Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73 (2002). PubMed
Dubnau D., Losick R., Bistability in bacteria. Mol. Microbiol. 61, 564–572 (2006). PubMed
Ackermann M., A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015). PubMed
Robert L., et al. , Pre-dispositions and epigenetic inheritance in the Escherichia coli lactose operon bistable switch. Mol. Syst. Biol. 6, 357 (2010). PubMed PMC
Thattai M., Van Oudenaarden A., Stochastic gene expression in fluctuating environments. Genetics 167, 523–530 (2004). PubMed PMC
Kærn M., Elston T. C., Blake W. J., Collins J. J., Stochasticity in gene expression: From theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005). PubMed
Cohen D., Optimizing reproduction in a randomly varying environment. J. Theor. Biol. 12, 119–129 (1966). PubMed
Viney M., Reece S. E., Adaptive noise. Proc. R. Soc. B Biol. Sci. 280, 20131104 (2013). PubMed PMC
Diard M., et al. , Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494, 353–356 (2013). PubMed
Bigger J. W., Treatment of staphyloeoeeal infections with penicillin by intermittent sterilisation. Lancet 244, 497–500 (1944).
Galán-Vásquez E., Luna B., Martínez-Antonio A., The regulatory network of Pseudomonas aeruginosa. Microb. Informatics Exp. 1, 1–11 (2011). PubMed PMC
Frimmersdorf E., Horatzek S., Pelnikevich A., Wiehlmann L., Schomburg D., How Pseudomonas aeruginosa adapts to various environments: A metabolomic approach. Environ. Microbiol. 12, 1734–1747 (2010). PubMed
Mathee K., et al. , Dynamics of Pseudomonas aeruginosa genome evolution. Proc. Natl. Acad. Sci. U.S.A. 105, 3100–3105 (2008). PubMed PMC
Stover C. K., et al. , Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964 (2000). PubMed
Liberati N. T., et al. , An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. U.S.A. 103, 2833–2838 (2006). PubMed PMC
Khaledi A., et al. , Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. EMBO Mol. Med. 12, e10264 (2020). PubMed PMC
Winsor G. L., et al. , Pseudomonas genome database: Improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res. 39, D596–D600 (2011). PubMed PMC
Silva-Rocha R., et al. , The Standard European Vector Architecture (SEVA): A coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res. 41, D666–D675 (2013). PubMed PMC
Andersen J. B., et al. , New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64, 2240–2246 (1998). PubMed PMC
Laughlin R. C., et al. , Spatial segregation of virulence gene expression during acute enteric infection with Salmonella enterica serovar Typhimurium. mBio 5, 1–11 (2014). PubMed PMC
Schweizer H. P., Po C., Cloning and nucleotide sequence of the glpD gene encoding sn-glycerol-3-phosphate dehydrogenase of Pseudomonas aeruginosa. J. Bacteriol. 176, 2184–2193 (1994). PubMed PMC
Nikel P. I., Romero-Campero F. J., Zeidman J. A., Goñi-Moreno Á., Lorenzo V., The glycerol-dependent metabolic persistence of Pseudomonas putida KT2440 reflects the regulatory logic of the GlpR repressor. mBio 6, e00340-15 (2015). PubMed PMC
Raser J. M., O’Shea E. K., Noise in gene expression: Origins, consequences, and control. Science 309, 2010 (2005). PubMed PMC
Cao Y., Gillespie D. T., Petzold L. R., Adaptive explicit-implicit tau-leaping method with automatic tau selection. J. Chem. Phys. 126, PubMed
Balaban N. Q., Merrin J., Chait R., Kowalik L., Leibler S., Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004). PubMed
Klumpp S., Zhang Z., Hwa T., Growth rate-dependent global effects on gene expression in bacteria. Cell 139, 1366–1375 (2009). PubMed PMC
Feng J., Kessler D. A., Ben-Jacob E., Levine H., Growth feedback as a basis for persister bistability. Proc. Natl. Acad. Sci. U.S.A. 111, 544–549 (2014). PubMed PMC
Bandyopadhyay A., Wang H., Ray J. C. J., Lineage space and the propensity of bacterial cells to undergo growth transitions. PLoS Comput. Biol. 14, e1006380 (2018). PubMed PMC
Breidenstein E. B. M., de la Fuente-Núñez C., Hancock R. E. W., Pseudomonas aeruginosa: All roads lead to resistance. Trends Microbiol. 19, 419–426 (2011). PubMed
Pang Z., Raudonis R., Glick B. R., Lin T. J., Cheng Z., Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 37, 177–192 (2019). PubMed
Liu Y., et al. , Metabolic mechanism and physiological role of glycerol 3-phosphate in Pseudomonas aeruginosa PAO1. mBio 13, e02624-22 (2022). PubMed PMC
MacNeil L. T., Walhout A. J. M., Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Res. 21, 645–657 (2011). PubMed PMC
Laventie B. J., et al. , A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa. Cell Host Microbe 25, 140–152.e6 (2019). PubMed
Rick T., et al. , GGDEF domain as spatial on-switch for a phosphodiesterase by interaction with landmark protein HubP. NPJ Biofilms Microbiomes 8, 1–14 (2022). PubMed PMC
Drecktrah D., et al. , The glycerol-3-phosphate dehydrogenases GpsA and GlpD constitute the oxidoreductive metabolic linchpin for Lyme disease spirochete host infectivity and persistence in the tick. PLoS Pathog. 18, e1010385 (2022). PubMed PMC
Li W., Li Y., Shi W., Zhang W., GlpD involved in the virulence and persistence of a marine pathogen Vibrio splendidus. Aquaculture 585, 740691 (2024).
Spoering A. L., Vulić M., Lewis K., GlpD and PlsB participate in persister cell formation in Escherichia coli. J. Bacteriol. 188, 5136 (2006). PubMed PMC
Schweizer H. P., Po C., Regulation of glycerol metabolism in Pseudomonas aeruginosa: Characterization of the glpR repressor gene. J. Bacteriol. 178, 5215–5221 (1996). PubMed PMC
Scoffield J., Silo-Suh L., Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa. Can. J. Microbiol. 62, 704–710 (2016). PubMed
Hirakawa H., Kurabayashi K., Tanimoto K., Tomita H., Oxygen limitation enhances the antimicrobial activity of fosfomycin in Pseudomonas aeruginosa following overexpression of glpT which encodes glycerol-3-phosphate/fosfomycin symporter. Front. Microbiol. 9, 400364 (2018) PubMed PMC
Schreiber K., et al. , The anaerobic regulatory network required for Pseudomonas aeruginosa nitrate respiration. J. Bacteriol. 189, 4310 (2007). PubMed PMC
Sturm A., et al. , The cost of virulence: Retarded growth of Salmonella Typhimurium cells expressing type III secretion system 1. PLoS Pathog. 7, e1002143 (2011). PubMed PMC
Arnoldini M., et al. , Bistable expression of virulence genes in Salmonella leads to the formation of an antibiotic-tolerant subpopulation. PLoS Biol. 12, e1001928 (2014). PubMed PMC
Ackermann M., et al. , Self-destructive cooperation mediated by phenotypic noise. Nature 454, 987–990 (2008). PubMed
Bandyopadhyay A., Epigenetic cellular memory in Pseudomonas aeruginosa generates phenotypic variation in response to host environments. Zenodo. https://zenodo.org/records/14280669. Deposited 5 December 2024. PubMed PMC
Bandyopadhyay A., transcriptional_noise. Github. https://github.com/arnabbandyopadhyay/transcriptional_noise. Deposited 5 December 2024.