Expression of SAP1-3 genes in non-albicans Candida isolates in bovine raw milk and human sample
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40622669
DOI
10.1007/s12223-025-01284-2
PII: 10.1007/s12223-025-01284-2
Knihovny.cz E-zdroje
- Klíčová slova
- Gene expression, Milk, Non-albicans Candida, SAP,
- Publikační typ
- časopisecké články MeSH
Candida species are now taken as one of the essential opportunistic pathogens in clinical specimens. Although Candida albicans is one of the most essential opportunistic pathogens, non-albicans Candida (NAC) should not be taken for granted because these microorganisms are among the most common pathogens in patients today, leading to diseases, such as candidiasis, gastrointestinal tract infection, and vulvovaginitis. Fungal agents produce secreted aspartic proteinases (SAPs) to penetrate tissues. SAPs facilitate the invasion and colonization of host tissue by rupturing host mucosal membranes. They play an important role in weakening the structural and immunological defense proteins. The aim of this study was to compare the expression of SAP 1-3 genes in NAC isolated from different samples. We isolated the NAC such as Candida parapsilosis (C. parapsilosis), Candida tropicalis (C. tropicalis), Pichia kudriavzevii (P. kudriavzevii), and Nakaseomyces glabrata (N. glabrata) from two different sources of bovine raw milk and human samples. Then, we compared the expression of SAP1, SAP2, and SAP3 genes in both samples by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). The results of gene expression showed that expression of the genes SAP2 and SAP3 was different in C. parapsilosis detected from raw milk and human samples. The expression of SAP2 was significantly decreased in human samples (**p < 0.01), whereas the expression of SAP3 was significantly increased in human samples (*p < 0.05). In some cases, the expression of these genes was similar among N. glabrata, P. kudriavzevii, and C. tropicalis. The expression of SAP2 and SAP3 genes in the same species of NAC from various sources is different.
Zobrazit více v PubMed
Bras G, Satala D, Juszczak M, Kulig K, Wronowska E, Bednarek A, Zawrotniak M, Kozik MR, Kuleta JK (2024) Secreted aspartic proteinases: key factors in Candida infections and host-pathogen interactions. Int J Mol Sci 25(9):4775. https://doi.org/10.3390/ijms25094775 PubMed DOI PMC
Cordeiro RA, Alencar LP, Brilhante RSN, Branco SC, Teixeira CEC, Macedo RB, Lima DT, Neto MPA, Monteiro AJ, Alves ND, Oliveira MF, Sidrim JJC, Gadelha MFR (2013) Antifungal susceptibility of emerging opportunistic yeasts and yeast-like fungi from Rhea americana. Can J Microbiol 59(8):577–580. https://doi.org/10.1139/cjm-2013-0176 DOI
Costa EO, Gandra CR, Pires MF, Coutinho SD, Castilho W, Teixeira CM (1993) Survey of bovine mycotic mastitis in dairy herds in the State of São Paulo. Brazil Mycopathologia 124(1):13–17. https://doi.org/10.1007/BF01103051 PubMed DOI
Czechowicz P, Nowicka J, Gościniak G (2022) Virulence factors of Candida spp. and host immune response important in the pathogenesis of vulvovaginal candidiasis. Int J Mol Sci 23(11):5895. https://doi.org/10.3390/ijms23115895 PubMed DOI PMC
Dabiri S, Ghahfarokhi SM, Abyaneh RM (2016) SAP(1–3) gene expression in high proteinase producer Candida species strains isolated from Iranian patients with different candidosis. J Pure Appl Microbiol 10(3):1891–1896
Das KH, Mangayarkarasi V, Sen M (2019) Genotypic patterns of secreted aspartyl proteinase gene in various Candida species isolated from antenatal women with vulvovaginal candidiasis. J Pure Appl Microbiol 13(2):803–813. https://doi.org/10.22207/JPAM.13.2.15 DOI
Deorukhkar SC, Saini S, Mathew S (2014) Virulence factors contributing to pathogenicity of Candida tropicalis and its antifungal susceptibility profile. Int J Microbiol 2014:456878. https://doi.org/10.1155/2014/456878 PubMed DOI PMC
Dostál J, Dlouhá H, Malon P, Pichová I, Heidingsfeldová OH (2005) The precursor of secreted aspartic proteinase Sapp1p from Candida parapsilosis can be activated both autocatalytically and by a membrane-bound processing proteinase. Biol Chem 386(8):791–799. https://doi.org/10.1515/BC.2005.093 PubMed DOI
Douglas CM, D’Ippolito JA, Shei GJ, Meinz M, Onishi J, Marrinan JA, Li W, Abruzzo GK, Flattery A, Bartizal K, Mitchell A, Kurtz MB (1997) Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 41(11):2471–2479. https://doi.org/10.1128/aac.41.11.2471 PubMed DOI PMC
Du J, Wang X, Luo H, Wang Y, Liu X, Zhou X (2018) Epidemiological investigation of non-albicans Candida species recovered from mycotic mastitis of cows in Yinchuan, Ningxia of China. BMC Vet Res 14:1–9. https://doi.org/10.1186/s12917-018-1564-3 DOI
Feng Z, Lu H, Jiang Y (2024) Promising immunotherapeutic targets for treating candidiasis. Front Cell Infect Microbiol 14:1339501. https://doi.org/10.3389/fcimb.2024.1339501 PubMed DOI PMC
Girija AS, Safiya N, Priyadharsini VJ (2023) Molecular detection of secreted aspartyl proteinases (Saps) from dental isolates of Candida albicans and targeting with Psidiumguajava biocompounds: an in vitro and in silico analysis. Cureus 15(11):e49143. https://doi.org/10.7759/cureus.49143 PubMed DOI PMC
Hrusková OH, Dostál J, Majer F, Havlíkova J, Hradilek M, Pichová I (2009) Two aspartic proteinases secreted by the pathogenic yeast Candida parapsilosis differ in expression pattern and catalytic properties. Biol Chem 390(3):259–268. https://doi.org/10.1515/BC.2009.034 DOI
Kamali M, Sarvtin MT (2023) Insights into Candida albicans: a new perspective on pathogenic factors and regulatory mechanisms. Int J Med Lab 10(2):91–106. https://doi.org/10.18502/ijml.v10i2.12943 DOI
Merkerová M, Dostál J, Hradilek M, Pichová I, Heidingsfeldová OH (2006) Cloning and characterization of Sapp2p, the second aspartic proteinase isoenzyme from Candida parapsilosis. FEMS Yeast Res 6(7):1018–1026. https://doi.org/10.1111/j.1567-1364.2006.00142.x PubMed DOI
Meylani V, Sembiring L, Fudholi A, Wibawa T (2021) Differentiated SAP(4–6) gene expression of Candida albicans isolates from HIV-positive patients with oral candidiasis and commensals in healthy individuals. Microb Pathog 158:105075. https://doi.org/10.1016/j.micpath.2021.105075 PubMed DOI
Mohammadi R, Mirhendi H, Matehkolaei AR, Ghahri M, Shidfar MR, Jalalizand N, Makimura K (2013) Molecular identification and distribution profile of Candida species isolated from Iranian patients. Med Mycol 51(6):657–663. https://doi.org/10.3109/13693786.2013.770603 PubMed DOI
Monod M, Capoccia S, Léchenne B, Zaugg C, Holdom M, Jousson O (2002) Secreted proteases from pathogenic fungi. Int J Med Microbiol 292(5–6):405–419. https://doi.org/10.1078/1438-4221-00223 PubMed DOI
Naglik JR, Rodgers CA, Shirlaw PJ, Dobbie JL, Naglik LF, Greenspan D, Agabian N, Challacombe SJ (2003) Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections. J Infect Dis 188(3):469–479. https://doi.org/10.1086/376536 PubMed DOI
Nazari Z, Bahrehbar K, Sepehri H, Golalipour MJ (2023) Curcumin can improve ecstasy-induced hippocampal damage in rat. J Toxicol Environ 15(2):173–179. https://doi.org/10.1007/s13530-023-00170 DOI
Santos RC, Marin JM (2005) Isolation of Candida spp. from mastitic bovine milk in Brazil. Mycopathologia 159(2):251–3. https://doi.org/10.1007/s11046-004-2229-2 DOI
Schaller M, Januschke E, Schackert C, Woerle B, Korting HC (2001) Different isoforms of secreted aspartyl proteinases (Sap) are expressed by Candida albicans during oral and cutaneous candidosis in vivo. J Med Microbiol 50(8):743–747. https://doi.org/10.1099/0022-1317-50-8-743 PubMed DOI
Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2012) Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 36(2):288–305. https://doi.org/10.1111/j.1574-6976.2011.00278.x PubMed DOI
Sobieh SS, Elshazly RG, TawabSobieh SA, Zaki SS (2024) The expression levels of genes controlling biofilm formation and evaluating the effects of different conditions on biofilm formation and secreted aspartic proteinase activity in Candida albicans and Saccharomyces cerevisiae: a comparative study. Beni Suef Univ J Basic Appl Sci 13(49):1–13. https://doi.org/10.1186/s43088-024-00504-x DOI
Soliman SM (2023) Candida spp.-transmission, pathogenesis, host-pathogen interaction, prevention, and treatment. Front Microbiol 14:1258837. https://doi.org/10.3389/fmicb.2023.1258837 PubMed DOI PMC
Staniszewska M, Bondaryk M, Siennicka K, Kurek A, Orłowski J, Schaller M, Kurzatkowski W (2012) In vitro study of secreted aspartyl proteinases Sap1 to Sap3 and Sap4 to Sap6 expression in Candida albicans pleomorphic forms. Pol J Microbiol 61(4):247–256. https://doi.org/10.1128/IAI.70.7.3689-3700 PubMed DOI
Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S, Kotris I, Škrlec I (2021) Candida albicans — the virulence factors and clinical manifestations of infection. J Fungi 7(2):79. https://doi.org/10.3390/jof7020079 DOI
Trofa D, Gácser A, Nosanchuk JD (2008) Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 21(4):606–625. https://doi.org/10.1128/CMR.00013-08 PubMed DOI PMC
Wang B, Li J, Cheng X, Zhou Q, Yang J, Zhang M, Chen H, Li J (2018) NIPS, a 3D network-integrated predictor of deleterious protein SAPs, and its application in cancer prognosis. Sci Rep 8(1):6021. https://doi.org/10.1038/s41598-018-24286-2 PubMed DOI PMC
Yang YL (2003) Virulence factors of Candida species. J Microbiol Immunol Infect 36(4):223–228. https://doi.org/10.1007/s12275-016-5621 PubMed DOI