Variable roles of miRNA- and apoptosis-linked genes in invasive breast cancer: expression patterns, clinicopathological associations, and prognostic significance

. 2025 Jul 11 ; 52 (1) : 703. [epub] 20250711

Jazyk angličtina Země Nizozemsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40643805

Grantová podpora
Cooperatio Program, research area Oncology and Haematology Charles University
MH CZ-DRO-VFN 64165 Ministry of Health of the Czech Republic
MH CZ-DRO FNBr 65269705 Ministry of Health of the Czech Republic
MH CZ-DRO FNBr 65269705 Ministry of Health of the Czech Republic
MH CZ-DRO FNBr 65269705 Ministry of Health of the Czech Republic
MH CZ-DRO-VFN 64165 Ministry of Health of the Czech Republic
1410003540 ČEPS, a.s.

Odkazy

PubMed 40643805
DOI 10.1007/s11033-025-10739-1
PII: 10.1007/s11033-025-10739-1
Knihovny.cz E-zdroje

INTRODUCTION: Breast cancer is the most common cancer and the leading cause of cancer-related death in women. Differential gene expression can help identify genes involved in carcinogenesis or serve as biomarkers. METHODS: This study provides a comprehensive evaluation of the gene expression focusing on apoptosis-related genes, in invasive breast carcinoma of no specific type compared with benign tissue. The gene expression of nine candidate genes identified as potential targets of certain microRNAs suggested as biomarkers and known for their role in apoptosis, and two additional apoptosis-related genes identified in the screening was evaluated using qPCR together with external datasets. RESULTS: Screening of 92 apoptosis-related genes identified several dysregulated genes including downregulated BCL2L2 and upregulated BIRC5 genes, which were further confirmed as tumor suppressor and as an oncogene, respectively. Among the miRNA-related genes, HMGA2 and RAB22A were overexpressed, while ATF2, PPM1L, VPS4A, ZEB1, and ZFP36L1 were underexpressed. The BIRC5/BCL2L2 gene signature provided AUC of 0.975, sensitivity of 93.10% and specificity of 96.43%. Increased BIRC5 expression was associated with higher tumor grades and Ki-67-positive samples while decreased levels of BCL2L2 were associated with Ki-67-positive samples. Luminal A and B samples were distinguished by the differential expression of these two genes. The high expression of HMGA2 and BIRC5 genes was observed as a negative prognostic factor for both overall survival (OS) and progression-free survival (PFS) with a favorable OS difference of ~ 1 year for HMGA2 and 1.2 years for BIRC5 in the case of their low expression. External validation identified ZEB1 as a positive and BIRC5 as a negative prognostic factor for both overall and disease-free survival. CONCLUSION: The results highlighted genes with possible roles in apoptosis and acting in breast carcinogenesis. In particular, BIRC5 was shown as important oncogene and ZEB1 as a tumor suppressor in invasive breast cancer. Further studies are warranted to evaluate the potential of the investigated genes as biomarkers or therapeutic targets, with possible implications for breast cancer diagnosis and treatment.

Zobrazit více v PubMed

Bray F, Laversanne M, Sung H et al (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca-Cancer J Clin 74:229–263. https://doi.org/10.3322/caac.21834 PubMed DOI

Giaquinto AN, Sung H, Newman LA, Freedman RA, Smith RA, Star J, Jemal A, Siegel RL (2024) Breast cancer statistics 2024. CA Cancer J Clin 74(6):477–495. https://doi.org/10.3322/caac.21863 PubMed DOI

https:// www.cancer.org/cancer/types/breast-cancer/about/how-common-is-breast-cancer.html

Feng YX, Spezia M, Huang SF et al (2018) Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 5:77–106. https://doi.org/10.1016/j.gendis.2018.05.001 PubMed DOI PMC

Lopez G, Costanza J, Colleoni M et al (2019) Molecular insights into the classification of luminal breast cancers: the genomic heterogeneity of Progesterone-Negative tumors. Int J Mol Sci 20(3):510. https://doi.org/10.3390/ijms20030510 PubMed DOI PMC

Curigliano G, Burstein HJ, Gnant M et al (2023) Understanding breast cancer complexity to improve patient outcomes: the St Gallen international consensus conference for the primary therapy of individuals with early breast Cancer 2023. Ann Oncol 34:970–986. https://doi.org/10.1016/j.annonc.2023.08.017 PubMed DOI

Padroni L, De Marco L, Fiano V et al (2023) Identifying MicroRNAs suitable for detection of breast cancer: A systematic review of discovery phases studies on MicroRNA expression profiles. Int J Mol Sci 24(20):15114. https://doi.org/10.3390/ijms242015114 PubMed DOI PMC

Zavesky L, Jandakova E, Weinberger V et al (2025) The overexpressed MicroRNAs miRs-182, 155, 493, 454, and U6 SnRNA and underexpressed let-7c, miR-328, and miR-451a as potential biomarkers in invasive breast Cancer and their clinicopathological significance. Oncology 103(2):112–127. https://doi.org/10.1159/000540863 PubMed DOI

Zhang TZ, Hu H, Yan G et al (2019) Long Non-Coding RNA and breast Cancer. Technol Cancer Res Treat. 18. Article 1533033819843889 https://doi.org/10.1177/1533033819843889 PubMed DOI PMC

Zavesky L, Jandakova E, Weinberger V et al (2024) Long non-coding RNAs PTENP1, GNG12-AS1, MAGI2-AS3 and MEG3 as tumor suppressors in breast cancer and their associations with clinicopathological parameters. Cancer Biomarkers 40:61–78. https://doi.org/10.3233/CBM-230259 PubMed DOI PMC

Pantel K, Alix-Panabières C (2022) Liquid biopsy and minimal residual disease — latest advances and implications for cure. Curr Oncol Rep 24:1241–1248. https://doi.org/10.1007/s11912-022-01199-y DOI

Lopez-Gonzalez L, Cendra A, Cendra C et al (2024) Exploring biomarkers in breast cancer: hallmarks of diagnosis, treatment, and Follow-Up in clinical practice. Med Lith 60(1):168. https://doi.org/10.3390/medicina60010168 DOI

Zhang H, Chen P, Yang J (2020) miR-451a suppresses the development of breast cancer via targeted Inhibition of CCND2 mol. Cell Probes 54 Article Number 101651. https://doi.org/10.1016/j.mcp.2020.101651

Khordadmehr M, Ezzati H, Shahbazfar A, Jigari-Asl F, Baradaran B et al (2023) mir-451a-5p modulates breast Cancer cell apoptosis, migration, and chemosensitivity to carboplatin through the PTEN pathway. Pharm Sci 29(3):328–337. https://doi.org/10.34172/PS.2022.28 DOI

Liu ZR, Song Y, Wan LH, Zhang YY, Zhou LM (2016) Over-expression of miR-451a can enhance the sensitivity of breast cancer cells to Tamoxifen by regulating 14-3-3ζ, Estrogen receptor α, and autophagy. Life Sci 149:104–113. https://doi.org/10.1016/j.lfs.2016.02.059 PubMed DOI

Fu XN, Mao X, Wang YX, Ding XF, Li YF (2017) Let-7c-5p inhibits cell proliferation and induces cell apoptosis by targeting ERCC6 in breast cancer. Oncol Rep 38(3):1851–1856. https://doi.org/10.3892/or.2017.5839 PubMed DOI

Jiang WH, Yu YP, Ou JH, Li YT, Zhu N (2023) Exosomal circrna RHOT1 promotes breast cancer progression by targeting miR-204-5p/PRMT5 axis. Cancer Cell Int 23(1):260. https://doi.org/10.1186/s12935-023-03111-5 PubMed DOI PMC

Huang GC, Zhong XW, Yao LH, Ma Q, Liao HB et al (2021) MicroRNA-449a inhibits cell proliferation and migration by regulating mutant p53 in MDA-MB-468 cells. Exp Ther Med 22(3):1020. https://doi.org/10.3892/etm.2021.10452 PubMed DOI PMC

Venkatadri R, Muni T, Iyer AKV, Yakisich JS, Azad N (2016) Role of apoptosis-related MiRNAs in resveratrol-induced breast cancer cell death. Cell Death Dis 7:e2104. https://doi.org/10.1038/cddis.2016.6 PubMed DOI PMC

Sharifi M, Moridnia A (2017) Apoptosis-inducing and antiproliferative effect by Inhibition of miR-182-5p through the regulation of CASP9 expression in human breast cancer. Cancer Gene Ther 24(2):75–82. https://doi.org/10.1038/cgt.2016.79 PubMed DOI

Maekawa T, Shinagawa T, Sano Y, Sakuma T, Nomura S et al (2007) Reduced levels of ATF-2 predispose mice to mammary tumors. Mol Cell Biol 27(5):1730–1744. https://doi.org/10.1128/MCB.01579-06 PubMed DOI PMC

Mansoori B, Mohammadi A, Asadzadeh Z, Shirjang S, Minouei M et al (2019) HMGA2 and Bach-1 cooperate to promote breast cancer cell malignancy. J Cell Physiol 234(10):17714–17726. https://doi.org/10.1002/jcp.28397 PubMed DOI

Ni P, Xu WX, Zhang YJ, Chen Q, Li AP et al (2014) TXNL1 induces apoptosis in cisplatin resistant human gastric Cancer cell lines. Curr Cancer Drug Targets 14(9):850–859. https://doi.org/10.2174/1568009614666141028094612 DOI

Bashir I, Dilshad E (2024) A comparative study of Mentha longifolia var. Asiatica and Zygophyllum arabicum ZnO nanoparticles against breast cancer targeting Rab22A gene. PLoS ONE 19(8):e0308982. https://doi.org/10.1371/journal.pone.0308982 PubMed DOI PMC

Guo WN, Zhou HF, Wang JB, Lu JJ, Dong YL (2024) Aloperine suppresses Cancer progression by interacting with VPS4A to inhibit Autophagosome-lysosome fusion in NSCLC. Adv Sci. https://doi.org/10.1002/advs.202308307 DOI

Saito J, Toriumi S, Awano K, Ichijo H, Sasaki K et al (2007) Regulation of apoptosis signal-regulating kinase 1 by protein phosphatase 2Cε. Biochem J 405:591–596. https://doi.org/10.1042/BJ20070231 PubMed DOI PMC

Shivhare S, Choudhury S, Singh D, Das A (2023) ZEB1 potentiates chemoresistance in breast cancer stem cells by evading apoptosis. Biochim Biophys Acta Mol Cell Res 1870(7):119528. https://doi.org/10.1016/j.bbamcr.2023.119528 PubMed DOI

Lee SK, Kim SB, Kim JS, Moon CH, Han MS (2005) Butyrate response factor 1 enhances cisplatin sensitivity in human head and neck squamous cell carcinoma cell lines. Int J Cancer 117(1):32–40. https://doi.org/10.1002/ijc.21133 PubMed DOI

Hartman ML, Czyz M (2020) BCL-w: apoptotic and non-apoptotic role in health and disease. Cell Death Dis 11:260. https://doi.org/10.1038/s41419-020-2417-0 PubMed DOI PMC

Mehraj U, Aisha S, Sofi S, Mir MA (2022) Expression pattern and prognostic significance of baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) in breast cancer: A comprehensive analysis. Adv Cancer Biol Metastasis 4:100037. https://doi.org/10.1016/j.adcanc.2022.100037 DOI

https://www.targetscan.org/

Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell 120:15–20. https://doi.org/10.1016/j.cell.2004.12.035 PubMed DOI

https://mirmap.ezlab.org/

Vejnar CE, Zdobnov EM, miRmap (2012) Comprehensive prediction of MicroRNA target repression strength. Nucleic Acids Res 40:11673–11683. https://doi.org/10.1093/nar/gks901 PubMed DOI PMC

https://bcgenex.ico.unicancer.fr/

Jézéquel P, Campone M, Gouraud W, Charbonnel C, Leux C, Ricolleau G, Campion L (2012) bc-GenExMiner: an easy-to-use online platform for gene prognostic analyses in breast cancer. Breast Cancer Res Treat 131:765–775. https://doi.org/10.1007/s10549-011-1457-7 PubMed DOI

Jézéquel P, Gouraud W, Ben Azzouz F, Guérin-Charbonnel C, Juin P, Lasla H, Campone M (2021) bc-GenExMiner 4.5: new mining module computes breast cancer differential gene expression analyses. Database (Oxford) 2021:baab007. https://doi.org/10.1093/database/baab007 PubMed DOI PMC

https://kmplot.com/

Gyorffy B (2024) Integrated analysis of public datasets for the discovery and validation of Survival-Associated genes in solid tumors. Innov, https://pubmed.ncbi.nlm.nih.gov/38706955/

https:// resource.path.uab.edu/MammOnc-Home.html

Karthikeyan SK, Chandrashekar DS, Sahai S, Shrestha S, Aneja R, Singh R, Kleer CG, Kumar S, Qin ZS, Nakshatri H, Manne U, Creighton CJ, Varambally S (2025) MammOnc-DB, an integrative breast cancer data analysis platform for target discovery. NPJ Breast Cancer 11(1):35. https://doi.org/10.1038/s41523-025-00750-x PubMed DOI PMC

Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of realtime quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3. https://doi.org/10.1186/gb-2002-3-7-research0034 . Article number: research0034.1

Hellemans J, Mortier G, De Paepe A et al (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8. Article number: R19 https://doi.org/10.1186/gb-2007-8-2-r19 PubMed DOI PMC

Wu JJ, Zhang SZ, Shan JL et al (2016) Elevated HMGA2 expression is associated with cancer aggressiveness and predicts poor outcome in breast cancer. Cancer Lett 376:284–292. https://doi.org/10.1016/j.canlet.2016.04.005 PubMed DOI

Mansoori B, Terp MG, Mohammadi A et al (2021) HMGA2 supports Cancer hallmarks in Triple-Negative breast Cancer. Cancers 13(20):5197. https://doi.org/10.3390/cancers13205197 PubMed DOI PMC

Xu JX, Fang XJ, Long LY et al (2021) HMGA2 promotes breast cancer metastasis by modulating Hippo-YAP signaling pathway. Cancer Biol Ther 22(1):5–11. https://doi.org/10.1080/15384047.2020.1832429 PubMed DOI

Zhao HQ, Yang YX, Wang Y et al (2020) MicroRNA-497-5p stimulates osteoblast differentiation through HMGA2-mediated JNK signaling pathway. J Orthop Surg Res 15(1):515. https://doi.org/10.1186/s13018-020-02043-4 PubMed DOI PMC

Ma Q, Ye SS, Liu H et al (2024) The emerging role and mechanism of HMGA2 in breast cancer. J Cancer Res Clin Oncol 150(5) Article Number 259. https://doi.org/10.1007/s00432-024-05785-441

Zhang SZ, Mo QP, Wang XC (2019) Oncological role of HMGA2 (Review). Int J Oncol 55(4):775–788. https://doi.org/10.3892/ijo.2019.4856 PubMed DOI

Huang S, Bao Y, Kong L et al (2024) Insights into the complex interactions between Rab22a and extracellular vesicles in cancers. Inflamm Res 73(1):99–110. https://doi.org/10.1007/s00011-023-01821-0 PubMed DOI

Lin YJ, Wei DH, He XB et al (2024) RAB22A sorts epithelial growth factor receptor (EGFR) from early endosomes to recycling endosomes for microvesicles release. J Extracell Vesicles 13(7):ArticleNumbere12494. https://doi.org/10.1002/jev2.12494 DOI

Wang T, Gilkes DM, Takano N et al (2014) Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc. Natl. Acad. Sci. U. S. A.;111:E3234-E3242. https://doi.org/10.1073/pnas.1410041111

Sun L, He M, Xu N et al (2018) Regulation of RAB22A by mir-193b inhibits breast cancer growth and metastasis mediated by exosomes. Int J Oncol 53:2705–2714. https://doi.org/10.3892/ijo.2018.4571 PubMed DOI

He M, Shen LH, Jiang CW et al (2020) Rab22a is a novel prognostic marker for cell progression in breast cancer. Int J Mol Med 45:1037–1046. https://doi.org/10.3892/ijmm.2020.4486 PubMed DOI PMC

Wen FK, Meng FS, Li XW et al (2023) Characterization of prognostic value and immunological roles of RAB22A in hepatocellular carcinoma. Front Immunol. 14. Article Number: 1086342 https://doi.org/10.3389/fimmu.2023.1086342 PubMed DOI PMC

Wang JP, Luo X, Lu JX et al (2022) Rab22a promotes the proliferation, migration, and invasion of lung adenocarcinoma via up-regulating PI3K/Akt/mTOR signaling pathway. Exp. Cell Res.;416(2). Article Number: 113179. https://doi.org/10.1016/j.yexcr.2022.113179

Liu QL, Lei CB (2021) LINC01232 serves as a novel biomarker and promotes tumour progression by sponging miR-204-5p and upregulating RAB22A in clear cell renal cell carcinoma. Ann Med 53:2153–2164. https://doi.org/10.1080/07853890.2021.2001563 PubMed DOI PMC

Oparina N, Erlandsson MC, Beding AF, Parris T, Helou K et al (2021) Prognostic significance of BIRC5/Survivin in breast cancer: results from three independent cohorts. Cancers 13(9):2209. https://doi.org/10.3390/cancers13092209 PubMed DOI PMC

Adinew GM, Messeha S, Taka E, Soliman KFA (2022) The prognostic and therapeutic implications of the chemoresistance gene BIRC5 in Triple-Negative breast Cancer. Cancers 14(21):5180. https://doi.org/10.3390/cancers14215180 PubMed DOI PMC

Hamilton AM, Walens A, Van Alsten SC, Olsson LT, Nsonwu-Farley J (2024) BIRC5 expression by race, age and clinical factors in breast cancer patients. Breast Cancer Res 26(1):50. https://doi.org/10.1186/s13058-024-01792-y PubMed DOI PMC

Jia YH, Yang H, Yu JS, Li Z, Jia GW et al (2024) Crocin enhances the sensitivity to Paclitaxel in human breast cancer cells by reducing BIRC5 expression. Chem Biol Drug Des 103(2):e14467. https://doi.org/10.1111/cbdd.14467 PubMed DOI

Song H, Tian D, Sun J et al (2022) circFAM120B functions as a tumor suppressor in esophageal squamous cell carcinoma via the miR-661/PPM1L axis and the PKR/p38 MAPK/EMT pathway. Cell Death Dis.;13(4). Article Number: 361. https://doi.org/10.1038/s41419-022-04818-5

Thean LF, Loi C, Ho KS et al (2010) Genome-Wide scan identifies a copy number variable region at 3q26 that regulates PPMIL in APC Mutation-Negative Familial colorectal Cancer patients. Genes. Chromosomes Cancer 49:99–106. https://doi.org/10.1002/gcc.20724 DOI

Yang JN, Chen ZH, He JX et al (2023) A circRNA-based CeRNA network shows its diagnostic value in non-small-cell lung cancer. Clin Biochem. 121. Article Number: 110657 https://doi.org/10.1016/j.clinbiochem.2023.110657 PubMed DOI

Bhoumik A, Ronai Z (2008) ATF2 - A transcription factor that elicits oncogenic or tumor suppressor activities. Cell Cycle 7:2341–2345. https://doi.org/10.4161/cc.6388 PubMed DOI

Amarah A, Elsabagh AA, Ouda A et al (2023) Emerging roles of activating transcription factor 2 in the development of breast cancer: a comprehensive review. Precis. Clin. Med.;6(4), Article Number: pbad028. https://doi.org/10.1093/pcmedi/pbad028

Zhang PJ, Sun YT, Ma L (2015) ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle 14:481–487. https://doi.org/10.1080/15384101.2015.1006048 PubMed DOI PMC

Caramel J, Ligier M, Puisieux A (2018) Pleiotropic roles for ZEB1 in Cancer. Cancer Res 78:30–35. https://doi.org/10.1158/0008-5472.CAN-17-2476 PubMed DOI

Chen WJ, Zhong HT, Wu HT et al (2024) NOTCH3 inhibits transcription factor ZEB1 expression and metastasis of breast cancer cells via transcriptionally upregulating miR-223. J Cancer 15(1):192–203. https://doi.org/10.7150/jca.89034 PubMed DOI PMC

Shivhare S, Choudhury S, Singh D et al (2023) ZEB1 potentiates chemoresistance in breast cancer stem cells by evading apoptosis. Biochim. Biophys. Acta, Mol. Cell Res.; 1870(7). Article Number: 119528. https://doi.org/10.1016/j.bbamcr.2023.119528

Caprini E, Bresin A, Cristofoletti C et al Loss of the candidate tumor suppressor ZEB1 (TCF8, ZFHX1A) in Sezary syndrome. Cell Death Dis 2018 Article Number: 1178. https://doi.org/10.1038/s41419-018-1212-7

Zhang T, Guo LX, Creighton CJ et al (2016) A genetic cell context-dependent role for ZEB1 in lung cancer. Nat Commun 7:12231. https://doi.org/10.1038/ncomms12231 PubMed DOI PMC

Loh XY, Sun QY, Ding LW et al (2020) RNA-Binding protein ZFP36L1 suppresses hypoxia and Cell-Cycle signaling. Cancer Res 80:219–233. https://doi.org/10.1158/0008-5472.CAN-18-2796 PubMed DOI

Suk FM, Chang CC, Lin RJ et al (2018) ZFP36L1 and ZFP36L2 inhibit cell proliferation in a Cyclin D-dependent and p53-independent manner. Sci Rep 8(1):2742. https://doi.org/10.1038/s41598-018-21160-z PubMed DOI PMC

Chan TS, Lee KL, Hung CS et al (2024) ZFP36L1 and ZFP36L2 reduce Cyclin D1 expression by decreasing expression of E2F1 and long 3’UTR isoform of CCND1 transcripts. Mol Cell Biochem. https://doi.org/10.1007/s11010-024-05087-w PubMed DOI

Enokido T, Horie M, Yoshino S et al (2024) Distinct MicroRNA signature and suppression of ZFP36L1 define ASCL1-Positive lung adenocarcinoma. Mol Cancer Res 22(1):29–40. https://doi.org/10.1158/1541-7786.MCR-23-0229 PubMed DOI

Abba MC, Sun H, Hawkins KA et al (2007) Breast cancer molecular signatures as determined by SAGE: correlation with lymph node status. Mol Cancer Res 5:881–890. https://doi.org/10.1158/1541-7786.MCR-07-0055 PubMed DOI PMC

Ding K, Zhang FP, Qi GX et al (2023) ZFP36L1 promotes gastric Cancer progression via regulating JNK and p38 MAPK signaling pathways. Recent Pat. Anti-Cancer Drug Discovery 18(1):80–91. https://doi.org/10.2174/1574892817666220524102403 PubMed DOI

Hartman ML, Czyz M (2020) BCL-w: apoptotic and non-apoptotic role in health and disease. Cell Death Dis 11(4):260. https://doi.org/10.1038/s41419-020-2417-0 PubMed DOI PMC

Voutsadakis IA (2023) Breast cancer sub-types display heterogeneity in gene amplification and mRNA expression of the anti-apoptotic members of BCL2 family. Gene 857:147179. https://doi.org/10.1016/j.gene.2023.147179 PubMed DOI

Huang LJ, Zhan ST, Pan YQ et al The role of Vps4 in cancer development. Front Oncol 2023; Article Number: 1203359. https://doi.org/10.3389/fonc.2023.1203359

Wei JX, Lv LH, Wan YL et al (2015) Vps4A functions as a tumor suppressor by regulating the secretion and uptake of Exosomal MicroRNAs in human hepatoma cells. 61:1284–1294. https://doi.org/10.1002/hep.27660

Guo W, Zhou H, Wang J et al (2024) Aloperine suppresses Cancer progression by interacting with VPS4A to inhibit Autophagosome-lysosome fusion in NSCLC. Adv Sci. https://doi.org/10.1002/advs.202308307 DOI

Hughes-Davies L, Huntsman D, Ruas M et al (2003) EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 115(5):523–535. https://doi.org/10.1016/S0092-8674(03)00930-9 PubMed DOI

Vire E, Curtis C, Davalos V et al (2014) The breast Cancer oncogene EMSY represses transcription of antimetastatic MicroRNA miR-31. Mol Cell 53(5):806–818. https://doi.org/10.1016/j.molcel.2014.01.029 PubMed DOI PMC

Madjd Z, Akbari ME, Zarnani AH et al (2014) Expression of EMSY, a novel BRCA2-link protein, is associated with lymph node metastasis and increased tumor size in breast carcinomas. Asian Pac J Cancer Prev 15:1783–1789. https://doi.org/10.7314/APJCP.2014.15.4.1783 PubMed DOI

Liu CC, Chen L, Cai YW et al (2024) Targeting EMSY-mediated methionine metabolism is a potential therapeutic strategy for triple-negative breast cancer. Cell Rep. Med.; 5(2). Article Number: 101396. https://doi.org/10.1016/j.xcrm.2024.101396

Kessous R, Octeau D, Klein K et al (2018) Distinct homologous recombination gene expression profiles after neoadjuvant chemotherapy associated with clinical outcome in patients with ovarian cancer. Gynecol Oncol 148:553–558. https://doi.org/10.1016/j.ygyno.2018.01.017 PubMed DOI

Baykara O, Dalay N, Bakir B et al (2017) The EMSY gene collaborates with CCND1 in Non-Small cell lung carcinogenesis. Int J Med Sci 14:675–679. https://doi.org/10.7150/ijms.19355 PubMed DOI PMC

Zhao JM, Qi TG (2021) The role of TXNL1 in disease: treatment strategies for cancer and diseases with oxidative stress. Mol Biol Rep 48:2929–2934. https://doi.org/10.1007/s11033-021-06241-z PubMed DOI

Ramasamy D, Rao AKDM, Balaiah M et al (2022) Locus-Specific enrichment analysis of 5-Hydroxymethylcytosine reveals novel genes associated with breast carcinogenesis. Cells 11(19) Article Number:2939. https://doi.org/10.3390/cells11192939

Xu W, Wang S, Chen Q et al (2014) TXNL1-XRCC1 pathway regulates cisplatin-induced cell death and contributes to resistance in human gastric cancer. Cell Death Dis. Article Number: e1055 https://doi.org/10.1038/cddis.2014.27 PubMed DOI PMC

Ni P, Xu WX, Zhang YJ et al (2014) TXNL1 induces apoptosis in cisplatin resistant human gastric Cancer cell lines. Curr Cancer Drug Targets 14(9):850–859. https://doi.org/10.2174/1568009614666141028094612 DOI

Alves CL, Ditzel HJ (2023) Drugging the PI3K/AKT/mTOR pathway in ER + breast cancer. Int J Mol Sci 24(5):4522. https://doi.org/10.3390/ijms24054522 PubMed DOI PMC

Buyuk B, Jin S, Ye K (2021) Epithelial-to-Mesenchymal transition signaling pathways responsible for breast Cancer metastasis. Cell Mol Bioeng 15(1):1–13. https://doi.org/10.1007/s12195-021-00694-9 PubMed DOI PMC

Khazem F, Zetoune AB (2024) Decoding high mobility group A2 protein expression regulation and implications in human cancers. Discov Oncol 15:322. https://doi.org/10.1007/s12672-024-01202-x PubMed DOI PMC

Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921. https://doi.org/10.1038/nm0897-917 PubMed DOI

Klein JP, Moeschberger ML (2003) Survival analysis. Techniques for censored and truncated data, 2nd edn. Springer, New York

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...