Pharmacokinetics of Cannabidiol in Rat Brain Tissue After Single-Dose Administration of Different Formulations

. 2025 Jun 20 ; 30 (13) : . [epub] 20250620

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40649195

Grantová podpora
22-20860S Czech Science Foundation
LM2023064 Infrastructure for Promoting Metrology in Food and Nutrition in the Czech Republic
A1_FPBT_2022_005 Grants for specific University research
A2_FPBT_2022_065 Grants for specific University research

Cannabidiol (CBD), a phytocannabinoid commonly isolated from chemotype III Cannabis sativa plants, is known for its therapeutic potential. However, comprehensive information on its bioavailability is still lacking. The key objective of this study was to investigate the impact of specific formulations on CBD delivery to the site of action and, in particular, the brain of experimental animals. As brain tissue is an extremely complex matrix, a highly sensitive method employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) had to be implemented. To make it applicable for multiple analytes, the method was validated for 17 other phytocannabinoids and selected metabolites. Using this method, a pharmacokinetic study was conducted on 200 brain samples collected from rats that had been administered various CBD formulations (carriers) via oral gavage. The peak concentration in brain occurred within 1-2 h; notably, the highest was reached with carriers containing triacylglycerols with the shortest fatty acid chains (caprylic/capric). In addition to the parent compound, 7-hydroxy-cannabidiol and 7-carboxy-cannabidiol were detected, confirming rapid post-administration metabolism. Overall, this research enhances understanding of CBD distribution in the brain and underscores the impact of specific formulations on its bioavailability, offering insights into optimizing CBD-based therapies to be both effective and 'patient-friendly'.

Zobrazit více v PubMed

Leinen Z.J., Mohan R., Premadasa L.S., Acharya A., Mohan M., Byrareddy S.N. Therapeutic Potential of Cannabis: A Comprehensive Review of Current and Future Applications. Biomedicines. 2023;11:2630. doi: 10.3390/biomedicines11102630. PubMed DOI PMC

Blebea N.M., Pricopie A.I., Vlad R.A., Hancu G. Phytocannabinoids: Exploring Pharmacological Profiles and Their Impact on Therapeutical Use. Int. J. Mol. Sci. 2024;25:4204. doi: 10.3390/ijms25084204. PubMed DOI PMC

Kelly L.E., Rieder M.J., Finkelstein Y. Medical cannabis for children: Evidence and recommendations. Paediatr. Child Health. 2024;29:104–112. doi: 10.1093/pch/pxad078. PubMed DOI PMC

Citti C., Russo F., Linciano P., Strallhofer S.S., Tolomeo F., Forni F., Vandelli M.A., Gigli G., Cannazza G. Origin of Δ9-Tetrahydrocannabinol Impurity in Synthetic Cannabidiol. Cannabis Cannabinoid Res. 2021;6:28–39. doi: 10.1089/can.2020.0021. PubMed DOI PMC

Stella B., Baratta F., Della Pepa C., Arpicco S., Gastaldi D., Dosio F. Cannabinoid Formulations and Delivery Systems: Current and Future Options to Treat Pain. Drugs. 2021;81:1513–1557. doi: 10.1007/s40265-021-01579-x. PubMed DOI PMC

Shekhawat P.B., Pokharkar V.B. Understanding peroral absorption: Regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta Pharm. Sin. B. 2017;7:260–280. doi: 10.1016/j.apsb.2016.09.005. PubMed DOI PMC

Alqahtani M.S., Kazi M., Alsenaidy M.A., Ahmad M.Z. Advances in Oral Drug Delivery. Front. Pharmacol. 2021;12:618411. doi: 10.3389/fphar.2021.618411. PubMed DOI PMC

Lucas C.J., Galettis P., Schneider J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br. J. Clin. Pharmacol. 2018;84:2477–2482. doi: 10.1111/bcp.13710. PubMed DOI PMC

Millar S.A., Stone N.L., Yates A.S., O’Sullivan S.E. A Systematic Review on the Pharmacokinetics of Cannabidiol in Humans. Front. Pharmacol. 2018;9:1365. doi: 10.3389/fphar.2018.01365. PubMed DOI PMC

Assadpour E., Rezaei A., Das S.S., Krishna Rao B.V., Singh S.K., Kharazmi M.S., Jha N.K., Jha S.K., Prieto M.A., Jafari S.M. Cannabidiol-Loaded Nanocarriers and Their Therapeutic Applications. Pharmaceuticals. 2023;16:487. doi: 10.3390/ph16040487. PubMed DOI PMC

Suyal J., Kumar B., Jakhmola V., Taylor G. Novel Approach Self-nanoemulsifying Drug Delivery System: A Review. Adv. Pharmacol. Pharm. 2023;11:131–139. doi: 10.13189/app.2023.110205. DOI

Singh N., Kushwaha P., Ahmad U., Abdullah M. Proliposomes: An Approach for the Development of Stable Liposome. Ars Pharm. 2019;60:231–240. doi: 10.30827/ars.v60i4.8517. DOI

Huestis M.A. Human Cannabinoid Pharmacokinetics. Chem. Biodivers. 2007;4:1770–1804. doi: 10.1002/cbdv.200790152. PubMed DOI PMC

Rappley I., Myers D.S., Milne S.B., Ivanova P.T., Lavoie M.J., Brown H.A., Selkoe D.J. Lipidomic profiling in mouse brain reveals differences between ages and genders, with smaller changes associated with alpha-synuclein genotype. J. Neurochem. 2009;111:15–25. doi: 10.1111/j.1471-4159.2009.06290.x. PubMed DOI PMC

Furey A., Moriarty M., Bane V., Kinsella B., Lehane M. Ion suppression; A critical review on causes, evaluation, prevention and applications. Talanta. 2013;115:104–122. doi: 10.1016/j.talanta.2013.03.048. PubMed DOI

Kemp P.M., Cardona P.S., Chaturvedi A.K., Soper J.W. Distribution of Δ9-Tetrahydrocannabinol and 11-Nor-9-Carboxy-Δ9-Tetrahydrocannabinol Acid in Postmortem Biological Fluids and Tissues from Pilots Fatally Injured in Aviation Accidents. J Forensic Sc. 2015;60:942–949. doi: 10.1111/1556-4029.12751. PubMed DOI

Saenz S.R., Lewis R.J., Angier M.K., Wagner J.R. Postmortem Fluid and Tissue Concentrations of THC, 11-OH-THC and THC-COOH†. J. Anal. Toxicol. 2017;41:508–516. doi: 10.1093/jat/bkx033. PubMed DOI

Poklis J.L., Thompson C.C., Long K.A., Lichtman A.H., Poklis A. Disposition of cannabichromene, cannabidiol, and Δ9-tetrahydrocannabinol and its metabolites in mouse brain following marijuana inhalation determined by high-performance liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 2010;34:516–520. doi: 10.1093/jat/34.8.516. PubMed DOI PMC

Schaefer N., Kettner M., Laschke M.W., Schlote J., Ewald A.H., Menger M.D., Maurer H.H., Schmidt P.H. Distribution of Synthetic Cannabinoids JWH-210, RCS-4 and Δ 9-Tetrahydrocannabinol After Intravenous Administration to Pigs. Curr. Neuropharmacol. 2017;15:713–723. doi: 10.2174/1570159X15666161111114214. PubMed DOI PMC

Vozella V., Zibardi C., Ahmed F., Piomelli D. Fast and Sensitive Quantification of Δ9-Tetrahydrocannabinol and Its Main Oxidative Metabolites by Liquid Chromatography/Tandem Mass Spectrometry. Cannabis Cannabinoid Res. 2019;4:110–123. doi: 10.1089/can.2018.0075. PubMed DOI PMC

Al-Asmari A.I. Method for Postmortem Tissue Quantification of Δ9-Tetrahydrocannabinol and Metabolites Using LC–MS-MS. J. Anal. Toxicol. 2020;44:718–733. doi: 10.1093/jat/bkaa087. PubMed DOI

Montagner P.S.S., Medeiros W., da Silva L.C.R., Borges C.N., Brasil-Neto J., de Deus Silva Barbosa V., Caixeta F.V., Malcher-Lopes R. Individually tailored dosage regimen of full-spectrum Cannabis extracts for autistic core and comorbid symptoms: A real-life report of multi-symptomatic benefits. Front. Psychiatry. 2023;14:1210155. doi: 10.3389/fpsyt.2023.1210155. PubMed DOI PMC

Bimonte S., Nocerino D., Schiavo D., Crisci M., Cascella M., Cuomo A. Cannabinoids for Cancer-related Pain Management: An Update on Therapeutic Applications and Future Perspectives. Anticancer Res. 2024;44:895–900. doi: 10.21873/anticanres.16883. PubMed DOI

Deiana S., Watanabe A., Yamasaki Y., Amada N., Arthur M., Fleming S., Woodcock H., Dorward P., Pigliacampo B., Close S., et al. Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ9-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive–compulsive behaviour. Psychopharmacology. 2012;219:859–873. doi: 10.1007/s00213-011-2415-0. PubMed DOI

Citti C., Palazzoli F., Licata M., Vilella A., Leo G., Zoli M., Vandelli M.A., Forni F., Pacchetti B., Cannazza G. Untargeted rat brain metabolomics after oral administration of a single high dose of cannabidiol. J. Pharm. Biomed. Anal. 2018;161:1–11. doi: 10.1016/j.jpba.2018.08.021. PubMed DOI

Pourseyed Lazarjani M., Torres S., Hooker T., Fowlie C., Young O., Seyfoddin A. Methods for quantification of cannabinoids: A narrative review. J. Cannabis Res. 2020;2:35. doi: 10.1186/s42238-020-00040-2. PubMed DOI PMC

Lehotay S.J., Mastovská K., Lightfield A.R. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. J. AOAC Int. 2005;88:615–629. doi: 10.1093/jaoac/88.2.615. PubMed DOI

European Medicines Agency (EMA) ICH Q2(R2) Guideline on Validation of Analytical Procedures. EMA 2023. [(accessed on 15 June 2025)]; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q2r2-guideline-validation-analytical-procedures-step-5-revision-1_en.pdf.

Scheff J.D., Almon R.R., DuBois D.C., Jusko W.J., Androulakis I.P. Assessment of Pharmacologic Area Under the Curve When Baselines are Variable. Pharm. Res. 2011;28:1081–1089. doi: 10.1007/s11095-010-0363-8. PubMed DOI PMC

Feng W., Qin C., Abdelrazig S., Bai Z., Raji M., Darwish R., Chu Y., Ji L., Gray D.A., Stocks M.J., et al. Vegetable oils composition affects the intestinal lymphatic transport and systemic bioavailability of co-administered lipophilic drug cannabidiol. Int. J. Pharm. 2022;624:121947. doi: 10.1016/j.ijpharm.2022.121947. PubMed DOI

Beers J.L., Fu D., Jackson K.D. Cytochrome P450-Catalyzed Metabolism of Cannabidiol to the Active Metabolite 7-Hydroxy-Cannabidiol. Drug Metab. Dispos. 2021;49:882–891. doi: 10.1124/dmd.120.000350. PubMed DOI PMC

Ujváry I., Hanuš L. Human Metabolites of Cannabidiol: A Review on Their Formation, Biological Activity, and Relevance in Therapy. Cannabis Cannabinoid Res. 2016;1:90–101. doi: 10.1089/can.2015.0012. PubMed DOI PMC

Saals B.A.D.F., De Bie T.H., Osmanoglou E., van de Laar T., Tuin A.W., van Orten-Luiten A.C.B., Witkamp R.F. A high-fat meal significantly impacts the bioavailability and biphasic absorption of cannabidiol (CBD) from a CBD-rich extract in men and women. Sci. Rep. 2025;15:3678. doi: 10.1038/s41598-025-87621-4. PubMed DOI PMC

Jiang R., Yamaori S., Takeda S., Yamamoto I., Watanabe K. Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes. Life Sci. 2011;89:165–170. doi: 10.1016/j.lfs.2011.05.018. PubMed DOI

Vinarov Z., Abdallah M., Agundez J.A.G., Allegaert K., Basit A.W., Braeckmans M., Ceulemans J., Corsetti M., Griffin B.T., Grimm M., et al. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. Eur. J. Pharm. Sci. 2021;162:105812. doi: 10.1016/j.ejps.2021.105812. PubMed DOI

Benes F., Binova Z., Zlechovcova M., Maly M., Stranska M., Hajslova J. Thermally induced changes in the profiles of phytocannabinoids and other bioactive compounds in Cannabis sativa L. inflorescences. Food Res. Int. 2024;190:114487. doi: 10.1016/j.foodres.2024.114487. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...