The Effect of Parental Faecal Microbiome Transplantation from Children with Autism Spectrum Disorder on Behavior and Gastrointestinal Manifestations in the Male Offspring of Shank3 Mice

. 2025 Jun 20 ; 26 (13) : . [epub] 20250620

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40649705

Grantová podpora
APVV-20-0114 Slovak Research and Development Agency
VEGA 1/0062/21 Ministry of Education, Science, Research, and Sport of the Slovak Republic

The increasing incidence of autism spectrum disorder (ASD) increases the urgency of establishing the mechanism of its development for effective prevention and treatment. ASD's etiology includes genetic predisposition and environmental triggers, both of which can play a role in the changed microbiota. Recent research has proved the impact of maternal microbiota on the neurodevelopment of the child. To investigate the co-play of genetic and microbiota factors in ASD development, we performed fecal microbiota transplantation (FMT) from children with ASD to female Shank3b+/- mice and studied the autism-like symptoms in the male Shank3b-/- and wild-type (WT) offspring. WT animals with prenatal exposure to ASD microbiota had delayed neurodevelopment and impaired food intake behavior, but also elevated plasma leptin concentration and body weight. Shank3b-/- mice after FMT ASD exhibited impaired learning and exacerbated anxiety-like behavior in adulthood. Interestingly, FMT ASD improved learning in adolescent Shank3b-/- mice. Prenatal exposure to ASD microbiota decreased the activity of hypocretin neurons of the lateral hypothalamic area in both genotypes. The combination of genetic predisposition and FMT ASD led to an increased colon permeability, evaluated by zonula occludens (ZO1, ZO3) and claudin factors. These results suggest the effect of parental FMT exposure on shaping offspring behavior in Shank3b-/- mice and the potential of microbiota in the modulation of ASD.

Zobrazit více v PubMed

Maenner M.J., Warren Z., Williams A.R., Amoakohene E., Bakian A.V., Bilder D.A., Durkin M.S., Fitzgerald R.T., Furnier S.M., Hughes M.M., et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR Surveill. Summ. 2023;72:1–14. doi: 10.15585/mmwr.ss7202a1. PubMed DOI PMC

Berding K., Donovan S.M. Microbiome and nutrition in autism spectrum disorder: Current knowledge and research needs. Nutr. Rev. 2016;74:723–736. doi: 10.1093/nutrit/nuw048. PubMed DOI

Cheroni C., Caporale N., Testa G. Autism spectrum disorder at the crossroad between genes and environment: Contributions, convergences, and interactions in ASD developmental pathophysiology. Mol. Autism. 2020;11:69. doi: 10.1186/s13229-020-00370-1. PubMed DOI PMC

Tomova A., Pivovarciova A., Babinska K., Mravec B. Intestinal microbiota and the brain: Multilevel interactions in health and disease. Ceskoslov. Fysiol. 2015;64:23–34. PubMed

Martin C.R., Mayer E.A. Gut-Brain Axis and Behavior. Nestle Nutr. Inst. Workshop Ser. 2017;88:45–53. doi: 10.1159/000461732. PubMed DOI PMC

Mayer E.A. Gut feelings: The emerging biology of gut-brain communication. Nat. Rev. Neurosci. 2011;12:453–466. doi: 10.1038/nrn3071. PubMed DOI PMC

Rao A.V., Bested A.C., Beaulne T.M., Katzman M.A., Iorio C., Berardi J.M., Logan A.C. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 2009;1:6. doi: 10.1186/1757-4749-1-6. PubMed DOI PMC

Ullah H., Arbab S., Tian Y., Liu C.Q., Chen Y., Qijie L., Khan M.I.U., Hassan I.U., Li K. The gut microbiota-brain axis in neurological disorder. Front. Neurosci. 2023;17:1225875. doi: 10.3389/fnins.2023.1225875. PubMed DOI PMC

Soto M., Herzog C., Pacheco J.A., Fujisaka S., Bullock K., Clish C.B., Kahn C.R. Gut microbiota modulate neurobehavior through changes in brain insulin sensitivity and metabolism. Mol. Psychiatry. 2018;23:2287–2301. doi: 10.1038/s41380-018-0086-5. PubMed DOI PMC

Adams J.B., Johansen L.J., Powell L.D., Quig D., Rubin R.A. Gastrointestinal flora and gastrointestinal status in children with autism--comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;11:22. doi: 10.1186/1471-230X-11-22. PubMed DOI PMC

Coury D.L., Ashwood P., Fasano A., Fuchs G., Geraghty M., Kaul A., Mawe G., Patterson P., Jones N.E. Gastrointestinal conditions in children with autism spectrum disorder: Developing a research agenda. Pediatrics. 2012;130((Suppl. S2)):S160–S168. doi: 10.1542/peds.2012-0900N. PubMed DOI

Babinská K., Slobodníková L., Jánošíková D., Lakatošová S., Bakoš J., Ostatníková D. The effects of probiotic administration on gastrointestinal functions in children with autism. Act. Nerv. Super. Rediviva. 2012;54:82.

Finegold S.M., Dowd S.E., Gontcharova V., Liu C., Henley K.E., Wolcott R.D., Youn E., Summanen P.H., Granpeesheh D., Dixon D., et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010;16:444–453. doi: 10.1016/j.anaerobe.2010.06.008. PubMed DOI

Strati F., Cavalieri D., Albanese D., De Felice C., Donati C., Hayek J., Jousson O., Leoncini S., Renzi D., Calabro A., et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5:24. doi: 10.1186/s40168-017-0242-1. PubMed DOI PMC

Fattorusso A., Di Genova L., Dell’Isola G.B., Mencaroni E., Esposito S. Autism Spectrum Disorders and the Gut Microbiota. Nutrients. 2019;11:521. doi: 10.3390/nu11030521. PubMed DOI PMC

Finegold S.M. Desulfovibrio species are potentially important in regressive autism. Med. Hypotheses. 2011;77:270–274. doi: 10.1016/j.mehy.2011.04.032. PubMed DOI

Heberling C.A., Dhurjati P.S., Sasser M. Hypothesis for a systems connectivity model of Autism Spectrum Disorder pathogenesis: Links to gut bacteria, oxidative stress, and intestinal permeability. Med. Hypotheses. 2013;80:264–270. doi: 10.1016/j.mehy.2012.11.044. PubMed DOI

Tomova A., Husarova V., Lakatosova S., Bakos J., Vlkova B., Babinska K., Ostatnikova D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav. 2015;138:179–187. doi: 10.1016/j.physbeh.2014.10.033. PubMed DOI

Tomova A., Soltys K., Kemenyova P., Karhanek M., Babinska K. The Influence of Food Intake Specificity in Children with Autism on Gut Microbiota. Int. J. Mol. Sci. 2020;21:2797. doi: 10.3390/ijms21082797. PubMed DOI PMC

Wang L., Christophersen C.T., Sorich M.J., Gerber J.P., Angley M.T., Conlon M.A. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl. Environ. Microbiol. 2011;77:6718–6721. doi: 10.1128/AEM.05212-11. PubMed DOI PMC

Sharon G., Cruz N.J., Kang D.W., Gandal M.J., Wang B., Kim Y.M., Zink E.M., Casey C.P., Taylor B.C., Lane C.J., et al. Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell. 2019;177:1600–1618.e1617. doi: 10.1016/j.cell.2019.05.004. PubMed DOI PMC

Babinská K., Tomova A., Celušáková H., Babková J., Repiská G., Kubranská A., Filčíková D., Siklenková L., Ostatníková D. Fecal calprotectin levels correlate with main domains of the autism diagnostic interview-revised (ADI-R) in a sample of individuals with autism spectrum disorders from Slovakia. Physiol. Res. 2017;66((Suppl. S4)):S517–S522. doi: 10.33549/physiolres.933801. PubMed DOI

de Magistris L., Familiari V., Pascotto A., Sapone A., Frolli A., Iardino P., Carteni M., De Rosa M., Francavilla R., Riegler G., et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J. Pediatr. Gastroenterol. Nutr. 2010;51:418–424. doi: 10.1097/MPG.0b013e3181dcc4a5. PubMed DOI

Altieri L., Neri C., Sacco R., Curatolo P., Benvenuto A., Muratori F., Santocchi E., Bravaccio C., Lenti C., Saccani M., et al. Urinary p-cresol is elevated in small children with severe autism spectrum disorder. Biomarkers. 2011;16:252–260. doi: 10.3109/1354750X.2010.548010. PubMed DOI

D’Eufemia P., Celli M., Finocchiaro R., Pacifico L., Viozzi L., Zaccagnini M., Cardi E., Giardini O. Abnormal intestinal permeability in children with autism. Acta Paediatr. 1996;85:1076–1079. doi: 10.1111/j.1651-2227.1996.tb14220.x. PubMed DOI

Al-Ayadhi L., Zayed N., Bhat R.S., Moubayed N.M.S., Al-Muammar M.N., El-Ansary A. The use of biomarkers associated with leaky gut as a diagnostic tool for early intervention in autism spectrum disorder: A systematic review. Gut Pathog. 2021;13:54. doi: 10.1186/s13099-021-00448-y. PubMed DOI PMC

Babinska K., Celusakova H., Belica I., Szapuova Z., Waczulikova I., Nemcsicsova D., Tomova A., Ostatnikova D. Gastrointestinal Symptoms and Feeding Problems and Their Associations with Dietary Interventions, Food Supplement Use, and Behavioral Characteristics in a Sample of Children and Adolescents with Autism Spectrum Disorders. Int. J. Environ. Res. Public. Health. 2020;17:6372. doi: 10.3390/ijerph17176372. PubMed DOI PMC

Bandini L.G., Anderson S.E., Curtin C., Cermak S., Evans E.W., Scampini R., Maslin M., Must A. Food selectivity in children with autism spectrum disorders and typically developing children. J. Pediatr. 2010;157:259–264. doi: 10.1016/j.jpeds.2010.02.013. PubMed DOI PMC

Cermak S.A., Curtin C., Bandini L.G. Food selectivity and sensory sensitivity in children with autism spectrum disorders. J. Am. Diet. Assoc. 2010;110:238–246. doi: 10.1016/j.jada.2009.10.032. PubMed DOI PMC

Marí-Bauset S., Zazpe I., Mari-Sanchis A., Llopis-González A., Morales-Suárez-Varela M. Food selectivity in autism spectrum disorders: A systematic review. J. Child. Neurol. 2014;29:1554–1561. doi: 10.1177/0883073813498821. PubMed DOI

Tomova A., Soltys K., Repiska G., Palkova L., Filcikova D., Minarik G., Turna J., Prochotska K., Babinska K., Ostatnikova D. Specificity of gut microbiota in children with autism spectrum disorder in Slovakia and its correlation with astrocytes activity marker and specific behavioural patterns. Physiol. Behav. 2020;214:112745. doi: 10.1016/j.physbeh.2019.112745. PubMed DOI

Alcock J., Maley C.C., Aktipis C.A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays. 2014;36:940–949. doi: 10.1002/bies.201400071. PubMed DOI PMC

Näslund E., Hellström P.M. Appetite signaling: From gut peptides and enteric nerves to brain. Physiol. Behav. 2007;92:256–262. doi: 10.1016/j.physbeh.2007.05.017. PubMed DOI

Smith P.M., Ferguson A.V. Neurophysiology of hunger and satiety. Dev. Disabil. Res. Rev. 2008;14:96–104. doi: 10.1002/ddrr.13. PubMed DOI

Castro D.C., Cole S.L., Berridge K.C. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: Interactions between homeostatic and reward circuitry. Front. Syst. Neurosci. 2015;9:90. doi: 10.3389/fnsys.2015.00090. PubMed DOI PMC

Leblond C.S., Nava C., Polge A., Gauthier J., Huguet G., Lumbroso S., Giuliano F., Stordeur C., Depienne C., Mouzat K., et al. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A gradient of severity in cognitive impairments. PLoS Genet. 2014;10:e1004580. doi: 10.1371/journal.pgen.1004580. PubMed DOI PMC

Berkel S., Marshall C.R., Weiss B., Howe J., Roeth R., Moog U., Endris V., Roberts W., Szatmari P., Pinto D., et al. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat. Genet. 2010;42:489–491. doi: 10.1038/ng.589. PubMed DOI

Kathuria A., Nowosiad P., Jagasia R., Aigner S., Taylor R.D., Andreae L.C., Gatford N.J.F., Lucchesi W., Srivastava D.P., Price J. Stem cell-derived neurons from autistic individuals with SHANK3 mutation show morphogenetic abnormalities during early development. Mol. Psychiatry. 2018;23:735–746. doi: 10.1038/mp.2017.185. PubMed DOI PMC

Reichova A., Bacova Z., Bukatova S., Kokavcova M., Meliskova V., Frimmel K., Ostatnikova D., Bakos J. Abnormal neuronal morphology and altered synaptic proteins are restored by oxytocin in autism-related SHANK3 deficient model. Mol. Cell Endocrinol. 2020;518:110924. doi: 10.1016/j.mce.2020.110924. PubMed DOI

Peça J., Feliciano C., Ting J.T., Wang W., Wells M.F., Venkatraman T.N., Lascola C.D., Fu Z., Feng G. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472:437–442. doi: 10.1038/nature09965. PubMed DOI PMC

Szabó J., Renczés E., Borbélyová V., Ostatníková D., Celec P. Assessing sociability using the Three-Chamber Social Interaction Test and the Reciprocal Interaction Test in a genetic mouse model of ASD. Behav. Brain Funct. 2024;20:24. doi: 10.1186/s12993-024-00251-0. PubMed DOI PMC

Qin L., Ma K., Wang Z.J., Hu Z., Matas E., Wei J., Yan Z. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat. Neurosci. 2018;21:564–575. doi: 10.1038/s41593-018-0110-8. PubMed DOI PMC

Pillerová M., Drobná D., Szabó J., Renczés E., Borbélyová V., Ostatníková D., Celec P., Tóthová Ľ. Neuromotor Development in the Shank3 Mouse Model of Autism Spectrum Disorder. Brain Sci. 2022;12:872. doi: 10.3390/brainsci12070872. PubMed DOI PMC

Kshetri R., Beavers J.O., Hyde R., Ewa R., Schwertman A., Porcayo S., Richardson B.D. Behavioral decline in Shank3. Mol. Autism. 2024;15:52. doi: 10.1186/s13229-024-00628-y. PubMed DOI PMC

Wu S., Wang J., Zhang Z., Jin X., Xu Y., Si Y., Liang Y., Ge Y., Zhan H., Peng L., et al. Shank3 deficiency elicits autistic-like behaviors by activating p38α in hypothalamic AgRP neurons. Mol. Autism. 2024;15:14. doi: 10.1186/s13229-024-00595-4. PubMed DOI PMC

Love C., Sominsky L., O’Hely M., Berk M., Vuillermin P., Dawson S.L. Prenatal environmental risk factors for autism spectrum disorder and their potential mechanisms. BMC Med. 2024;22:393. doi: 10.1186/s12916-024-03617-3. PubMed DOI PMC

Cryan J.F., O’Riordan K.J., Cowan C.S.M., Sandhu K.V., Bastiaanssen T.F.S., Boehme M., Codagnone M.G., Cussotto S., Fulling C., Golubeva A.V., et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019;99:1877–2013. doi: 10.1152/physrev.00018.2018. PubMed DOI

Sun Z., Lee-Sarwar K., Kelly R.S., Lasky-Su J.A., Litonjua A.A., Weiss S.T., Liu Y.Y. Revealing the importance of prenatal gut microbiome in offspring neurodevelopment in humans. eBioMedicine. 2023;90:104491. doi: 10.1016/j.ebiom.2023.104491. PubMed DOI PMC

Orchanian S.B., Hsiao E.Y. The microbiome as a modulator of neurological health across the maternal-offspring interface. J. Clin. Investig. 2025;135:e184314. doi: 10.1172/JCI184314. PubMed DOI PMC

ADDMNS Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill. Summ. 2014;63((Suppl. S2)):1–21. PubMed

Grabrucker A.M. Autism Spectrum Disorders. Exon Publications; Brisbane, Australia: 2021. [(accessed on 14 April 2025)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK573612/

Avolio E., Olivito I., Rosina E., Romano L., Angelone T., De Bartolo A., Scimeca M., Bellizzi D., D’Aquila P., Passarino G., et al. Modifications of Behavior and Inflammation in Mice Following Transplant with Fecal Microbiota from Children with Autism. Neuroscience. 2022;498:174–189. doi: 10.1016/j.neuroscience.2022.06.038. PubMed DOI

Xiao L., Yan J., Yang T., Zhu J., Li T., Wei H., Chen J. Fecal Microbiome Transplantation from Children with Autism Spectrum Disorder Modulates Tryptophan and Serotonergic Synapse Metabolism and Induces Altered Behaviors in Germ-Free Mice. mSystems. 2021;6:e01343-20. doi: 10.1128/msystems.01343-20. PubMed DOI PMC

Wang J., Cao Y., Hou W., Bi D., Yin F., Gao Y., Huang D., Li Y., Cao Z., Yan Y., et al. Fecal microbiota transplantation improves VPA-induced ASD mice by modulating the serotonergic and glutamatergic synapse signaling pathways. Transl. Psychiatry. 2023;13:17. doi: 10.1038/s41398-023-02307-7. PubMed DOI PMC

Zheng L., Jiao Y., Zhong H., Tan Y., Yin Y., Liu Y., Liu D., Wu M., Wang G., Huang J., et al. Human-derived fecal microbiota transplantation alleviates social deficits of the BTBR mouse model of autism through a potential mechanism involving vitamin B. mSystems. 2024;9:e0025724. doi: 10.1128/msystems.00257-24. PubMed DOI PMC

Goo N., Bae H.J., Park K., Kim J., Jeong Y., Cai M., Cho K., Jung S.Y., Kim D.H., Ryu J.H. The effect of fecal microbiota transplantation on autistic-like behaviors in Fmr1 KO mice. Life Sci. 2020;262:118497. doi: 10.1016/j.lfs.2020.118497. PubMed DOI

Kahathuduwa C.N., West B.D., Blume J., Dharavath N., Moustaid-Moussa N., Mastergeorge A. The risk of overweight and obesity in children with autism spectrum disorders: A systematic review and meta-analysis. Obes. Rev. 2019;20:1667–1679. doi: 10.1111/obr.12933. PubMed DOI

Pirník Z., Szadvári I., Borbélyová V., Tomova A. Altered sex differences related to food intake, hedonic preference, and FosB/deltaFosB expression within central neural circuit involved in homeostatic and hedonic food intake regulation in Shank3B mouse model of autism spectrum disorder. Neurochem. Int. 2024;181:105895. doi: 10.1016/j.neuint.2024.105895. PubMed DOI

Kennedy E.A., King K.Y., Baldridge M.T. Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria. Front. Physiol. 2018;9:1534. doi: 10.3389/fphys.2018.01534. PubMed DOI PMC

Ashwood P., Kwong C., Hansen R., Hertz-Picciotto I., Croen L., Krakowiak P., Walker W., Pessah I.N., Van de Water J. Brief report: Plasma leptin levels are elevated in autism: Association with early onset phenotype? J. Autism Dev. Disord. 2008;38:169–175. doi: 10.1007/s10803-006-0353-1. PubMed DOI

Chen L., Liu L.M., Guo M., Du Y., Chen Y.W., Xiong X.Y., Cheng Y. Altered leptin level in autism spectrum disorder and meta-analysis of adipokines. BMC Psychiatry. 2024;24:479. doi: 10.1186/s12888-024-05936-4. PubMed DOI PMC

Hasan Z.A., Al-Kafaji G., Al-Sherawi M.I., Razzak R.A., Eltayeb D., Cristina S., Moiz B. Investigation of Serum Levels of Leptin, Ghrelin and Growth Hormone in Bahraini Children with Autism. Int. Arch. Transl. Med. 2019;5:007. doi: 10.23937/2572-4142.1510007. DOI

Elias C.F., Aschkenasi C., Lee C., Kelly J., Ahima R.S., Bjorbaek C., Flier J.S., Saper C.B., Elmquist J.K. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron. 1999;23:775–786. doi: 10.1016/S0896-6273(01)80035-0. PubMed DOI

Moorman D.E., James M.H., Kilroy E.A., Aston-Jones G. Orexin/hypocretin neuron activation is correlated with alcohol seeking and preference in a topographically specific manner. Eur. J. Neurosci. 2016;43:710–720. doi: 10.1111/ejn.13170. PubMed DOI PMC

Bouret S.G., Draper S.J., Simerly R.B. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci. 2004;24:2797–2805. doi: 10.1523/JNEUROSCI.5369-03.2004. PubMed DOI PMC

Khalifa S.A.M., Shedid E.S., Saied E.M., Jassbi A.R., Jamebozorgi F.H., Rateb M.E., Du M., Abdel-Daim M.M., Kai G.Y., Al-Hammady M.A.M., et al. Cyanobacteria-From the Oceans to the Potential Biotechnological and Biomedical Applications. Mar. Drugs. 2021;19:241. doi: 10.3390/md19050241. PubMed DOI PMC

Yousefi R., Mottaghi A., Saidpour A. Spirulina platensis effectively ameliorates anthropometric measurements and obesity-related metabolic disorders in obese or overweight healthy individuals: A randomized controlled trial. Complement. Ther. Med. 2018;40:106–112. doi: 10.1016/j.ctim.2018.08.003. PubMed DOI

Wang K., Liao M., Zhou N., Bao L., Ma K., Zheng Z., Wang Y., Liu C., Wang W., Wang J., et al. Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids. Cell Rep. 2019;26:222–235.e225. doi: 10.1016/j.celrep.2018.12.028. PubMed DOI

Krajmer P., Spajdel M., Kubranska A., Ostatnikova D. 2D:4D finger ratio in Slovak autism spectrum population. Bratisl. Lek. Listy. 2011;112:377–379. PubMed

Quartier A., Chatrousse L., Redin C., Keime C., Haumesser N., Maglott-Roth A., Brino L., Le Gras S., Benchoua A., Mandel J.L., et al. Genes and Pathways Regulated by Androgens in Human Neural Cells, Potential Candidates for the Male Excess in Autism Spectrum Disorder. Biol. Psychiatry. 2018;84:239–252. doi: 10.1016/j.biopsych.2018.01.002. PubMed DOI

Baron-Cohen S. The extreme male brain theory of autism. Trends Cogn. Sci. 2002;6:248–254. doi: 10.1016/S1364-6613(02)01904-6. PubMed DOI

Wang Z., Zhang B., Mu C., Qiao D., Chen H., Zhao Y., Cui H., Zhang R., Li S. Androgen levels in autism spectrum disorders: A systematic review and meta-analysis. Front. Endocrinol. 2024;15:1371148. doi: 10.3389/fendo.2024.1371148. PubMed DOI PMC

McGivern R.F., Holcomb C., Poland R.E. Effects of prenatal testosterone propionate treatment on saccharin preference of adult rats exposed to ethanol in utero. Physiol. Behav. 1987;39:241–246. doi: 10.1016/0031-9384(87)90016-3. PubMed DOI

Shin J.H., Park Y.H., Sim M., Kim S.A., Joung H., Shin D.M. Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res. Microbiol. 2019;170:192–201. doi: 10.1016/j.resmic.2019.03.003. PubMed DOI

Kim Y.S., Unno T., Kim B.Y., Park M.S. Sex Differences in Gut Microbiota. World J. Men’s Health. 2020;38:48–60. doi: 10.5534/wjmh.190009. PubMed DOI PMC

Kushak R.I., Winter H.S. Intestinal microbiota, metabolome and gender dimorphism in autism spectrum disorders. Res. Autism Spectr. Disord. 2018;49:65–74. doi: 10.1016/j.rasd.2018.01.009. DOI

Esnafoglu E., Cırrık S., Ayyıldız S.N., Erdil A., Ertürk E.Y., Daglı A., Noyan T. Increased Serum Zonulin Levels as an Intestinal Permeability Marker in Autistic Subjects. J. Pediatr. 2017;188:240–244. doi: 10.1016/j.jpeds.2017.04.004. PubMed DOI

Sturgeon C., Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers. 2016;4:e1251384. doi: 10.1080/21688370.2016.1251384. PubMed DOI PMC

Horowitz A., Chanez-Paredes S.D., Haest X., Turner J.R. Paracellular permeability and tight junction regulation in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. 2023;20:417–432. doi: 10.1038/s41575-023-00766-3. PubMed DOI PMC

Moonwiriyakit A., Pathomthongtaweechai N., Steinhagen P.R., Chantawichitwong P., Satianrapapong W., Pongkorpsakol P. Tight junctions: From molecules to gastrointestinal diseases. Tissue Barriers. 2023;11:2077620. doi: 10.1080/21688370.2022.2077620. PubMed DOI PMC

Zhang Y., Tu S., Ji X., Wu J., Meng J., Gao J., Shao X., Shi S., Wang G., Qiu J., et al. Dubosiella newyorkensis modulates immune tolerance in colitis via the L-lysine-activated AhR-IDO1-Kyn pathway. Nat. Commun. 2024;15:1333. doi: 10.1038/s41467-024-45636-x. PubMed DOI PMC

Geirnaert A., Steyaert A., Eeckhaut V., Debruyne B., Arends J.B., Van Immerseel F., Boon N., Van de Wiele T. Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions. Anaerobe. 2014;30:70–74. doi: 10.1016/j.anaerobe.2014.08.010. PubMed DOI

Nie Y., Xie X.Q., Zhou L., Guan Q., Ren Y., Mao Y., Shi J.S., Xu Z.H., Geng Y. Desulfovibrio fairfieldensis-Derived Outer Membrane Vesicles Damage Epithelial Barrier and Induce Inflammation and Pyroptosis in Macrophages. Cells. 2022;12:89. doi: 10.3390/cells12010089. PubMed DOI PMC

Sauer A.K., Bockmann J., Steinestel K., Boeckers T.M., Grabrucker A.M. Altered Intestinal Morphology and Microbiota Composition in the Autism Spectrum Disorders Associated SHANK3 Mouse Model. Int. J. Mol. Sci. 2019;20:2134. doi: 10.3390/ijms20092134. PubMed DOI PMC

Abdellatif B., McVeigh C., Bendriss G., Chaari A. The Promising Role of Probiotics in Managing the Altered Gut in Autism Spectrum Disorders. Int. J. Mol. Sci. 2020;21:4159. doi: 10.3390/ijms21114159. PubMed DOI PMC

Shaaban S.Y., El Gendy Y.G., Mehanna N.S., El-Senousy W.M., El-Feki H.S.A., Saad K., El-Asheer O.M. The role of probiotics in children with autism spectrum disorder: A prospective, open-label study. Nutr. Neurosci. 2018;21:676–681. doi: 10.1080/1028415X.2017.1347746. PubMed DOI

Lord C., Rutter M., Dilavore P.C., Risi S., Gotham K., Bishop S. Autism Diagnostic Observation Schedule. Western Psychological Services; Torrance, CA, USA: 2012.

Lord C., Pickles A., McLennan J., Rutter M., Bregman J., Folstein S., Fombonne E., Leboyer M., Minshew N. Diagnosing autism: Analyses of data from the Autism Diagnostic Interview. J. Autism Dev. Disord. 1997;27:501–517. doi: 10.1023/A:1025873925661. PubMed DOI

Reygner J., Charrueau C., Delannoy J., Mayeur C., Robert V., Cuinat C., Meylheuc T., Mauras A., Augustin J., Nicolis I., et al. Freeze-dried fecal samples are biologically active after long-lasting storage and suited to fecal microbiota transplantation in a preclinical murine model of. Gut Microbes. 2020;11:1405–1422. doi: 10.1080/19490976.2020.1759489. PubMed DOI PMC

Ikhtaire S., Shajib M.S., Reinisch W., Khan W.I. Fecal calprotectin: Its scope and utility in the management of inflammatory bowel disease. J. Gastroenterol. 2016;51:434–446. doi: 10.1007/s00535-016-1182-4. PubMed DOI

Li Y., Luo Z.Y., Hu Y.Y., Bi Y.W., Yang J.M., Zou W.J., Song Y.L., Li S., Shen T., Li S.J., et al. The gut microbiota regulates autism-like behavior by mediating vitamin B. Microbiome. 2020;8:120. doi: 10.1186/s40168-020-00884-z. PubMed DOI PMC

Emal D., Rampanelli E., Stroo I., Butter L.M., Teske G.J., Claessen N., Stokman G., Florquin S., Leemans J.C., Dessing M.C. Depletion of Gut Microbiota Protects against Renal Ischemia-Reperfusion Injury. J. Am. Soc. Nephrol. 2017;28:1450–1461. doi: 10.1681/ASN.2016030255. PubMed DOI PMC

Shang L., Liu H., Yu H., Chen M., Yang T., Zeng X., Qiao S. Core Altered Microorganisms in Colitis Mouse Model: A Comprehensive Time-Point and Fecal Microbiota Transplantation Analysis. Antibiotics. 2021;10:643. doi: 10.3390/antibiotics10060643. PubMed DOI PMC

Šarayová V., Mihalovičová L., Miláček D., Gurecká R., Šebeková K. Neurodevelopmental testing of mice in the neonatal period does not affect their locomotor activity, depressive- and anxiety-like behaviour in adolescence. Behav. Brain Res. 2021;404:113170. doi: 10.1016/j.bbr.2021.113170. PubMed DOI

Kraeuter A.K., Guest P.C., Sarnyai Z. The Open Field Test for Measuring Locomotor Activity and Anxiety-Like Behavior. Methods Mol. Biol. 2019;1916:99–103. doi: 10.1007/978-1-4939-8994-2_9. PubMed DOI

Borbélyová V., Renczés E., Chovanec M., Mego M., Celec P. Transient effects of chemotherapy for testicular cancer on mouse behaviour. Sci. Rep. 2020;10:10224. doi: 10.1038/s41598-020-67081-8. PubMed DOI PMC

Angoa-Pérez M., Kane M.J., Briggs D.I., Francescutti D.M., Kuhn D.M. Marble burying and nestlet shredding as tests of repetitive, compulsive-like behaviors in mice. J. Vis. Exp. 2013;82:50978. doi: 10.3791/50978. PubMed DOI PMC

Silverman J.L., Yang M., Lord C., Crawley J.N. Behavioural phenotyping assays for mouse models of autism. Nat. Rev. Neurosci. 2010;11:490–502. doi: 10.1038/nrn2851. PubMed DOI PMC

Bromley-Brits K., Deng Y., Song W. Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J. Vis. Exp. 2011;53:2920. doi: 10.3791/2920. PubMed DOI PMC

Vorhees C.V., Williams M.T. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006;1:848–858. doi: 10.1038/nprot.2006.116. PubMed DOI PMC

Pirnik Z., Maixnerová J., Matysková R., Koutová D., Zelezná B., Maletínská L., Kiss A. Effect of anorexinergic peptides, cholecystokinin (CCK) and cocaine and amphetamine regulated transcript (CART) peptide, on the activity of neurons in hypothalamic structures of C57Bl/6 mice involved in the food intake regulation. Peptides. 2010;31:139–144. doi: 10.1016/j.peptides.2009.09.035. PubMed DOI

Franklin K.B.J., Paxinos G. The Mouse Brain in Stereotaxic Coordinates. Academic Press; New York, NY, USA: 1997.

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Metsalu T., Vilo J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43:W566–W570. doi: 10.1093/nar/gkv468. PubMed DOI PMC

Chong J., Liu P., Zhou G., Xia J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 2020;15:799–821. doi: 10.1038/s41596-019-0264-1. PubMed DOI

Dhariwal A., Chong J., Habib S., King I.L., Agellon L.B., Xia J. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017;45:W180–W188. doi: 10.1093/nar/gkx295. PubMed DOI PMC

Guo X., Xia X., Tang R., Zhou J., Zhao H., Wang K. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett. Appl. Microbiol. 2008;47:367–373. doi: 10.1111/j.1472-765X.2008.02408.x. PubMed DOI

Delroisse J.M., Boulvin A.L., Parmentier I., Dauphin R.D., Vandenbol M., Portetelle D. Quantification of Bifidobacterium spp. and Lactobacillus spp. in rat fecal samples by realtime PCR. Microbiol. Res. 2008;163:663–670. doi: 10.1016/j.micres.2006.09.004. PubMed DOI

Bekele A.Z., Koike S., Kobayashi Y. Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS Microbiol. Lett. 2010;305:49–57. doi: 10.1111/j.1574-6968.2010.01911.x. PubMed DOI

Tang J., Iliev I.D., Brown J., Underhill D.M., Funari V.A. Mycobiome: Approaches to analysis of intestinal fungi. J. Immunol. Methods. 2015;421:112–121. doi: 10.1016/j.jim.2015.04.004. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...