Molecular mechanism of exchange coupling in CLC chloride/proton antiporters
Status PubMed-not-MEDLINE Language English Country United States Media electronic
Document type Journal Article, Preprint
Grant support
R01 GM113195
NIGMS NIH HHS - United States
U24 GM129541
NIGMS NIH HHS - United States
PubMed
40655029
PubMed Central
PMC12248016
DOI
10.1101/2025.05.08.652968
PII: 2025.05.08.652968
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Preprint MeSH
The ubiquitous CLC membrane transporters are unique in their ability to exchange anions for cations. Despite extensive study, there is no mechanistic model that fully explains their 2:1 Cl‒/H+ stoichiometric exchange mechanism. Here, we provide such a model. Using differential hydrogen-deuterium exchange mass spectrometry, cryo-EM structure determination, and molecular dynamics simulations, we uncovered new conformational dynamics in CLC-ec1, a bacterial CLC homolog that has served as a paradigm for this family of transporters. Simulations based on a cryo-EM structure at pH 3 revealed critical steps in the transport mechanism, including release of Cl‒ ions to the extracellular side, opening of the inner gate, and novel water wires that facilitate H+ transport. Surprisingly, these water wires occurred independently of Cl‒ binding, prompting us to reassess the relationship between Cl‒ binding and Cl‒/H+ coupling. Using isothermal titration calorimetry and quantitative flux assays on mutants with reduced Cl‒ binding affinity, we conclude that, while Cl‒ binding is necessary for coupling, even weak binding can support Cl‒/H+ coupling. By integrating our findings with existing literature, we establish a complete and efficient CLC 2:1 Cl‒/H+ exchange mechanism.
Department of Computer Science Stanford University Stanford CA 94305
Department of Structural Biology Stanford University Stanford CA 94305
Institute for Computational and Mathematical Engineering Stanford University Stanford CA 94305
Stanford University Department of Molecular and Cellular Physiology
See more in PubMed
Accardi A. & Miller C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl-channels. Nature 427, 803–7 (2004). PubMed
Miller C. ClC chloride channels viewed through a transporter lens. Nature 440, 484–9 (2006). PubMed
Lisal J. & Maduke M. The ClC-0 chloride channel is a ‘broken’ Cl-/H+ antiporter. Nat Struct Mol Biol 15, 805–10 (2008). PubMed PMC
Jentsch T.J. & Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 98, 1493–1590 (2018). PubMed
Koster A.K. & Maduke M. CLC Chloride Channels and Transporters. in Textbook of Ion Channels Vol. II Properties, Function, and Pharmacology of the Superfamilies (eds. Zheng J. & Trudeau M.C.) 193–208 (CRC Press, Boca Raton, FL, 2023).
Bose S., He H. & Stauber T. Neurodegeneration Upon Dysfunction of Endosomal/Lysosomal CLC Chloride Transporters. Front Cell Dev Biol 9, 639231 (2021). PubMed PMC
Duncan A.R. et al. Unique variants in CLCN3, encoding an endosomal anion/proton exchanger, underlie a spectrum of neurodevelopmental disorders. Am J Hum Genet 108, 1450–1465 (2021). PubMed PMC
Zifarelli G. The Role of the Lysosomal Cl(−)/H(+) Antiporter ClC-7 in Osteopetrosis and Neurodegeneration. Cells 11(2022). PubMed PMC
Coppola M.A. et al. Biophysical Aspects of Neurodegenerative and Neurodevelopmental Disorders Involving Endo-/Lysosomal CLC Cl(−)/H(+) Antiporters. Life (Basel) 13(2023). PubMed PMC
Palmer E.E. et al. Functional and clinical studies reveal pathophysiological complexity of CLCN4-related neurodevelopmental condition. Mol Psychiatry 28, 668–697 (2023). PubMed PMC
Dieguez L. et al. Dent’s Disease: A Cause of Monogenic Kidney Stones and Nephrocalcinosis. J Pers Med 14(2024). PubMed PMC
Iyer H. & Talbot W.S. The Cl- transporter ClC-7 is essential for phagocytic clearance by microglia. J Cell Sci 137(2024). PubMed PMC
McIlwain B.C., Ruprecht M.T. & Stockbridge R.B. Membrane Exporters of Fluoride Ion. Annu Rev Biochem 90, 559–579 (2021). PubMed PMC
Liu L., Li X., Wang C., Ni Y. & Liu X. The Role of Chloride Channels in Plant Responses to NaCl. Int J Mol Sci 25(2023). PubMed PMC
Iyer R., Iverson T.M., Accardi A. & Miller C. A biological role for prokaryotic ClC chloride channels. Nature 419, 715–8 (2002). PubMed
Kim M., Choi N., Choi E. & Lee E.J. ClC Chloride Channels in Gram-Negative Bacteria and Its Role in the Acid Resistance Systems. J Microbiol Biotechnol 33, 857–863 (2023). PubMed PMC
Maduke M., Pheasant D.J. & Miller C. High-level expression, functional reconstitution, and quaternary structure of a prokaryotic ClC-type chloride channel. J Gen Physiol 114, 713–22 (1999). PubMed PMC
Mindell J.A., Maduke M., Miller C. & Grigorieff N. Projection structure of a ClC-type chloride channel at 6.5 A resolution. Nature 409, 219–23 (2001). PubMed
Dutzler R., Campbell E.B., Cadene M., Chait B.T. & MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415, 287–94 (2002). PubMed
Dutzler R. A structural perspective on ClC channel and transporter function. FEBS Lett 581, 2839–44 (2007). PubMed
Accardi A. Structure and gating of CLC channels and exchangers. J Physiol 593, 4129–38 (2015). PubMed PMC
Picollo A. Vesicular CLC chloride/proton exchangers in health and diseases. Front Pharmacol 14, 1295068 (2023). PubMed PMC
Dutzler R., Campbell E.B. & MacKinnon R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–12 (2003). PubMed
Chavan T.S. et al. A CLC-ec1 mutant reveals global conformational change and suggests a unifying mechanism for the CLC Cl(−)/H(+) transport cycle. Elife 9(2020). PubMed PMC
Fortea E. et al. Structural basis of pH-dependent activation in a CLC transporter. Nat Struct Mol Biol 31, 644–656 (2024). PubMed PMC
Picollo A., Malvezzi M., Houtman J.C. & Accardi A. Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters. Nat Struct Mol Biol 16, 1294–301 (2009). PubMed PMC
Picollo A., Xu Y., Johner N., Berneche S. & Accardi A. Synergistic substrate binding determines the stoichiometry of transport of a prokaryotic H(+)/Cl(−) exchanger. Nat Struct Mol Biol 19, 525–31, S1 (2012). PubMed PMC
Nguitragool W. & Miller C. CLC Cl /H+ transporters constrained by covalent cross-linking. Proc Natl Acad Sci U S A 104, 20659–65 (2007). PubMed PMC
Chadda R. & Robertson J.L. Measuring Membrane Protein Dimerization Equilibrium in Lipid Bilayers by Single-Molecule Fluorescence Microscopy. Methods Enzymol 581, 53–82 (2016). PubMed PMC
Khantwal C.M. et al. Revealing an outward-facing open conformational state in a CLC Cl(−)/H(+) exchange transporter. Elife 5(2016). PubMed PMC
Accardi A. et al. Separate ion pathways in a Cl−/H+ exchanger. J Gen Physiol 126, 563–70 (2005). PubMed PMC
Han W., Cheng R.C., Maduke M.C. & Tajkhorshid E. Water access points and hydration pathways in CLC H+/Cl− transporters. Proc Natl Acad Sci U S A 111, 1819–24 (2014). PubMed PMC
Kuang Z., Mahankali U. & Beck T.L. Proton pathways and H+/Cl− stoichiometry in bacterial chloride transporters. Proteins 68, 26–33 (2007). PubMed
Wang D. & Voth G.A. Proton transport pathway in the ClC Cl−/H+ antiporter. Biophys J 97, 121–31 (2009). PubMed PMC
Ko Y.J. & Jo W.H. Secondary water pore formation for proton transport in a ClC exchanger revealed by an atomistic molecular-dynamics simulation. Biophysical Journal 98, 2163–9 (2010). PubMed PMC
Kieseritzky G. & Knapp E.W. Charge transport in the ClC-type chloride-proton anti-porter from Escherichia coli. Journal of Biological Chemistry 286, 2976–86 (2011). PubMed PMC
Jiang T., Han W., Maduke M. & Tajkhorshid E. Molecular Basis for Differential Anion Binding and Proton Coupling in the Cl(−)/H(+) Exchanger ClC-ec1. J Am Chem Soc 138, 3066–75 (2016). PubMed PMC
Leisle L. et al. Divergent Cl(−) and H(+) pathways underlie transport coupling and gating in CLC exchangers and channels. Elife 9(2020). PubMed PMC
Wang Z., Swanson J.M.J. & Voth G.A. Local conformational dynamics regulating transport properties of a Cl(−) /H(+) antiporter. J Comput Chem 41, 513–519 (2020). PubMed PMC
Accardi A., Lobet S., Williams C., Miller C. & Dutzler R. Synergism between halide binding and proton transport in a CLC-type exchanger. J Mol Biol 362, 691–9 (2006). PubMed
Nguitragool W. & Miller C. Uncoupling of a CLC Cl−/H+ exchange transporter by polyatomic anions. J Mol Biol 362, 682–90 (2006). PubMed
Miller C. Q-cubed mutant cues clues to CLC antiport mechanism. J Gen Physiol 153(2021). PubMed PMC
Matulef K. & Maduke M. Side-dependent inhibition of a prokaryotic ClC by DIDS. Biophys J 89, 1721–30 (2005). PubMed PMC
Bosshart P.D. & Fotiadis D. Secondary Active Transporters. Subcell Biochem 92, 275–299 (2019). PubMed
Garaeva A.A. & Slotboom D.J. Elevator-type mechanisms of membrane transport. Biochem Soc Trans 48, 1227–1241 (2020). PubMed PMC
Licht J.A., Berry S.P., Gutierrez M.A. & Gaudet R. They all rock: A systematic comparison of conformational movements in LeuT-fold transporters. Structure 32, 1528–1543 e3 (2024). PubMed PMC
Bell S.P., Curran P.K., Choi S. & Mindell J.A. Site-directed fluorescence studies of a prokaryotic ClC antiporter. Biochemistry 45, 6773–82 (2006). PubMed
Elvington S.M. & Maduke M. Thinking outside the crystal: complementary approaches for examining transporter conformational change. Channels (Austin) 2, 373–9 (2008). PubMed
Elvington S.M., Liu C.W. & Maduke M.C. Substrate-driven conformational changes in ClC-ec1 observed by fluorine NMR. EMBO J 28, 3090–102 (2009). PubMed PMC
Abraham S.J. et al. 13C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1. J Biomol NMR 61, 209–26 (2015). PubMed PMC
Heath G.R. et al. Localization atomic force microscopy. Nature 594, 385–390 (2021). PubMed PMC
Accardi A., Kolmakova-Partensky L., Williams C. & Miller C. Ionic currents mediated by a prokaryotic homologue of CLC Cl- channels. J Gen Physiol 123, 109–19 (2004). PubMed PMC
Coppieters ‘t Wallant K. & Martens C. Hydrogen-deuterium exchange coupled to mass spectrometry: A multifaceted tool to decipher the molecular mechanism of transporters. Biochimie 205, 95–101 (2023). PubMed
Ozohanics O. & Ambrus A. Hydrogen-Deuterium Exchange Mass Spectrometry: A Novel Structural Biology Approach to Structure, Dynamics and Interactions of Proteins and Their Complexes. Life (Basel) 10(2020). PubMed PMC
Pintilie G. et al. Measurement of atom resolvability in cryo-EM maps with Q-scores. Nat Methods 17, 328–334 (2020). PubMed PMC
Wraight C.A. Chance and design--proton transfer in water, channels and bioenergetic proteins. Biochim Biophys Acta 1757, 886–912 (2006). PubMed
Kratochvil H.T. et al. Transient water wires mediate selective proton transport in designed channel proteins. Nat Chem 15, 1012–1021 (2023). PubMed PMC
Faraldo-Gomez J.D. & Roux B. Electrostatics of ion stabilization in a ClC chloride channel homologue from Escherichia coli. J Mol Biol 339, 981–1000 (2004). PubMed
Walden M. et al. Uncoupling and turnover in a Cl-/H+ exchange transporter. J Gen Physiol 129, 317–29 (2007). PubMed PMC
Baker J.A., Wong W.C., Eisenhaber B., Warwicker J. & Eisenhaber F. Charged residues next to transmembrane regions revisited: “Positive-inside rule” is complemented by the “negative inside depletion/outside enrichment rule”. BMC Biol 15, 66 (2017). PubMed PMC
Zhang X.D., Li Y., Yu W.P. & Chen T.Y. Roles of K149, G352, and H401 in the channel functions of ClC-0: testing the predictions from theoretical calculations. J Gen Physiol 127, 435–47 (2006). PubMed PMC
Engh A.M., Faraldo-Gomez J.D. & Maduke M. The role of a conserved lysine in chloride- and voltage-dependent ClC-0 fast gating. J Gen Physiol 130, 351–63 (2007). PubMed PMC
Yuan J.H. et al. Genetic spectrum and founder effect of non-dystrophic myotonia: a Japanese case series study. J Neurol 269, 6406–6415 (2022). PubMed
Brenes O., Pusch M. & Morales F. ClC-1 Chloride Channel: Inputs on the Structure-Function Relationship of Myotonia Congenita-Causing Mutations. Biomedicines 11(2023). PubMed PMC
Leray X. et al. Tonic inhibition of the chloride/proton antiporter ClC-7 by PI(3,5)P2 is crucial for lysosomal pH maintenance. Elife 11(2022). PubMed PMC
Carpaneto A., Boccaccio A., Lagostena L., Di Zanni E. & Scholz-Starke J. The signaling lipid phosphatidylinositol-3,5-bisphosphate targets plant CLC-a anion/H(+) exchange activity. EMBO Rep 18, 1100–1107 (2017). PubMed PMC
He H. et al. Mutations in CLCN6 as a Novel Genetic Cause of Neuronal Ceroid Lipofuscinosis in Patients and a Murine Model. Ann Neurol 96, 608–624 (2024). PubMed
Grieschat M., Guzman R.E., Langschwager K., Fahlke C. & Alekov A.K. Metabolic energy sensing by mammalian CLC anion/proton exchangers. EMBO Rep 21, e47872 (2020). PubMed PMC
He J. et al. Cryo-EM structure of the plant nitrate transporter AtCLCa reveals characteristics of the anion-binding site and the ATP-binding pocket. J Biol Chem 299, 102833 (2023). PubMed PMC
Zhang B. et al. Molecular basis of ClC-6 function and its impairment in human disease. Sci Adv 9, eadg4479 (2023). PubMed PMC
Wan Y. et al. Structural basis of adenine nucleotides regulation and neurodegenerative pathology in ClC-3 exchanger. Nat Commun 15, 6654 (2024). PubMed PMC
Skerra A. Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in E.coli. Gene 151, 131–135 (1994). PubMed
Sambrook J., Fritsch E.F. & Maniatis T. Molecular Cloning, A Laboratory Manual, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).
Chien C.H. et al. An Adaptable Phospholipid Membrane Mimetic System for Solution NMR Studies of Membrane Proteins. J Am Chem Soc 139, 14829–14832 (2017). PubMed PMC
Yang M. et al. Recombinant Nepenthesin II for Hydrogen/Deuterium Exchange Mass Spectrometry. Anal Chem 87, 6681–7 (2015). PubMed
Majumdar R. et al. Minimizing carry-over in an online pepsin digestion system used for the H/D exchange mass spectrometric analysis of an IgG1 monoclonal antibody. J Am Soc Mass Spectrom 23, 2140–8 (2012). PubMed
Trcka F. et al. Human Stress-inducible Hsp70 Has a High Propensity to Form ATP-dependent Antiparallel Dimers That Are Differentially Regulated by Cochaperone Binding. Mol Cell Proteomics 18, 320–337 (2019). PubMed PMC
Kavan D.a.M.., P. MSTools—Web based application for visualization and presentation of HXMS data. International Journal of Mass Spectrometry 302, 53–58 (2011).
Pettersen E.F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci 30, 70–82 (2021). PubMed PMC
Lomize M.A., Lomize A.L., Pogozheva I.D. & Mosberg H.I. OPM: orientations of proteins in membranes database. Bioinformatics 22, 623–5 (2006). PubMed
Jacobson M.P., Friesner R.A., Xiang Z. & Honig B. On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol 320, 597–608 (2002). PubMed
Betz R. Dabble. (2017).
Huang J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14, 71–73 (2017). PubMed PMC
Klauda J.B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114, 7830–43 (2010). PubMed PMC
Beglov D. & Roux B. Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations. J. Chem. Phys. 100, 9050–9063 (1994).
Hopkins C.W., Le Grand S., Walker R.C. & Roitberg A.E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J Chem Theory Comput 11, 1864–74 (2015). PubMed
Ryckaert J.-P., Ciccotti G., & Berendsen H. J. C. . Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. Journal of Computational Physics 23, 327–341 (1977).
Roe D.R. & Cheatham T.E. 3rd. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput 9, 3084–95 (2013). PubMed
Humphrey W., Dalke A. & Schulten K. VMD: visual molecular dynamics. J Mol Graph 14, 33–8, 27–8 (1996). PubMed
The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.
Lim H.H., Shane T. & Miller C. Intracellular proton access in a Cl(−)/H(+) antiporter. PLoS Biol 10, e1001441 (2012). PubMed PMC
Schrecker M., Korobenko J. & Hite R.K. Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1. Elife 9(2020). PubMed PMC
Park E. & MacKinnon R. Structure of the CLC-1 chloride channel from Homo sapiens. Elife 7(2018). PubMed PMC
Feng L., Campbell E.B., Hsiung Y. & MacKinnon R. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science 330, 635–41 (2010). PubMed PMC
Xu M. et al. CryoEM structures of the human CLC-2 voltage-gated chloride channel reveal a ball-andchain gating mechanism. Elife 12(2024). PubMed PMC
Pintilie G. & Chiu W. Assessment of structural features in Cryo-EM density maps using SSE and side chain Z-scores. J Struct Biol 204, 564–571 (2018). PubMed PMC