• This record comes from PubMed

Molecular mechanism of exchange coupling in CLC chloride/proton antiporters

. 2025 May 09 ; () : . [epub] 20250509

Status PubMed-not-MEDLINE Language English Country United States Media electronic

Document type Journal Article, Preprint

Grant support
R01 GM113195 NIGMS NIH HHS - United States
U24 GM129541 NIGMS NIH HHS - United States

The ubiquitous CLC membrane transporters are unique in their ability to exchange anions for cations. Despite extensive study, there is no mechanistic model that fully explains their 2:1 Cl‒/H+ stoichiometric exchange mechanism. Here, we provide such a model. Using differential hydrogen-deuterium exchange mass spectrometry, cryo-EM structure determination, and molecular dynamics simulations, we uncovered new conformational dynamics in CLC-ec1, a bacterial CLC homolog that has served as a paradigm for this family of transporters. Simulations based on a cryo-EM structure at pH 3 revealed critical steps in the transport mechanism, including release of Cl‒ ions to the extracellular side, opening of the inner gate, and novel water wires that facilitate H+ transport. Surprisingly, these water wires occurred independently of Cl‒ binding, prompting us to reassess the relationship between Cl‒ binding and Cl‒/H+ coupling. Using isothermal titration calorimetry and quantitative flux assays on mutants with reduced Cl‒ binding affinity, we conclude that, while Cl‒ binding is necessary for coupling, even weak binding can support Cl‒/H+ coupling. By integrating our findings with existing literature, we establish a complete and efficient CLC 2:1 Cl‒/H+ exchange mechanism.

See more in PubMed

Accardi A. & Miller C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl-channels. Nature 427, 803–7 (2004). PubMed

Miller C. ClC chloride channels viewed through a transporter lens. Nature 440, 484–9 (2006). PubMed

Lisal J. & Maduke M. The ClC-0 chloride channel is a ‘broken’ Cl-/H+ antiporter. Nat Struct Mol Biol 15, 805–10 (2008). PubMed PMC

Jentsch T.J. & Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 98, 1493–1590 (2018). PubMed

Koster A.K. & Maduke M. CLC Chloride Channels and Transporters. in Textbook of Ion Channels Vol. II Properties, Function, and Pharmacology of the Superfamilies (eds. Zheng J. & Trudeau M.C.) 193–208 (CRC Press, Boca Raton, FL, 2023).

Bose S., He H. & Stauber T. Neurodegeneration Upon Dysfunction of Endosomal/Lysosomal CLC Chloride Transporters. Front Cell Dev Biol 9, 639231 (2021). PubMed PMC

Duncan A.R. et al. Unique variants in CLCN3, encoding an endosomal anion/proton exchanger, underlie a spectrum of neurodevelopmental disorders. Am J Hum Genet 108, 1450–1465 (2021). PubMed PMC

Zifarelli G. The Role of the Lysosomal Cl(−)/H(+) Antiporter ClC-7 in Osteopetrosis and Neurodegeneration. Cells 11(2022). PubMed PMC

Coppola M.A. et al. Biophysical Aspects of Neurodegenerative and Neurodevelopmental Disorders Involving Endo-/Lysosomal CLC Cl(−)/H(+) Antiporters. Life (Basel) 13(2023). PubMed PMC

Palmer E.E. et al. Functional and clinical studies reveal pathophysiological complexity of CLCN4-related neurodevelopmental condition. Mol Psychiatry 28, 668–697 (2023). PubMed PMC

Dieguez L. et al. Dent’s Disease: A Cause of Monogenic Kidney Stones and Nephrocalcinosis. J Pers Med 14(2024). PubMed PMC

Iyer H. & Talbot W.S. The Cl- transporter ClC-7 is essential for phagocytic clearance by microglia. J Cell Sci 137(2024). PubMed PMC

McIlwain B.C., Ruprecht M.T. & Stockbridge R.B. Membrane Exporters of Fluoride Ion. Annu Rev Biochem 90, 559–579 (2021). PubMed PMC

Liu L., Li X., Wang C., Ni Y. & Liu X. The Role of Chloride Channels in Plant Responses to NaCl. Int J Mol Sci 25(2023). PubMed PMC

Iyer R., Iverson T.M., Accardi A. & Miller C. A biological role for prokaryotic ClC chloride channels. Nature 419, 715–8 (2002). PubMed

Kim M., Choi N., Choi E. & Lee E.J. ClC Chloride Channels in Gram-Negative Bacteria and Its Role in the Acid Resistance Systems. J Microbiol Biotechnol 33, 857–863 (2023). PubMed PMC

Maduke M., Pheasant D.J. & Miller C. High-level expression, functional reconstitution, and quaternary structure of a prokaryotic ClC-type chloride channel. J Gen Physiol 114, 713–22 (1999). PubMed PMC

Mindell J.A., Maduke M., Miller C. & Grigorieff N. Projection structure of a ClC-type chloride channel at 6.5 A resolution. Nature 409, 219–23 (2001). PubMed

Dutzler R., Campbell E.B., Cadene M., Chait B.T. & MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415, 287–94 (2002). PubMed

Dutzler R. A structural perspective on ClC channel and transporter function. FEBS Lett 581, 2839–44 (2007). PubMed

Accardi A. Structure and gating of CLC channels and exchangers. J Physiol 593, 4129–38 (2015). PubMed PMC

Picollo A. Vesicular CLC chloride/proton exchangers in health and diseases. Front Pharmacol 14, 1295068 (2023). PubMed PMC

Dutzler R., Campbell E.B. & MacKinnon R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–12 (2003). PubMed

Chavan T.S. et al. A CLC-ec1 mutant reveals global conformational change and suggests a unifying mechanism for the CLC Cl(−)/H(+) transport cycle. Elife 9(2020). PubMed PMC

Fortea E. et al. Structural basis of pH-dependent activation in a CLC transporter. Nat Struct Mol Biol 31, 644–656 (2024). PubMed PMC

Picollo A., Malvezzi M., Houtman J.C. & Accardi A. Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters. Nat Struct Mol Biol 16, 1294–301 (2009). PubMed PMC

Picollo A., Xu Y., Johner N., Berneche S. & Accardi A. Synergistic substrate binding determines the stoichiometry of transport of a prokaryotic H(+)/Cl(−) exchanger. Nat Struct Mol Biol 19, 525–31, S1 (2012). PubMed PMC

Nguitragool W. & Miller C. CLC Cl /H+ transporters constrained by covalent cross-linking. Proc Natl Acad Sci U S A 104, 20659–65 (2007). PubMed PMC

Chadda R. & Robertson J.L. Measuring Membrane Protein Dimerization Equilibrium in Lipid Bilayers by Single-Molecule Fluorescence Microscopy. Methods Enzymol 581, 53–82 (2016). PubMed PMC

Khantwal C.M. et al. Revealing an outward-facing open conformational state in a CLC Cl(−)/H(+) exchange transporter. Elife 5(2016). PubMed PMC

Accardi A. et al. Separate ion pathways in a Cl−/H+ exchanger. J Gen Physiol 126, 563–70 (2005). PubMed PMC

Han W., Cheng R.C., Maduke M.C. & Tajkhorshid E. Water access points and hydration pathways in CLC H+/Cl− transporters. Proc Natl Acad Sci U S A 111, 1819–24 (2014). PubMed PMC

Kuang Z., Mahankali U. & Beck T.L. Proton pathways and H+/Cl− stoichiometry in bacterial chloride transporters. Proteins 68, 26–33 (2007). PubMed

Wang D. & Voth G.A. Proton transport pathway in the ClC Cl−/H+ antiporter. Biophys J 97, 121–31 (2009). PubMed PMC

Ko Y.J. & Jo W.H. Secondary water pore formation for proton transport in a ClC exchanger revealed by an atomistic molecular-dynamics simulation. Biophysical Journal 98, 2163–9 (2010). PubMed PMC

Kieseritzky G. & Knapp E.W. Charge transport in the ClC-type chloride-proton anti-porter from Escherichia coli. Journal of Biological Chemistry 286, 2976–86 (2011). PubMed PMC

Jiang T., Han W., Maduke M. & Tajkhorshid E. Molecular Basis for Differential Anion Binding and Proton Coupling in the Cl(−)/H(+) Exchanger ClC-ec1. J Am Chem Soc 138, 3066–75 (2016). PubMed PMC

Leisle L. et al. Divergent Cl(−) and H(+) pathways underlie transport coupling and gating in CLC exchangers and channels. Elife 9(2020). PubMed PMC

Wang Z., Swanson J.M.J. & Voth G.A. Local conformational dynamics regulating transport properties of a Cl(−) /H(+) antiporter. J Comput Chem 41, 513–519 (2020). PubMed PMC

Accardi A., Lobet S., Williams C., Miller C. & Dutzler R. Synergism between halide binding and proton transport in a CLC-type exchanger. J Mol Biol 362, 691–9 (2006). PubMed

Nguitragool W. & Miller C. Uncoupling of a CLC Cl−/H+ exchange transporter by polyatomic anions. J Mol Biol 362, 682–90 (2006). PubMed

Miller C. Q-cubed mutant cues clues to CLC antiport mechanism. J Gen Physiol 153(2021). PubMed PMC

Matulef K. & Maduke M. Side-dependent inhibition of a prokaryotic ClC by DIDS. Biophys J 89, 1721–30 (2005). PubMed PMC

Bosshart P.D. & Fotiadis D. Secondary Active Transporters. Subcell Biochem 92, 275–299 (2019). PubMed

Garaeva A.A. & Slotboom D.J. Elevator-type mechanisms of membrane transport. Biochem Soc Trans 48, 1227–1241 (2020). PubMed PMC

Licht J.A., Berry S.P., Gutierrez M.A. & Gaudet R. They all rock: A systematic comparison of conformational movements in LeuT-fold transporters. Structure 32, 1528–1543 e3 (2024). PubMed PMC

Bell S.P., Curran P.K., Choi S. & Mindell J.A. Site-directed fluorescence studies of a prokaryotic ClC antiporter. Biochemistry 45, 6773–82 (2006). PubMed

Elvington S.M. & Maduke M. Thinking outside the crystal: complementary approaches for examining transporter conformational change. Channels (Austin) 2, 373–9 (2008). PubMed

Elvington S.M., Liu C.W. & Maduke M.C. Substrate-driven conformational changes in ClC-ec1 observed by fluorine NMR. EMBO J 28, 3090–102 (2009). PubMed PMC

Abraham S.J. et al. 13C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1. J Biomol NMR 61, 209–26 (2015). PubMed PMC

Heath G.R. et al. Localization atomic force microscopy. Nature 594, 385–390 (2021). PubMed PMC

Accardi A., Kolmakova-Partensky L., Williams C. & Miller C. Ionic currents mediated by a prokaryotic homologue of CLC Cl- channels. J Gen Physiol 123, 109–19 (2004). PubMed PMC

Coppieters ‘t Wallant K. & Martens C. Hydrogen-deuterium exchange coupled to mass spectrometry: A multifaceted tool to decipher the molecular mechanism of transporters. Biochimie 205, 95–101 (2023). PubMed

Ozohanics O. & Ambrus A. Hydrogen-Deuterium Exchange Mass Spectrometry: A Novel Structural Biology Approach to Structure, Dynamics and Interactions of Proteins and Their Complexes. Life (Basel) 10(2020). PubMed PMC

Pintilie G. et al. Measurement of atom resolvability in cryo-EM maps with Q-scores. Nat Methods 17, 328–334 (2020). PubMed PMC

Wraight C.A. Chance and design--proton transfer in water, channels and bioenergetic proteins. Biochim Biophys Acta 1757, 886–912 (2006). PubMed

Kratochvil H.T. et al. Transient water wires mediate selective proton transport in designed channel proteins. Nat Chem 15, 1012–1021 (2023). PubMed PMC

Faraldo-Gomez J.D. & Roux B. Electrostatics of ion stabilization in a ClC chloride channel homologue from Escherichia coli. J Mol Biol 339, 981–1000 (2004). PubMed

Walden M. et al. Uncoupling and turnover in a Cl-/H+ exchange transporter. J Gen Physiol 129, 317–29 (2007). PubMed PMC

Baker J.A., Wong W.C., Eisenhaber B., Warwicker J. & Eisenhaber F. Charged residues next to transmembrane regions revisited: “Positive-inside rule” is complemented by the “negative inside depletion/outside enrichment rule”. BMC Biol 15, 66 (2017). PubMed PMC

Zhang X.D., Li Y., Yu W.P. & Chen T.Y. Roles of K149, G352, and H401 in the channel functions of ClC-0: testing the predictions from theoretical calculations. J Gen Physiol 127, 435–47 (2006). PubMed PMC

Engh A.M., Faraldo-Gomez J.D. & Maduke M. The role of a conserved lysine in chloride- and voltage-dependent ClC-0 fast gating. J Gen Physiol 130, 351–63 (2007). PubMed PMC

Yuan J.H. et al. Genetic spectrum and founder effect of non-dystrophic myotonia: a Japanese case series study. J Neurol 269, 6406–6415 (2022). PubMed

Brenes O., Pusch M. & Morales F. ClC-1 Chloride Channel: Inputs on the Structure-Function Relationship of Myotonia Congenita-Causing Mutations. Biomedicines 11(2023). PubMed PMC

Leray X. et al. Tonic inhibition of the chloride/proton antiporter ClC-7 by PI(3,5)P2 is crucial for lysosomal pH maintenance. Elife 11(2022). PubMed PMC

Carpaneto A., Boccaccio A., Lagostena L., Di Zanni E. & Scholz-Starke J. The signaling lipid phosphatidylinositol-3,5-bisphosphate targets plant CLC-a anion/H(+) exchange activity. EMBO Rep 18, 1100–1107 (2017). PubMed PMC

He H. et al. Mutations in CLCN6 as a Novel Genetic Cause of Neuronal Ceroid Lipofuscinosis in Patients and a Murine Model. Ann Neurol 96, 608–624 (2024). PubMed

Grieschat M., Guzman R.E., Langschwager K., Fahlke C. & Alekov A.K. Metabolic energy sensing by mammalian CLC anion/proton exchangers. EMBO Rep 21, e47872 (2020). PubMed PMC

He J. et al. Cryo-EM structure of the plant nitrate transporter AtCLCa reveals characteristics of the anion-binding site and the ATP-binding pocket. J Biol Chem 299, 102833 (2023). PubMed PMC

Zhang B. et al. Molecular basis of ClC-6 function and its impairment in human disease. Sci Adv 9, eadg4479 (2023). PubMed PMC

Wan Y. et al. Structural basis of adenine nucleotides regulation and neurodegenerative pathology in ClC-3 exchanger. Nat Commun 15, 6654 (2024). PubMed PMC

Skerra A. Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in E.coli. Gene 151, 131–135 (1994). PubMed

Sambrook J., Fritsch E.F. & Maniatis T. Molecular Cloning, A Laboratory Manual, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

Chien C.H. et al. An Adaptable Phospholipid Membrane Mimetic System for Solution NMR Studies of Membrane Proteins. J Am Chem Soc 139, 14829–14832 (2017). PubMed PMC

Yang M. et al. Recombinant Nepenthesin II for Hydrogen/Deuterium Exchange Mass Spectrometry. Anal Chem 87, 6681–7 (2015). PubMed

Majumdar R. et al. Minimizing carry-over in an online pepsin digestion system used for the H/D exchange mass spectrometric analysis of an IgG1 monoclonal antibody. J Am Soc Mass Spectrom 23, 2140–8 (2012). PubMed

Trcka F. et al. Human Stress-inducible Hsp70 Has a High Propensity to Form ATP-dependent Antiparallel Dimers That Are Differentially Regulated by Cochaperone Binding. Mol Cell Proteomics 18, 320–337 (2019). PubMed PMC

Kavan D.a.M.., P. MSTools—Web based application for visualization and presentation of HXMS data. International Journal of Mass Spectrometry 302, 53–58 (2011).

Pettersen E.F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci 30, 70–82 (2021). PubMed PMC

Lomize M.A., Lomize A.L., Pogozheva I.D. & Mosberg H.I. OPM: orientations of proteins in membranes database. Bioinformatics 22, 623–5 (2006). PubMed

Jacobson M.P., Friesner R.A., Xiang Z. & Honig B. On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol 320, 597–608 (2002). PubMed

Betz R. Dabble. (2017).

Huang J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14, 71–73 (2017). PubMed PMC

Klauda J.B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114, 7830–43 (2010). PubMed PMC

Beglov D. & Roux B. Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations. J. Chem. Phys. 100, 9050–9063 (1994).

Hopkins C.W., Le Grand S., Walker R.C. & Roitberg A.E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J Chem Theory Comput 11, 1864–74 (2015). PubMed

Ryckaert J.-P., Ciccotti G., & Berendsen H. J. C. . Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. Journal of Computational Physics 23, 327–341 (1977).

Roe D.R. & Cheatham T.E. 3rd. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput 9, 3084–95 (2013). PubMed

Humphrey W., Dalke A. & Schulten K. VMD: visual molecular dynamics. J Mol Graph 14, 33–8, 27–8 (1996). PubMed

The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.

Lim H.H., Shane T. & Miller C. Intracellular proton access in a Cl(−)/H(+) antiporter. PLoS Biol 10, e1001441 (2012). PubMed PMC

Schrecker M., Korobenko J. & Hite R.K. Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1. Elife 9(2020). PubMed PMC

Park E. & MacKinnon R. Structure of the CLC-1 chloride channel from Homo sapiens. Elife 7(2018). PubMed PMC

Feng L., Campbell E.B., Hsiung Y. & MacKinnon R. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science 330, 635–41 (2010). PubMed PMC

Xu M. et al. CryoEM structures of the human CLC-2 voltage-gated chloride channel reveal a ball-andchain gating mechanism. Elife 12(2024). PubMed PMC

Pintilie G. & Chiu W. Assessment of structural features in Cryo-EM density maps using SSE and side chain Z-scores. J Struct Biol 204, 564–571 (2018). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...