Evaluation of Stress-Tolerant Serratia and Enterobacter as PGPR for Nutrient Solubilization and Dose-Dependent Bioformulation to Enhance Tomato Seedlings

. 2025 Jul 13 ; 14 (14) : . [epub] 20250713

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40733392

Grantová podpora
RSP2025R374 king saud university

Plant growth-promoting rhizobacteria (PGPR) are eco-friendly and sustainable options for agrochemicals, particularly for enhancing crop productivity under stress conditions. The present research aims to isolate and characterize native PGPR from tomato rhizospheric soil and to evaluate their effectiveness as a dose-dependent response to enhance the growth of tomato seedlings. Out of 112 isolates, 10 bacterial strains were selected based on key PGPR traits, including indole-3-acetic acid (IAA), ammonia production, hydrogen cyanide (HCN), exopolysaccharide (EPS) synthesis, hydrolytic enzyme activity, potassium solubilization, antifungal activity against Fusarium oxysporum, and tolerance to pH and heat stress. Molecular identification via 16S rRNA gene sequencing confirmed that these isolates belong to the genera Serratia and Enterobacter. S. marcescens So-1 and Enterobacter sp. So-12 produced the highest levels of IAA (2.6-24.1 µg/mL). In vitro tomato seed germination tests using bacterial suspensions at three concentrations (106, 107, and 108 CFU/mL) showed dose-dependent improvements, with T1 increasing germination up to 108.3% compared to the control. In polyhouse trials using cocopeat formulations, seedling growth improved noticeably. T2 increased the root length (28.3 ± 2.98 cm) by over 1560%, and the shoot length (35.7 ± 0.57 cm) increased by 55% against the control, whose root length is 1.7 ± 0.47. The chlorophyll amount of the treated leaves further showed significant results over the control. Collectively, these findings suggest that using native PGPR in a dose-dependent way can help tomato seedlings grow better and promote more sustainable crop production.

Allied Health Sciences Datta Meghe Institute of Higher Education and Research Wardha 442107 Maharashtra India

Botany and Microbiology Department College of Science King Saud University P O Box 2455 Riyadh 11451 Saudi Arabia

Center of Advanced Innovation Technologies VŠB Technical University of Ostrava 708 00 Ostrava Poruba Czech Republic

Centre for Research Impact and Outcome Chitkara University Institute of Engineering and Technology Chitkara University Rajpura 140401 Punjab India

Department of Bio Science Career Point University Hamirpur 176041 Himachal Pradesh India

Department of Biosciences Himachal Pradesh University Summer Hill Shimla 171005 Himachal Pradesh India

Department of Biosciences University Institute of Biotechnology Chandigarh University Gharuan Mohali 140413 Punjab India

Department of Biotechnology Chandigarh University Mohali 140413 Punjab India

Department of Biotechnology University Centre for Research and Development Chandigarh University Mohali 140413 Punjab India

Department of Chemistry Faculty of Science University of Hradec Kralove Rokitanskeho 62 500 03 Hradec Kralove Czech Republic

Department of Chemistry Sathyabama Institute of Science and Technology Chennai 600119 Tamil Nadu India

Department of MLT Abhilashi University Chailchowk Mandi 175028 Himachal Pradesh India

Division of Microbiology Career Point University Hamirpur 176041 Himachal Pradesh India

Division of Research and Innovation Uttaranchal University Dehradun 24800 Uttarakhand India

Instituto de Biología Molecular y Celular de Plantas Universitat Politècnica de València Consejo Superior de Investigaciones Científicas 46022 Valencia Spain

Zobrazit více v PubMed

Hasan A., Tabassum B., Hashim M., Khan N. Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture: A review. Bacteria. 2024;3:59–75. doi: 10.3390/bacteria3020005. DOI

Bhardwaj I., Kumar V., Bhardwaj N., Verma R., Bhardwaj Y., Kumari T. A glimpse into the performance and synthesis of microbial nanoparticles and its new advances in soil enrichment and plant nutrition: A review. Nanotechnol. Environ. Eng. 2023;8:943–964. doi: 10.1007/s41204-023-00336-7. DOI

Bhardwaj R., Yadav A., Sahoo A., Kumari P., Singh L.A., Swapnil P., Meena M., Kumar S. Microalgal-based sustainable bio-fungicides: A promising solution to enhance crop yield. Discov. Sustain. 2025;6:39. doi: 10.1007/s43621-025-00795-9. DOI

Goswami S.K., Singh V., Chakdar H., Choudhary P. Harmful effects of fungicides—Current status. Int. J. Agric. Environ. Biotechnol. 2018;11:1011–1019.

Singh V.K., Meena M., Zehra A., Tiwari A., Dubey M.K., Upadhyay R.S. Microbial Diversity and Biotechnology in Food Security. Springer; Cham, Switzerland: 2014. Fungal toxins and their impact on living systems; pp. 513–530. DOI

Kürklü A., Pearson S., Felek T. Climate change impacts on tomato production in high-tech soilless greenhouses in Türkiye. BMC Plant Biol. 2025;25:339. doi: 10.1186/s12870-025-06307-1. PubMed DOI PMC

Collins E.J., Bowyer C., Tsouza A., Chopra M. Tomatoes: An extensive review of the associated health impacts of tomatoes and factors that can affect their cultivation. Biology. 2022;11:239. doi: 10.3390/biology11020239. PubMed DOI PMC

Padmanabhan P., Cheema A., Paliyath G. Encyclopedia of Food and Health. Elsevier; Oxford, UK: 2016. Solanaceous fruits including tomato, eggplant, and peppers; pp. 24–32. DOI

Quinet M., Angosto T., Yuste-Lisbona F.J., Blanchard-Gros R., Bigot S., Martinez J.P., Lutts S. Tomato fruit development and metabolism. Front. Plant Sci. 2019;10:1554. doi: 10.3389/fpls.2019.01554. PubMed DOI PMC

FAOSTAT. [(accessed on 25 June 2025)]. Available online: https://www.fao.org/faostat/en/#home.

DesiKheti Top 10 Tomato-Producing States in India: A Detailed Statewise Overview. 2024. [(accessed on 27 June 2025)]. Available online: https://knowledge.desikheti.com/top-10-tomato-producing-states-in-india-a-detailed-statewise-overview/

District Solan, Government of Himachal Pradesh Mushroom City of India. [(accessed on 11 May 2025)]. Available online: https://hpsolan.nic.in/

Times of India Off-Season Tomatoes a Hit in HP, Plan to Hike Production. 2022. [(accessed on 11 May 2025)]. Available online: https://timesofindia.indiatimes.com/city/shimla/off-season-tomatoes-a-hit-in-hp-plan-to-hike-production/articleshow/92686994.cms.

Kumar V., Sharma H., Sharma D. Profile and problems of tomato cultivation in Bilaspur district of Himachal Pradesh. Him. J. Agric. Res. 2018;44:60–67.

National Horticulture Board Tomato—October 2018. [(accessed on 11 May 2025)];2018 Available online: https://nhb.gov.in/statistics/Reports/TomatoOctober2018.pdf.

CEIC India Production of Horticulture Crops in Major States: Vegetables: Tomato. 2025. [(accessed on 2 June 2025)]. Available online: https://www.ceicdata.com/en/india/production-of-horticulture-crops-in-major-states-vegetables-tomato.

Shubham, Rao A., Kaushal S. The Multifaceted Soils of Himachal Pradesh, India: Types and Characteristics. Arch. Curr. Res. Int. 2024;24:145–160. doi: 10.9734/acri/2024/v24i11956. DOI

Panno S., Caruso A.G., Davino S., Bertacca S., Cravero V., Catara A., Garibaldi A., Minuto A. A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the Mediterranean basin. Agronomy. 2021;11:2188. doi: 10.3390/agronomy11112188. DOI

Khlode R.S., Abdel-Gawad T.I., El-Bana A.A., Galal A.A. Fusarium oxysporum f. sp. lycopersici (fol) race 1 and 3 as wilt-incitants to tomato plants growing at El-Minia Governorate, Egypt. Minia J. Agric. Res. Dev. 2016;36:229–244.

Gupta G., Parihar S.S., Ahirwar N.K., Snehi S.K., Singh V. Plant growth-promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 2015;7:96–102. doi: 10.4172/1948-5948.1000188. DOI

Ma Y., Dias M.C., Freitas H. Drought and salinity stress responses and microbe-induced tolerance in plants. Front. Plant Sci. 2020;11:591911. doi: 10.3389/fpls.2020.591911. PubMed DOI PMC

Aksoy A., Kaymak H.Ç. Tomato production quantity estimates for 2023–2027 with ARIMA model: Evidence from leading producing countries including Turkey. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2024;24:41–46.

Prasad R., Kumar M., Varma A. Role of PGPR in Soil Fertility and Plant Health. In: Egamberdieva D., Shrivastava S., Varma A., editors. Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Volume 42. Springer; Cham, Switzerland: 2015. pp. 247–260. Soil Biology. DOI

Fasusi O.A., Amoo A.E., Babalola O.O. Characterization of plant growth-promoting rhizobacterial isolates associated with food plants in South Africa. Antonie Van Leeuwenhoek. 2021;114:1683–1708. doi: 10.1007/s10482-021-01633-4. PubMed DOI PMC

Fasusi O.A., Cruz C., Babalola O.O. Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture. 2021;11:163. doi: 10.3390/agriculture11020163. DOI

Gupta R., Solanki M.K., Saini S., Saxena A.K. Identification, characterization and optimization of phosphate-solubilizing rhizobacteria (PSRB) from rice rhizosphere. Saudi J. Biol. Sci. 2022;29:35–42. doi: 10.1016/j.sjbs.2021.09.075. PubMed DOI PMC

Khan N., Bano A., Babar M.A., Babar M. Water conservation and plant survival strategies of rhizobacteria under drought stress. Agronomy. 2020;10:1683. doi: 10.3390/agronomy10111683. DOI

Arora N.K., Tewari S., Singh R. Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In: Arora N., editor. Plant Microbe Symbiosis: Fundamentals and Advances. Springer; New Delhi, India: 2013. pp. 411–449. DOI

Asari S., Tarkowská D., Rolčík J., Novák O., Palmero D., Bejai S., Meijer J. Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta. 2017;245:15–30. doi: 10.1007/s00425-016-2580-9. PubMed DOI PMC

Ummara U., Noreen S., Afzal M., Ahmad P. Bacterial bioaugmentation enhances hydrocarbon degradation, plant colonization and gene expression in diesel-contaminated soil. Physiol. Plant. 2021;173:58–66. doi: 10.1111/ppl.13171. PubMed DOI

Odelade K.A., Babalola O.O. Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. Int. J. Environ. Res. Public Health. 2019;16:3873. doi: 10.3390/ijerph16203873. PubMed DOI PMC

Dogan A., Aydogdu M., Ates F., Oguz A., Ilkme G., Yildirim H., Ozer G. Microbial-based production system: A novel approach for plant growth and pest and disease management in greenhouse-grown peppers (Capsicum annuum L.) J. Agric. Sci. Technol. 2018;18:371–386.

Lori M., Symnaczik S., Mäder P., De Deyn G., Gattinger A. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PLoS ONE. 2017;12:e0180442. doi: 10.1371/journal.pone.0180442. PubMed DOI PMC

Chromkaew Y., Kaeomuangmoon T., Mawan N., Mukjang N., Khongdee N. Is coconut coir dust an efficient biofertilizer carrier for promoting coffee seedling growth and nutrient uptake? PeerJ. 2023;11:e15530. doi: 10.7717/peerj.15530. PubMed DOI PMC

de Andrade L.A., Santos C.H.B., Frezarin E.T., Sales L.R., Rigobelo E.C. Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms. 2023;11:1088. doi: 10.3390/microorganisms11041088. PubMed DOI PMC

Tang J., Li Y., Zhang L., Mu J., Jiang Y., Fu H., Zhang Y., Cui H., Yu X., Ye Z. Biosynthetic pathways and functions of indole-3-acetic acid in microorganisms. Microorganisms. 2023;11:2077. doi: 10.3390/microorganisms11082077. PubMed DOI PMC

Kaur N., Sharma P. Screening and characterization of native Pseudomonas sp. as plant growth-promoting rhizobacteria in chickpea (Cicer arietinum L.) rhizosphere. Afr. J. Microbiol. Res. 2013;7:1465–1474. doi: 10.5897/AJMR12.362. DOI

Kalimuthu R., Suresh P., Varatharaju G., Balasubramanian N., Rajasekaran K.M., Shanmugaiah V. Isolation and characterization of indole acetic acid (IAA) producing tomato rhizobacterium Pseudomonas sp. VSMKU4050 and its potential for plant growth promotion. Int. J. Curr. Microbiol. Appl. Sci. 2019;8:443–455. doi: 10.20546/ijcmas.2019.806.050. DOI

Lata D.L., Abdie O., Rezene Y. IAA-producing bacteria from the rhizosphere of chickpea (Cicer arietinum L.): Isolation, characterization, and their effects on plant growth performance. Heliyon. 2024;10:e27742. doi: 10.1016/j.heliyon.2024.e39702. PubMed DOI PMC

Khoso M.A., Wagan S., Alam I., Hussain A., Ali Q., Saha S., Poudel T.R., Manghwar H., Liu F. Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective. Plant Stress. 2024;11:100341. doi: 10.1016/j.stress.2023.100341. DOI

Khan I., Mohyuddin S.G., Sohail Zaman S., Qadir M., Guo J., Li G. Enhancing growth in Vigna radiata through the inhibition of charcoal rot disease: A strategic approach using plant growth-promoting rhizobacteria. Microorganisms. 2024;12:1852. doi: 10.3390/microorganisms12091852. PubMed DOI PMC

Alonazi M.A., Alwathnani H.A., Al-Barakah F.N., Alotaibi F. Native plant growth-promoting rhizobacteria containing ACC deaminase promote plant growth and alleviate salinity and heat stress in maize (Zea mays L.) plants in Saudi Arabia. Plants. 2025;14:1107. doi: 10.3390/plants14071107. PubMed DOI PMC

Azizah H., Rahajeng S.M., Jatmiko Y.D. Isolation and screening of phosphate and potassium solubilizing endophytic bacteria in maize (Zea mays L.) J. Exp. Life Sci. 2020;10:3. doi: 10.21776/ub.jels.2020.010.03.04. DOI

Zhao Y., Liang H., Zhang J., Chen Y., Dhital Y.P., Zhao T., Wang Z. Isolation and characterization of potassium-solubilizing rhizobacteria (KSR) promoting cotton growth in saline–sodic regions. Microorganisms. 2024;12:1474. doi: 10.3390/microorganisms12071474. PubMed DOI PMC

Abd El-Rahman A.F., Shaheen H.A., Abd El-Aziz R.M., Ibrahim D.S. Influence of hydrogen cyanide-producing rhizobacteria in controlling the crown gall and root-knot nematode, Meloidogyne incognita. Egypt. J. Biol. Pest Control. 2019;29:41. doi: 10.1186/s41938-019-0143-7. DOI

Mekonnen H., Kibret M., Assefa F. Plant growth promoting rhizobacteria for biocontrol of tomato bacterial wilt caused by Ralstonia solanacearum. Int. J. Agron. 2022;2022:1489637. doi: 10.1155/2022/1489637. DOI

Yao X., Lan X., Jin Y., Li C. Screening, identification, and characterization of plant growth-promoting rhizobacterium strains from alpine grassland as biocontrol agents against Fusarium oxysporum. Agronomy. 2024;14:2856. doi: 10.3390/agronomy14122856. DOI

Singh R.P., Jha P.N. The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.) PLoS ONE. 2016;11:e0155026. doi: 10.1371/journal.pone.0155026. PubMed DOI PMC

Patel S.K., Singh S., Benjamin J.C., Singh V.R., Bisht D., Lal R.K. Plant growth-promoting activities of Serratia marcescens and Pseudomonas fluorescens on Capsicum annuum L. plants. Ecol. Front. 2024;44:654–663. doi: 10.1016/j.ecofro.2024.01.002. DOI

Chakraborty U., Chakraborty B.N., Chakraborty A.P. Influence of Serratia marcescens TRS-1 on growth promotion and induction of resistance in Camellia sinensis against Fomes lamaoensis. J. Plant Interact. 2010;5:261–272. doi: 10.1080/17429140903551738. DOI

Zaheer A., Mirza B.S., Mclean J.E., Yasmin S., Shah T.M., Malik K.A., Mirza M.S. Association of plant growth-promoting Serratia spp. with the root nodules of chickpea. Res. Microbiol. 2016;167:510–520. doi: 10.1016/j.resmic.2016.04.001. PubMed DOI

Abreo E., Altier N. Pangenome of Serratia marcescens strains from nosocomial and environmental origins reveals different populations and the links between them. Sci. Rep. 2019;9:46. doi: 10.1038/s41598-018-37118-0. PubMed DOI PMC

Sharma A., Chakdar H., Vaishnav A., Srivastava A.K., Khan N., Bansal Y.K., Kaushik R. Multifarious plant growth-promoting rhizobacterium Enterobacter sp. CM94-mediated systemic tolerance and growth promotion of chickpea (Cicer arietinum L.) under salinity stress. Front. Biosci.-Landmark. 2023;28:241. doi: 10.31083/j.fbl2810241. PubMed DOI

Zhang X., Peng J., Hao X., Feng G., Shen Y., Wang G., Chen Z. Serratia marcescens LYGN1 reforms the rhizosphere microbial community and promotes cucumber and pepper growth in plug seedling cultivation. Plants. 2024;13:592. doi: 10.3390/plants13050592. PubMed DOI PMC

Almaghrabi O.A., Massoud S.I., Abdelmoneim T.S. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J. Biol. Sci. 2013;20:57–61. doi: 10.1016/j.sjbs.2012.10.004. PubMed DOI PMC

Zhao Y., Hong Y., Wang P., Gou Y., Zeng R., Zhang Q., Chen D., Song Y. Assembly of tomato rhizobacteria from different functional groups improves seedling photosynthesis and growth. Plants. 2023;12:4000. doi: 10.3390/plants12234000. PubMed DOI PMC

Fiodor A., Ajijah N., Dziewit L., Pranaw K. Biopriming of seed with plant growth-promoting bacteria for improved germination and seedling growth. Front. Microbiol. 2023;14:1142966. doi: 10.3389/fmicb.2023.1142966. PubMed DOI PMC

González-Ista N.S., Castro-Mercado E., de la Cruz H.R., Campos-García J., López-Bucio J., García-Pineda E. Comparison of the rhizobacteria Serratia sp. H6 and Enterobacter sp. L7 on Arabidopsis thaliana growth promotion. Curr. Microbiol. 2023;80:117. doi: 10.1007/s00284-023-03227-x. PubMed DOI

Mengistie G.Y., Awlachew Z.T. Evaluation of the plant growth promotion effect of Bacillus species on different varieties of tomato (Solanum lycopersicum L.) seedlings. Adv. Agric. 2022;2022:1771147. doi: 10.1155/2022/1771147. DOI

Singh A., Yadav V.K., Chundawat R.S., Soltane R., Awwad N.S., Ibrahium H.A., Yadav K.K., Vicas S.I. Enhancing plant growth promoting rhizobacterial activities through consortium exposure: A review. Front. Bioeng. Biotechnol. 2023;11:1099999. doi: 10.3389/fbioe.2023.1099999. PubMed DOI PMC

Rosier A., Beauregard P.B., Bais H.P. Quorum quenching activity of the PGPR Bacillus subtilis UD1022 alters nodulation efficiency of Sinorhizobium meliloti on Medicago truncatula. Front. Microbiol. 2021;11:596299. doi: 10.3389/fmicb.2020.596299. PubMed DOI PMC

Abou Jaoudé R., Luziatelli F., Ficca A.G., Ruzzi M. Effect of plant growth-promoting rhizobacteria synthetic consortium on growth, yield, and metabolic profile of lettuce (Lactuca sativa L.) grown under suboptimal nutrient regime. Horticulturae. 2025;11:64. doi: 10.3390/horticulturae11010064. DOI

Mekonnen H., Kibret M., Assefa F., Kabtimer N. Potential of plant growth-promoting rhizobacteria for enhancement of tomato growth. Agrosyst. Geosci. Environ. 2025;8:e70036. doi: 10.1002/agg2.70036. DOI

He S., Li L., Lv M., Wang R., Wang L., Yu S., Gao Z., Li X. PGPR: Key to enhancing crop productivity and achieving sustainable agriculture. Curr. Microbiol. 2024;81:377. doi: 10.1007/s00284-024-03893-5. PubMed DOI

Myresiotis C.K., Karaoglanidis G.S., Vryzas Z., Papadopoulou-Mourkidou E. Evaluation of plant-growth-promoting rhizobacteria, acibenzolar-S-methyl and hymexazol for integrated control of Fusarium crown and root rot on tomato. Pest Manag. Sci. 2012;68:404–411. doi: 10.1002/ps.2277. PubMed DOI

Patani A., Prajapati D., Ali D., Kalasariya H., Yadav V.K., Tank J., Bagatharia S., Joshi M., Patel A. Evaluation of the growth-inducing efficacy of various Bacillus species on the salt-stressed tomato (Lycopersicon esculentum Mill.) Front. Plant Sci. 2023;14:1168155. doi: 10.3389/fpls.2023.1168155. PubMed DOI PMC

Dhole S.M., Amnerkar N.D., Khedekar P.B. Comparison of UV spectrophotometry and high performance liquid chromatography methods for the determination of repaglinide in tablets. Pharm. Methods. 2012;3:68–72. doi: 10.4103/2229-4708.103875. PubMed DOI PMC

Hegyi A., Nguyen T.B.K., Posta K. Metagenomic analysis of bacterial communities in agricultural soils from Vietnam with special attention to phosphate solubilizing bacteria. Microorganisms. 2021;9:1796. doi: 10.3390/microorganisms9091796. PubMed DOI PMC

Brar B., Kumar R., Sharma D., Sharma A.K., Thakur K., Mahajan D., Kumar R. Metagenomic analysis reveals diverse microbial community and potential functional roles in Baner rivulet, India. J. Genet. Eng. Biotechnol. 2023;21:147. doi: 10.1186/s43141-023-00601-x. PubMed DOI PMC

Qingwei Z., Lushi T., Yu Z., Yu S., Wanting W., Jiangchuan W., Xiaolei D., Xuejiao H., Bilal M. Isolation and characterization of phosphate-solubilizing bacteria from rhizosphere of poplar on road verge and their antagonistic potential against various phytopathogens. BMC Microbiol. 2023;23:221. doi: 10.1186/s12866-023-02953-3. PubMed DOI PMC

Stewart E.J. Growing unculturable bacteria. J. Bacteriol. 2012;194:4151–4160. doi: 10.1128/JB.00345-12. PubMed DOI PMC

Sharma R.C., Dogra S. Characterization of the soils of lower Himalayas of Himachal Pradesh, India. Nat. Environ. Pollut. Technol. 2011;10:439–446.

Mengesha A.S., Legesse N.H. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of lentil (Lens culinaris M.) collected from Hagere Mariam district, Central Ethiopia. PLoS ONE. 2024;19:e0308915. doi: 10.1371/journal.pone.0308915. PubMed DOI PMC

Arjyal C., Kc J., Neupane S. Prevalence of Methicillin-Resistant Staphylococcus aureus in Shrines. Int. J. Microbiol. 2020;2020:7981648. doi: 10.1155/2020/7981648. PubMed DOI PMC

Radhakrishnan N., Krishnasamy C. Isolation and characterization of salt-stress-tolerant rhizosphere soil bacteria and their effects on plant growth-promoting properties. Sci. Rep. 2024;14:24909. doi: 10.1038/s41598-024-75022-y. PubMed DOI PMC

Hiranmayee G., Marik D., Sadhukhan A., Reddy G.S. Isolation of plant growth-promoting rhizobacteria from the agricultural fields of Tattiannaram, Telangana. J. Genet. Eng. Biotechnol. 2023;21:159. doi: 10.1186/s43141-023-00615-5. PubMed DOI PMC

Pallavi, Mishra R.K., Sahu P.K., Mishra V., Jamal H., Varma A., Tripathi S. Isolation and characterization of halotolerant plant growth promoting rhizobacteria from mangrove region of Sundarbans, India for enhanced crop productivity. Front. Plant Sci. 2023;14:1122347. doi: 10.3389/fpls.2023.1122347. PubMed DOI PMC

Sherpa M.T., Lepcha S.R., Rai P., Arora D.K. Isolation and characterization of plant growth promoting rhizobacteria isolated from organically grown high yielding pole type native pea (Pisum sativum L.) variety Dentami of Sikkim, India. Curr. Res. Microb. Sci. 2021;2:100068. doi: 10.1016/j.crmicr.2021.100068. PubMed DOI PMC

Nawaz A., Chaudhary H.J., Zhang H., Mukhtar H., Hussain S., Siddique M.H., Haseeb M., Mehmood K., Muneer M.A., Ismail M. Contribution of potassium solubilizing bacteria in improved potassium assimilation and cytosolic K+/Na+ ratio in rice (Oryza sativa L.) under saline-sodic conditions. Front. Microbiol. 2023;14:1196024. doi: 10.3389/fmicb.2023.1196024. PubMed DOI PMC

Alotaibi F., St-Arnaud M., Hijri M. In-depth characterization of plant growth promotion potentials of selected alkanes-degrading plant growth-promoting bacterial isolates. Front. Microbiol. 2022;13:863702. doi: 10.3389/fmicb.2022.863702. PubMed DOI PMC

Shreshtha K., Rai B., Sharma R., Pradhan A. Isolation and characterization of plant growth promoting rhizobacteria from cacti root under drought condition. Curr. Res. Microb. Sci. 2025;8:100319. doi: 10.1016/j.crmicr.2024.100319. PubMed DOI PMC

Vasant G., Bhatt S., Raghav R. Isolation and molecular characterization of plant growth promoting rhizobacteria from groundnut (Arachis hypogaea L.) rhizosphere. Curr. Agric. Res. J. 2023;11:30. doi: 10.12944/CARJ.11.1.30. DOI

Tsegaye Z., Woldesenbet F., Mulaw T., Sahile S. Isolation and biochemical characterization of plant growth promoting (PGP) bacteria colonizing the rhizosphere of Tef crop during the seedling stage. J. Plant Sci. Phytopathol. 2019;14:13–27. doi: 10.26717/BJSTR.2019.14.002534. DOI

Yasmin H., Naz R., Nosheen A., Hassan M.N., Ilyas N., Sajjad M., Anjum S., Gao X., Geng Z. Identification of new biocontrol agent against charcoal rot disease caused by Macrophomina phaseolina in soybean (Glycine max L.) Sustainability. 2020;12:6856. doi: 10.3390/su12176856. DOI

Raklami A., Bechtaoui N., Tahiri A.I., Anli M., Meddich A., Oufdou K. Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Front. Microbiol. 2019;10:1106. doi: 10.3389/fmicb.2019.01106. PubMed DOI PMC

Ganesh J., Hewitt K., Devkota A.R., Wilson T., Kaundal A. IAA-producing plant growth-promoting rhizobacteria from Ceanothus velutinus enhance cutting propagation efficiency and Arabidopsis biomass. Front. Plant Sci. 2024;15:1374877. doi: 10.3389/fpls.2024.1374877. PubMed DOI PMC

Agarwal M., Dheeman S., Dubey R.C., Kumar P., Maheshwari D.K., Bajpai V.K. Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench. Microbiol. Res. 2017;205:40–47. doi: 10.1016/j.micres.2017.08.012. PubMed DOI

Divyanshu K., Kumari A., Dixit S., Singh S.K., Yadav A.K., Pandey V., Srivastava M. Molecular identification and characterization of plant growth-promoting rhizobacteria and their effect on seed germination and vigour index of barley (Hordeum vulgare L.) J. Pure Appl. Microbiol. 2022;16:21. doi: 10.22207/JPAM.16.2.21. DOI

Ndeddy Aka R.J., Babalola O.O. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes faecalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Int. J. Phytoremediation. 2016;18:200–209. doi: 10.1080/15226514.2015.1073671. PubMed DOI

Beal J., Farny N.G., Haddock-Angelli T., Selvarajah V., Baldwin G.S., Buckley-Taylor R., Gershater M., Kiga D., Marken J., Sanchania V., et al. Robust estimation of bacterial cell count from optical density. Commun. Biol. 2020;3:512. doi: 10.1038/s42003-020-01127-5. PubMed DOI PMC

Chabbi N., El Harchli E.H., El Yamani M., Rahou Y., Rahou A., El Farissi M., Ouhammou A. Plant-growth-promoting rhizobacteria improve seeds germination and growth of Argania spinosa. Plants. 2024;13:2025. doi: 10.3390/plants13152025. PubMed DOI PMC

Thakur R., Dhar H., Swarnkar M.K., Soni R., Sharma K.C., Singh A.K., Gulati A., Sud R.K., Gulati A. Understanding the molecular mechanism of PGPR strain Priestia megaterium from tea rhizosphere for stress alleviation and crop growth enhancement. Plant Stress. 2024;12:100494. doi: 10.1016/j.stress.2024.100494. DOI

Abd El F.E.Z.A., Bashandy S.R. Dose-dependent effects of Pseudomonas trivialis rhizobacteria and synergistic growth stimulation effect with earthworms on the common radish. Rhizosphere. 2019;10:100156. doi: 10.1016/j.rhisph.2019.100156. DOI

Kurabachew H., Wydra K. Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biol. Control. 2013;67:75–83. doi: 10.1016/j.biocontrol.2013.07.004. DOI

CSIR-North East Institute of Science and Technology . Development of Commercial Bioformulation of PGPR Using Coir Pith as a Carrier. Govt. of India; Kalavoor, India: 2018. [(accessed on 13 May 2025)]. Project Report Supported by Central Coir Research Institute, Coir Board, Kalavoor, Ministry of MSME. Available online: https://www.ccriindia.org/pdf/NIEST.pdf.

Egamberdieva D., Davranov K., Wirth S., Hashem A., Abd_Allah E.F. Impact of soil salinity on the plant-growth–promoting and biological control abilities of root associated bacteria. Saudi J. Biol. Sci. 2017;24:1601–1608. doi: 10.1016/j.sjbs.2017.07.004. PubMed DOI PMC

Meena P., Rai A.K. Biochemical analysis of PGPR and its effect on chlorophyll, ascorbic acid, starch & total polyphenolic content (TPC) of different varieties of wheat (Triticum aestivum) Pharma Innov. 2017;6 Pt E:310.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...