Niche Dynamics of Alien Plant Species in Mediterranean Europe
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Italian Ministery of University and Research
NE/S01537X/1
Natural Environment Research Council
NE/W005042/1
Natural Environment Research Council
CN_00000033
Ministero dell'Università e della Ricerca
19-28491X
Grantová Agentura České Republiky
PubMed
40748240
PubMed Central
PMC12315792
DOI
10.1111/gcb.70379
Knihovny.cz E-zdroje
- Klíčová slova
- acclimatization, invasion success, invasive species, niche dynamics, niche filling, phenotypic plasticity, rapid adaptation, species traits,
- MeSH
- distribuce rostlin * MeSH
- ekosystém * MeSH
- rostliny * klasifikace MeSH
- zavlečené druhy * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Středomoří MeSH
Humans have spread plants globally for millennia, inadvertently causing ecological disruptions. Apart from their negative effects, biological invasions provide a unique opportunity to study how species modify their niche when confronted with novel environments. Focusing on the Mediterranean Basin, we assessed (1) which traits influence niche dynamics, and (2) whether niche conservatism or niche shift promotes invasion success. We selected the 80 most widespread alien vascular plant species in Mediterranean Europe and compiled data on their distributions in their native and invaded ranges. We then tested how a species' residence time, biogeographic origin, dispersal ability, functional traits, and intraspecific trait variability (ITV) influence its niche dynamics following invasion. Using already published independent data, we finally assessed whether niche dynamics can explain different dimensions of invasion success (quantified as regional spread or local abundance). We found that niche shifts were common (71% of species) and were mostly driven by species failing to occupy all suitable environments in their invaded range (unfilling), regardless of residence time. Niche unfilling and niche expansion were more important in species with high intraspecific trait variability introduced from non-Mediterranean biomes (temperate or tropical). Niche expansion was also greater in species with long-distance dispersal, a narrow native niche, and bigger seeds. Interestingly, invasion success correlated more with a species' ability to conserve its niche and residence time than with niche expansion. Niche shifts were better predicted by species traits than residence time. For example, high adaptive and acclimatization potential (inferred from high intraspecific trait variability) favored niche shifts in general, and long-distance dispersal favored niche expansion. Understanding how these traits relate to niche dynamics is important since a species' ability to conserve and fill its niche is, in turn, a good predictor of invasion success.
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czechia
Department of Science Roma Tre University Rome Italy
School of Biological Sciences University of Bristol Bristol UK
School of Mathematics and Statistics University of Glasgow Glasgow UK
University of Grenoble Alpes CNRS University Savoie Mont Blanc LECA Grenoble France
Zobrazit více v PubMed
Atwater, D. Z. , and Barney J. N.. 2021. “Climatic Niche Shifts in 815 Introduced Plant Species Affect Their Predicted Distributions.” Global Ecology and Biogeography 30, no. 8: 1671–1684. 10.1111/geb.13342. DOI
Atwater, D. Z. , Ervine C., and Barney J. N.. 2018. “Climatic Niche Shifts Are Common in Introduced Plants.” Nature Ecology & Evolution 2, no. 1: 34–43. 10.1038/s41559-017-0396-z. PubMed DOI
Bates, O. K. , and Bertelsmeier C.. 2021. “Climatic Niche Shifts in Introduced Species.” Current Biology 31, no. 19: R1252–R1266. 10.1016/j.cub.2021.08.035. PubMed DOI
Bates, O. K. , Ollier S., and Bertelsmeier C.. 2020. “Smaller Climatic Niche Shifts in Invasive Than Non‐Invasive Alien Ant Species.” Nature Communications 11, no. 1: 5213. 10.1038/s41467-020-19031-1. PubMed DOI PMC
Blomberg, S. P. , Garland T., and Ives A. R.. 2003. “Testing for Phylogenetic Signal in Comparative Data: Behavioral Traits Are More Labile.” Evolution 57, no. 4: 717–745. 10.1111/j.0014-3820.2003.tb00285.x. PubMed DOI
Bock, D. G. , Baeckens S., Pita‐Aquino J. N., et al. 2021. “Changes in Selection Pressure Can Facilitate Hybridization During Biological Invasion in a Cuban Lizard.” Proceedings of the National Academy of Sciences 118, no. 42: e2108638118. 10.1073/pnas.2108638118. PubMed DOI PMC
Brian, J. I. , and Catford J. A.. 2023. “A Mechanistic Framework of Enemy Release.” Ecology Letters 26, no. 12: 2147–2166. 10.1111/ele.14329. PubMed DOI
Broennimann, O. , Fitzpatrick M. C., Pearman P. B., et al. 2012. “Measuring Ecological Niche Overlap From Occurrence and Spatial Environmental Data: Measuring Niche Overlap.” Global Ecology and Biogeography 21, no. 4: 481–497. 10.1111/j.1466-8238.2011.00698.x. DOI
Bujan, J. , Charavel E., Bates O. K., et al. 2021. “Increased Acclimation Ability Accompanies a Thermal Niche Shift of a Recent Invasion.” Journal of Animal Ecology 90, no. 2: 483–491. 10.1111/1365-2656.13381. PubMed DOI
Cao Pinna, L. , Axmanová I., Chytrý M., et al. 2021. “The Biogeography of Alien Plant Invasions in the Mediterranean Basin.” Journal of Vegetation Science 32, no. 2: e12980. 10.1111/jvs.12980. DOI
Cao Pinna, L. , Gallien L., Pollock L. J., et al. 2024. “Plant Invasion in Mediterranean Europe: Current Hotspots and Future Scenarios.” Ecography 2024, no. 5: e07085. 10.1111/ecog.07085. DOI
Cascone, S. , Sperandii M. G., Cao Pinna L., Marzialetti F., Carranza M. L., and Acosta A. T. R.. 2021. “Exploring Temporal Trends of Plant Invasion in Mediterranean Coastal Dunes.” Sustainability 13, no. 24: 13946. 10.3390/su132413946. DOI
Chytrý, M. , Hennekens S. M., Jiménez‐Alfaro B., et al. 2016. “European Vegetation Archive (EVA): An Integrated Database of European Vegetation Plots.” Applied Vegetation Science 19, no. 1: 173–180. 10.1111/avsc.12191. DOI
Colautti, R. I. , and Barrett S. C.. 2013. “Rapid Adaptation to Climate Facilitates Range Expansion of an Invasive Plant.” Science 342, no. 6156: 364–366. 10.1126/science.1242121. PubMed DOI
Colautti, R. I. , and Lau J. A.. 2015. “Contemporary Evolution During Invasion: Evidence for Differentiation, Natural Selection, and Local Adaptation.” Molecular Ecology 24, no. 9: 1999–2017. 10.1111/mec.13162. PubMed DOI
Davidson, A. M. , Jennions M., and Nicotra A. B.. 2011. “Do Invasive Species Show Higher Phenotypic Plasticity Than Native Species and, if so, Is It Adaptive? A Meta‐Analysis: Invasive Species Have Higher Phenotypic Plasticity.” Ecology Letters 14, no. 4: 419–431. 10.1111/j.1461-0248.2011.01596.x. PubMed DOI
de Vries, J. , Evers J. B., Dicke M., and Poelman E. H.. 2019. “Ecological Interactions Shape the Adaptive Value of Plant Defence: Herbivore Attack Versus Competition for Light.” Functional Ecology 33: 129–138. 10.1111/1365-2435.13234. PubMed DOI PMC
Deitch, M. , Sapundjieff M., and Feirer S.. 2017. “Characterizing Precipitation Variability and Trends in the World's Mediterranean‐Climate Areas.” Water (Basel) 9, no. 4: 259. 10.3390/w9040259. DOI
Dellinger, A. S. , Essl F., Hojsgaard D., et al. 2016. “Niche Dynamics of Alien Species Do Not Differ Among Sexual and Apomictic Flowering Plants.” New Phytologist 209, no. 3: 1313–1323. 10.1111/nph.13694. PubMed DOI PMC
Di Cola, V. , Broennimann O., Petitpierre B., et al. 2017. “ecospat: An R Package to Support Spatial Analyses and Modeling of Species Niches and Distributions.” Ecography 40, no. 6: 774–787. 10.1111/ecog.02671. DOI
Dinis, M. , Vicente J. R., de Sa N. C., Lopez‐Nunez F. A., Marchante E., and Marchante H.. 2020. “Can Niche Dynamics and Distribution Modeling Predict the Success of Invasive Species Management Using Biocontrol? Insights From DOI
Early, R. , and Sax D. F.. 2014. “Climatic Niche Shifts Between Species' Native and Naturalized Ranges Raise Concern for Ecological Forecasts During Invasions and Climate Change.” Global Ecology and Biogeography 23, no. 12: 1356–1365. 10.1111/geb.12208. DOI
Gallien, L. , Thornhill A. H., Zurell D., Miller J. T., and Richardson D. M.. 2019. “Global Predictors of Alien Plant Establishment Success: Combining Niche and Trait Proxies.” Proceedings of the Royal Society B: Biological Sciences 286, no. 1897: 20182477. 10.1098/rspb.2018.2477. PubMed DOI PMC
Gallien, L. , Thuiller W., Fort N., et al. 2016. “Is There Any Evidence for Rapid, Genetically‐Based, Climatic Niche Expansion in the Invasive Common Ragweed?” PlosOne 11: e0152867. 10.1371/journal.pone.0152867. PubMed DOI PMC
Gioria, M. , Carta A., Baskin C. C., et al. 2021. “Persistent Soil Seed Banks Promote Naturalisation and Invasiveness in Flowering Plants.” Ecology Letters 24, no. 8: 1655–1667. 10.1111/ele.13783. PubMed DOI PMC
Gioria, M. , Hulme P. E., Richardson D. M., and Pyšek P.. 2023. “Why Are Invasive Plants Successful?” Annual Review of Plant Biology 74: 635–670. 10.1146/annurev-arplant-070522-071021. PubMed DOI
Giulio, S. , Cao Pinna L., Carboni M., et al. 2022. “Invasion Dynamics and Potential Future Spread of Sea Spurge Across Australia's Coastal Dunes.” Journal of Biogeography 49, no. 2: 378–390. 10.1111/jbi.14308. DOI
González‐Moreno, P. , Diez J. M., Richardson D. M., and Vilà M.. 2015. “Beyond Climate: Disturbance Niche Shifts in Invasive Species.” Global Ecology and Biogeography 24, no. 3: 360–370. 10.1111/geb.12271. DOI
Grove, S. , Haubensak K. A., Gehring C., and Parker I. M.. 2017. “Mycorrhizae, Invasions, and the Temporal Dynamics of Mutualism Disruption.” Journal of Ecology 105, no. 6: 1496–1508. 10.1111/1365-2745.12853. DOI
Guisan, A. , Petitpierre B., Broennimann O., Daehler C., and Kueffer C.. 2014. “Unifying Niche shift studies: insights from biological invasions.” Trends in Ecology & Evolution 29, no. 5: 260–269. 10.1016/j.tree.2014.02.009. PubMed DOI
Hageer, Y. , Esperón‐Rodríguez M., Baumgartner J. B., and Beaumont L. J.. 2017. “Climate, Soil or Both? Which Variables Are Better Predictors of the Distributions of Australian Shrub Species?” PeerJ 5: e3446. 10.7717/peerj.3446. PubMed DOI PMC
Hengl, T. , Mendes de Jesus J., Heuvelink G. B. M., et al. 2017. “SoilGrids250m: Global Gridded Soil Information Based on Machine Learning.” PLoS One 12, no. 2: e0169748. 10.1371/journal.pone.0169748. PubMed DOI PMC
Kang, X. , Zhou J., Abuman A., et al. 2022. “Regional Gradients in Intraspecific Seed Mass Variation Are Associated With Species Biotic Attributes and Niche Breadth.” AoB Plants 14, no. 2. 10.1093/aobpla/plac013. PubMed DOI PMC
Karbstein, K. , Prinz K., Hellwig F., and Römermann C.. 2020. “Plant Intraspecific Functional Trait Variation Is Related to Within‐Habitat Heterogeneity and Genetic Diversity in PubMed DOI PMC
Karger, D. N. , Conrad O., Böhner J., et al. 2017. “Climatologies at High Resolution for the Earth's Land Surface Areas.” Scientific Data 4, no. 1: 170122. 10.1038/sdata.2017.122. PubMed DOI PMC
Kattge, J. , Bönisch G., Díaz S., et al. 2020. “TRY Plant Trait Database—Enhanced Coverage and Open Access.” Global Change Biology 26, no. 1: 119–188. 10.1111/gcb.14904. PubMed DOI
Keane, R. , and Crawley M. J.. 2002. “Exotic Plant Invasions and the Enemy Release Hypothesis.” Trends in Ecology & Evolution 17, no. 4: 164–170. 10.1016/S0169-5347(02)02499-0. DOI
Lancaster, L. T. , Dudaniec R. Y., Hansson B., and Svensson E. I.. 2015. “Latitudinal Shift in Thermal Niche Breadth Results From Thermal Release During a Climate‐Mediated Range Expansion.” Journal of Biogeography 42, no. 10: 1953–1963. 10.1111/jbi.12553. DOI
Levine, J. M. , Adler P. B., and Yelenik S. G.. 2004. “A Meta‐Analysis of Biotic Resistance to Exotic Plant Invasions.” Ecology Letters 7, no. 10: 975–989. 10.1111/j.1461-0248.2004.00657.x. DOI
Li, Y. , Liu X., Li X., Petitpierre B., and Guisan A.. 2014. “Residence Time, Expansion Toward the Equator in the Invaded Range and Native Range Size Matter to Climatic Niche Shifts in Non‐Native Species.” Global Ecology and Biogeography 23, no. 10: 1094–1104. 10.1111/geb.12191. DOI
Liu, C. , Wolter C., Xian W., and Jeschke J. M.. 2020. “Most Invasive Species Largely Conserve Their Climatic Niche.” Proceedings of the National Academy of Sciences 117, no. 38: 23643–23651. 10.1073/pnas.2004289117. PubMed DOI PMC
Lososová, Z. , Axmanová I., Chytrý M., et al. 2023. “Seed Dispersal Distance Classes and Dispersal Modes for the European Flora.” Global Ecology and Biogeography 34, no. 3: 1485–1494. 10.1111/geb.13712. DOI
MacLean, S. A. , and Beissinger S. R.. 2017. “Species' Traits as Predictors of Range Shifts Under Contemporary Climate Change: A Review and Meta‐Analysis.” Global Change Biology 23, no. 10: 4094–4105. 10.1111/gcb.13736. PubMed DOI
Menuz, D. R. , Kettenring K. M., Hawkins C. P., and Cutler D. R.. 2015. “Non‐Equilibrium in Plant Distribution Models—Only an Issue for Introduced or Dispersal Limited Species?” Ecography 38, no. 3: 231–240. 10.1111/ecog.00928. DOI
Menzel, A. , Hempel S., Klotz S., et al. 2017. “Mycorrhizal Status Helps Explain Invasion Success of Alien Plant Species.” Ecology 98, no. 1: 92–102. 10.1002/ecy.1621. PubMed DOI
Mitchell, C. , and Power A.. 2003. “Release of Invasive Plants From Fungal and Viral Pathogens.” Nature 421: 625–627. 10.1038/nature01317. PubMed DOI
Mittermeier, R. A. , Turner W. R., Larsen F. W., Brooks T. M., and Gascon C.. 2011. “Global Biodiversity Conservation: The Critical Role of Hotspots.” In Biodiversity Hotspots, edited by Zachos F. E. and Habel J. C., 3–22. Springer Berlin Heidelberg. 10.1007/978-3-642-20992-5_1. DOI
Mucina, L. 2019. “Biome: Evolution of a Crucial Ecological and Biogeographical Concept.” New Phytologist 222, no. 1: 97–114. 10.1111/nph.15609. PubMed DOI PMC
Olson, D. M. , Dinerstein E., Wikramanayake E. D., et al. 2001. “Terrestrial Ecoregions of the World: A New Map of Life on Earth.” Bioscience 51, no. 11: 933. 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. DOI
Pagel, M. 1999. “Inferring the Historical Patterns of Biological Evolution.” Nature 401, no. 6756: 877–884. 10.1038/44766. PubMed DOI
Pearman, P. B. , Guisan A., Broennimann O., and Randin C. F.. 2008. “Niche Dynamics in Space and Time.” Trends in Ecology & Evolution 23, no. 3: 149–158. 10.1016/j.tree.2007.11.005. PubMed DOI
Petitpierre, B. , Kueffer C., Broennimann O., Randin C., Daehler C., and Guisan A.. 2012. “Climatic Niche Shifts Are Rare Among Terrestrial Plant Invaders.” Science 335, no. 6074: 1344–1348. 10.1126/science.1215933. PubMed DOI
Pyšek, P. , Hulme P. E., Simberloff D., et al. 2020. “Scientists' Warning on Invasive Alien Species.” Biological Reviews 95, no. 6: 1511–1534. 10.1111/brv.12627. PubMed DOI PMC
Richardson, D. M. , and Pyšek P.. 2006. “Plant Invasions: Merging the Concepts of Species Invasiveness and Community Invasibility.” Progress in Physical Geography: Earth and Environment 30, no. 3: 409–431. 10.1191/0309133306pp490pr. DOI
Schoener, T. W. 1970. “Nonsynchronous Spatial Overlap of Lizards in Patchy Habitats.” Ecology 51, no. 3: 408–418. 10.2307/1935376. DOI
Seebens, H. , Blackburn T. M., Dyer E. E., et al. 2017. “No Saturation in the Accumulation of Alien Species Worldwide.” Nature Communications 8, no. 1: 14435. 10.1038/ncomms14435. PubMed DOI PMC
Siefert, A. , Violle C., Chalmandrier L., et al. 2015. “A Global Meta‐Analysis of the Relative Extent of Intraspecific Trait Variation in Plant Communities.” Ecology Letters 18: 1406–1419. 10.1111/ele.12508. PubMed DOI
Smith, A. L. , Hodkinson T. R., Villellas J., et al. 2020. “Global Gene Flow Releases Invasive Plants From Environmental Constraints on Genetic Diversity.” Proceedings of the National Academy of Sciences 117, no. 8: 4218–4227. 10.1073/pnas.1915848117. PubMed DOI PMC
Smith, S. A. , and Brown J. W.. 2018. “Constructing a Broadly Inclusive Seed Plant Phylogeny.” American Journal of Botany 105, no. 3: 302–314. 10.1002/ajb2.1019. PubMed DOI
Sotka, E. E. , Baumgardner A. W., Bippus P. M., et al. 2018. “Combining Niche Shift and Population Genetic Analyses Predicts Rapid Phenotypic Evolution During Invasion.” Evolutionary Applications 11, no. 5: 781–793. 10.1111/eva.12592. PubMed DOI PMC
Strubbe, D. , Broennimann O., Chiron F., and Matthysen E.. 2013. “Niche Conservatism in Non‐Native Birds in Europe: Niche Unfilling Rather Than Niche Expansion.” Global Ecology and Biogeography 22, no. 8: 962–970. 10.1111/geb.12050. DOI
Sychrová, M. , Divíšek J., Chytrý M., and Pyšek P.. 2022. “Niche and Geographical Expansions of North American Trees and Tall Shrubs in Europe.” Journal of Biogeography 49, no. 6: 1151–1161. 10.1111/jbi.14377. DOI
Tamme, R. , Götzenberger L., Zobel M., et al. 2014. “Predicting Species' Maximum Dispersal Distances From Simple Plant Traits.” Ecology 95, no. 2: 505–513. 10.1890/13-1000.1. PubMed DOI
Underwood, E. C. , Viers J. H., Klausmeyer K. R., Cox R. L., and Shaw M. R.. 2009. “Threats and Biodiversity in the Mediterranean Biome.” Diversity and Distributions 15, no. 2: 188–197. 10.1111/j.1472-4642.2008.00518.x. DOI
van Kleunen, M. , Dawson W., Essl F., et al. 2015. “Global Exchange and Accumulation of Non‐Native Plants.” Nature 525, no. 7567: 100–103. 10.1038/nature14910. PubMed DOI
van Kleunen, M. , Pyšek P., Dawson W., et al. 2019. “The Global Naturalized Alien Flora (GloNAF) Database.” Ecology 100, no. 1: e02542. 10.1002/ecy.2542. PubMed DOI
van Kleunen, M. , Weber E., and Fischer M.. 2010. “A Meta‐Analysis of Trait Differences Between Invasive and Non‐Invasive Plant Species.” Ecology Letters 13, no. 2: 235–245. 10.1111/j.1461-0248.2009.01418.x. PubMed DOI
Violle, C. , Castro H., Richarte J., and Navas M.. 2009. “Intraspecific Seed Trait Variations and Competition: Passive or Adaptive Response?” Functional Ecology 23, no. 3: 612–620. 10.1111/j.1365-2435.2009.01539.x. DOI
Wiens, J. J. , Ackerly D. D., Allen A. P., et al. 2010. “Niche Conservatism as an Emerging Principle in Ecology and Conservation Biology.” Ecology Letters 13, no. 10: 1310–1324. 10.1111/j.1461-0248.2010.01515.x. PubMed DOI
Zizka, A. , Silvestro D., Andermann T., et al. 2019. “CoordinateCleaner: Standardized Cleaning of Occurrence Records From Biological Collection Databases.” Methods in Ecology and Evolution 10, no. 5: 744–751. 10.1111/2041-210X.13152. DOI