Stress genomics of the toxigenic cyanobacteria: environmental and biotechnological perspectives

. 2025 Aug 02 ; 41 (8) : 295. [epub] 20250802

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40751786
Odkazy

PubMed 40751786
DOI 10.1007/s11274-025-04509-1
PII: 10.1007/s11274-025-04509-1
Knihovny.cz E-zdroje

The genomic investigation of toxigenic cyanobacteria reveals unique features of potential genes, proteins, and genomic regions associated with varied functions critical for their survival and stress tolerance. Cyanobacteria are prevalent photoautotrophic microorganisms forming harmful blooms in aquatic environments, with significant public health and ecological implications. Despite the availability of complete genome sequences, the stress genomics of these harmful cyanobacteria remains understudied. This review highlights the genomic "arsenal" of these resilient species, emphasizing their stress adaptation mechanisms and potential vulnerabilities. Understanding this molecular basis is essential for developing targeted strategies to mitigate their impact. The insights gained from the genomic analysis could be leveraged to express unexploited stress-related genes for enhanced stress tolerance in industrial applications. Additionally, the review underscores the importance of redirecting research focus towards the functional genomics of bloom-forming strains to uncover novel pathways and strategies for their selective eradication and to improve the productivity of beneficial cyanobacterial strains under fluctuating environmental conditions. Finally, this review is an effort towards creating an important genomic resource for such toxic cyanobacteria.

Zobrazit více v PubMed

Agathokleous E, Peñuelas J (2022) Monitoring, regulation, and mitigation of cyanotoxins in the environment to protect human health and wildlife. Environ Sci Technol 56:14225–14227. https://doi.org/10.1021/acs.est.2c06618 PubMed DOI

Ali HA, Farhan MB, Hassan AH (2024) Bioremediation of medical center wastewater using Oscillatoria Splendida and Microcystis aeruginosa algae species. AgBioForum 26:43–54

Angermayr SA, Hellingwerf KJ, Lindblad P, Teixeira de Mattos MJ (2009) Energy biotechnology with cyanobacteria. Curr Opin Biotechnol 20:257–263. https://doi.org/10.1016/j.copbio.2009.05.011 PubMed DOI

Asaeda T, Rahman M, Akimoto J, Nohara A, Imamura F (2024) Hydrogen peroxide concentration as an indicator of cyanobacterial response to diurnal variation in light intensity. Sci Rep 14:29046. https://doi.org/10.1038/s41598-024-31427-6 PubMed DOI PMC

Azeem S, Bengis R, van Aarde R, Bastos ADS (2020) Mass die-off of African elephants in botswana: pathogen, poison or a perfect storm? Afr J Wildl Res 50:149–156. https://hdl.handle.net/10520/EJC-1ea61c85b8

Ballal A, Chakravarty D, Bihani SC, Banerjee M (2020) Gazing into the remarkable world of non-heme catalases through the window of the cyanobacterial Mn-catalase ‘katb’. Free Radic Biol Med 160:480–487. https://doi.org/10.1016/j.freeradbiomed.2020.08.013 PubMed DOI

Bandyopadhyay S, Cookson MR (2004) Evolutionary and functional relationships within the DJ1 superfamily. BMC Evol Biol 4:6. https://doi.org/10.1186/1471-2148-4-6 PubMed DOI PMC

Barrington DJ, Ghadouani A (2008) Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater. Environ Sci Technol 42:8916–8921. https://doi.org/10.1021/es801717y PubMed DOI

Bashir F, Bashir A, Bouaïcha N, Chen L, Codd GA, Neilan B et al (2023) Cyanotoxins, biosynthetic gene clusters, and factors modulating cyanotoxin biosynthesis. World J Microbiol Biotechnol 39:241. https://doi.org/10.1007/s11274-023-03652-x PubMed DOI

Bittencourt-Oliveira MDC, Piccin V, Kujbida P, Moura A (2011) Cylindrospermopsin in water supply reservoirs in Brazil determined by immunochemical and molecular methods. J Water Resour Prot 3:349–355. https://doi.org/10.4236/jwarp.2011.36044 DOI

Boden JS, Konhauser KO, Robbins LJ, Sánchez-Baracaldo P (2021) Timing the evolution of antioxidant enzymes in cyanobacteria. Nat Commun 12:4742. https://doi.org/10.1038/s41467-021-24396-y PubMed DOI PMC

Bramburger AJ, Filstrup CT, Reavie ED, Sheik CS, Haffner GD, Depew DC et al (2023) Paradox versus paradigm: A disconnect between Understanding and management of freshwater cyanobacterial harmful algal blooms. Freshw Biol 68:191–201. https://doi.org/10.1111/fwb.14019 DOI

Breinlinger S, Phillips TJ, Haram BN, Mareš J, Martínez-Yerena JA, Hrouzek P et al (2021) Hunting the eagle killer: A cyanobacterial neurotoxin causes vacuolar myelinopathy. Science 371:eaax9050. https://doi.org/10.1126/science.aax9050 PubMed DOI PMC

Briddon CL, Miclăuş M, Hegedüs A, Nicoară M, Chiriac MC, Drugă B (2023) Long-term exposure to elevated temperature leads to altered gene expression in a common bloom‐forming Cyanobacterium. Limnol Oceanogr 68:2654–2667. https://doi.org/10.1002/lno.12448 DOI

Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E et al (2017) Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 91:1049–1130. https://doi.org/10.1007/s00204-016-1913-6 PubMed DOI

Carte J, Wang R, Li H, Terns RM, Terns MP (2008) Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 22:3489–3496. http://www.genesdev.org/cgi/doi/ https://doi.org/10.1101/gad.1742908 PubMed DOI PMC

Cassier-Chauvat C, Blanc-Garin V, Chauvat F (2021) Genetic, genomics, and responses to stresses in cyanobacteria: biotechnological implications. Genes 12:500. https://doi.org/10.3390/genes12040500 PubMed DOI PMC

Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M et al (2019) Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17:569–586. https://doi.org/10.1038/s41579-019-0222-5 PubMed DOI PMC

Cepoi L, Zinicovscaia I, Valuta A, Codreanu L, Rudi L, Chiriac T et al (2021) Bioremediation capacity of edaphic cyanobacteria Nostoc Linckia for chromium in association with other heavy-metals-contaminated soils. Environments 9:1. https://doi.org/10.3390/environments9010001 DOI

Chatterjee A, Rajarshi K, Ghosh H, Singh MK, Roy OP, Ray S (2020) Molecular chaperones in protein folding and stress management in cyanobacteria. In: Singh PK, Kumar A, Singh VK, Shrivastava AK (eds) Advances in cyanobacterial biology, 1st edn. Academic, pp 119–128. https://doi.org/10.1016/B978-0-12-819311-2.00008-5

Chen MY, Teng WK, Zhao L, Hu CX, Zhou YK, Han BP et al (2021) Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. ISME J 15:211–227. https://doi.org/10.1038/s41396-020-00775-z PubMed DOI

Chen Y, Zaman F, Jia Y, Huang Y, Li T, Bai F, Li J (2024) Harmful cyanobacterial bloom control with hydrogen peroxide: mechanism, affecting factors, development, and prospects. Curr Pollut Rep 10:566–579. https://doi.org/10.1007/s40726-024-00278-7 DOI

Chen CNN, Lin KM, Lin YC, Chang HY, Yong TC, Chiu YF et al (2025) Comparative genomic analysis of a novel heat-tolerant and Euryhaline strain of unicellular marine Cyanobacterium Cyanobacterium sp. DS4 from a high-temperature lagoon. https://doi.org/10.1101/2025.01.17.633688 . bioRxiv 2025-01

Chittora D, Meena M, Barupal T, Swapnil P, Sharma K (2020) Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochem Biophys Rep 22:100737. https://doi.org/10.1016/j.bbrep.2020.100737 PubMed DOI PMC

Cullen A, Pearson LA, Ongley SE, Smith ND, Neilan BA (2025) Transcriptional regulation of the cylindrospermopsin biosynthesis (cyr) gene cluster in Raphidiopsis raciborskii AWT205. Harmful Algae 142:102783. https://doi.org/10.1016/j.hal.2024.102783 PubMed DOI

D’Agostino PM, Woodhouse JN, Makower AK, Yeung ACY, Ongley SE, Micallef ML et al (2016) Advances in genomics, transcriptomics and proteomics of toxin-producing cyanobacteria. Environ Microbiol Rep 8:3–13. https://doi.org/10.1111/1758-2229.12366 PubMed DOI

Den Uyl PA, Kiledal EA, Errera RM, Chaganti SR, Godwin CM, Raymond HA et al (2025) Genomic identification and characterization of saxitoxin producing cyanobacteria in Western lake Erie harmful algal blooms. Environ Sci Technol 59:7600–7612. https://doi.org/10.1021/acs.est.4c10888 PubMed DOI

Ding Y, Song L, Sedmak B (2013) UVB radiation as a potential selective factor favoring microcystin producing bloom forming cyanobacteria. PLoS ONE 8:e73919. https://doi.org/10.1371/journal.pone.0073919 PubMed DOI PMC

Dittmann E, Gugger M, Sivonen K, Fewer DP (2015) Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol 23:642–652. https://doi.org/10.1016/j.tim.2015.07.008 PubMed DOI

Dong Z, Chen L, Wang Y, Sun T, Zhang W (2024) Current advances in CRISPR-Cas-mediated gene editing and regulation in cyanobacteria. Blue Biotechnol 1:9. https://doi.org/10.1186/s44315-024-00009-3 DOI

Drobac D, Tokodi N, Lujić J, Marinović Z, Subakov-Simić G, Dulić T et al (2016) Cyanobacteria and cyanotoxins in fishponds and their effects on fish tissue. Harmful Algae 55:66–76. https://doi.org/10.1016/j.hal.2016.02.007 PubMed DOI

Dwivedi S, Ahmad IZ (2023) Evaluation of the effect of UV-B radiation on growth, photosynthetic pigment, and antioxidant enzymes of some cyanobacteria. Environ Res 218:114943. https://doi.org/10.1016/j.envres.2022.114943 PubMed DOI

El-Sheekh M, El-Dalatony MM, Thakur N, Zheng Y, Salama ES (2022) Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. Int J Environ Sci Technol 19:2173–2194. https://doi.org/10.1007/s13762-021-03270-w DOI

Encina-Robles J, Pérez-Villalobos V, Bustamante P (2024) The hicab system: characteristics and biological roles of an underappreciated toxin-antitoxin system. Int J Mol Sci 25:12165. https://doi.org/10.3390/ijms252212165 PubMed DOI PMC

Engelberg-Kulka H, Hazan R, Amitai S (2005) MazEF: a chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria. J Cell Sci 118:4327–4332. https://doi.org/10.1242/jcs.02619 PubMed DOI

Erratt KJ, Creed IF, Lobb DA, Smol JP, Trick CG (2023) Climate change amplifies the risk of potentially toxigenic cyanobacteria. Glob Change Biol 29:5240–5249. https://doi.org/10.1111/gcb.16838 DOI

Escribano-Gómez I, Liébana R, Palacio AS, Labban A, Morán XAG, López-Urrutia Á et al (2025) The dominant marine Synechococcus clade II exhibits a non-canonical transcriptional response to Cope with thermal stress. Algal Res 85:103840. https://doi.org/10.1016/j.algal.2024.103840 DOI

Facey JA, Violi JP, King JJ, Sarowar C, Apte SC, Mitrovic SM (2022) The influence of micronutrient trace metals on Microcystis aeruginosa growth and toxin production. Toxins 14:812. https://doi.org/10.3390/toxins14110812 PubMed DOI PMC

Fastner J, Teikari J, Hoffmann A, Köhler A, Hoppe S, Dittmann E, Welker M (2023) Cyanotoxins associated with macrophytes in Berlin (Germany) water bodies–Occurrence and risk assessment. Sci Total Environ 858:159433. https://doi.org/10.1016/j.scitotenv.2022.159433 PubMed DOI

Feng LJ, Sun XD, Zhu FP, Feng Y, Duan JL, Xiao F et al (2020) Nanoplastics promote microcystin synthesis and release from cyanobacterial Microcystis aeruginosa. Environ Sci Technol 54:3386–3394. https://doi.org/10.1021/acs.est.9b06085 PubMed DOI

Fraikin N, Goormaghtigh F, van Melderen L (2020) Type II toxin-antitoxin systems: evolution and revolutions. J Bacteriol 202:e00763–e00719. https://doi.org/10.1128/jb.00763-19 PubMed DOI PMC

Frangeul L, Quillardet P, Castets AM, Humbert JF, Matthijs HC, Cortez D et al (2008) Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater Cyanobacterium. BMC Genomics 9:274. https://doi.org/10.1186/1471-2164-9-274 PubMed DOI PMC

Froscio SM, Humpage AR, Burcham PC, Falconer IR (2003) Cylindrospermopsin-induced protein synthesis Inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environ Toxicol 18:243–251. https://doi.org/10.1002/tox.10121 PubMed DOI

Fucich D, Chen F (2020) Presence of toxin-antitoxin systems in Picocyanobacteria and their ecological implications. ISME J 14:2843–2850. https://doi.org/10.1038/s41396-020-00746-4 PubMed DOI PMC

Giles SS, Stajich JE, Nichols C, Gerrald QD, Alspaugh JA, Dietrich F et al (2006) The Cryptococcus neoformans catalase gene family and its role in antioxidant defense. Eukaryot Cell 5:1447–1459. https://doi.org/10.1128/ec.00098-06 PubMed DOI PMC

Gorney RM, June SG, Stainbrook KM, Smith AJ (2023) Detections of cyanobacteria harmful algal blooms (cyanoHABs) in new York state, united States (2012–2020). Lake Reserv Manage 39:21–36. https://doi.org/10.1080/10402381.2022.2161436 DOI

Große R, Heuser M, Teikari JE, Ramakrishnan DK, Abdelfattah A, Dittmann E (2025) Microcystin shapes the Microcystis phycosphere through community filtering and by influencing cross-feeding interactions. ISME Commun 5:ycae170. https://doi.org/10.1038/s43705-024-00377-7 PubMed DOI

Guevara G, Espinoza Solorzano JS, Vargas Ramírez M, Rusu A, Navarro Llorens JM (2024) Characterizing A21: natural cyanobacteria-based consortium with potential for steroid bioremediation in wastewater treatment. Int J Mol Sci 25:13018. https://doi.org/10.3390/ijms252313018 PubMed DOI PMC

Gupta A, Singh S (2017) Characterization of NaCl-tolerant mutant strain of the Cyanobacterium Spirulina platensis overproducing phycocyanin. Nat Prod J 7:153–164. https://doi.org/10.2174/2210315506666161116122434 DOI

Han S, Han W, Chen J, Sun Y, Dai M, Zhao G (2020) Bioremediation of malachite green by Cyanobacterium Synechococcus elongatus PCC 7942 engineered with a triphenylmethane reductase gene. Appl Microbiol Biotechnol 104:3193–3204 PubMed DOI

Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA et al (2016) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54:4–20. https://doi.org/10.1016/j.hal.2015.12.007 PubMed DOI

Hein S, Scholz I, Voß B, Hess WR (2013) Adaptation and modification of three CRISPR loci in two closely related cyanobacteria. RNA Biol 10:852–864. https://doi.org/10.4161/rna.24160 PubMed DOI PMC

Hofer U (2021) Cyanobacterial eagle killer. Nat Rev Microbiol 19:343. https://doi.org/10.1038/s41579-021-00553-4 PubMed DOI

Hou S, Brenes-Álvarez M, Reimann V, Alkhnbashi OS, Backofen R, Muro-Pastor AM et al (2019) CRISPR-Cas systems in multicellular cyanobacteria. RNA Biol 16:518–529. https://doi.org/10.1080/15476286.2018.1493330 PubMed DOI

https://doi.org/10.1007/s00253-020-10438-w

Huertas MJ, Mallén-Ponce MJ (2022) Dark side of cyanobacteria: searching for strategies to control blooms. Microbiol Biotechnol 15:1321–1323. https://hdl.handle.net/11441/128178 DOI

Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMHH, Visser PM (2018) Cyanobacterial blooms. Nat Rev Microbiol 16:471–483. https://doi.org/10.1038/s41579-018-0040-1 PubMed DOI

Hussain JM, Muruganantham P, Abdul Kareem KA (2024) Hydrogen peroxide stress induced in the marine Cyanobacterium Synechococcus aeruginosus and Phormidium Valdarianum. Appl Biochem Biotechnol 196:522–536. https://doi.org/10.1007/s12010-023-04504-y PubMed DOI

Irato P, Santovito G (2021) Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants 10:579. https://doi.org/10.3390/antiox10040579 PubMed DOI PMC

Ishak SM, Yahaya N, Loh SH, Kamaruzaman S, Zain NNM, Waras MN et al (2023) Research progress on extraction and analytical methods for saxitoxin and its congeners. Chromatographia 86:349–373. https://doi.org/10.1007/s10337-023-04251-6 DOI

Jacinavicius FR, Pacheco ABF, Chow F, da Costa GCV, Kalume DE, Rigonato J et al (2019) Different ecophysiological and structural strategies of toxic and non-toxic Microcystis aeruginosa (cyanobacteria) strains assessed under culture conditions. Algal Res 41:101548. https://doi.org/10.1016/j.algal.2019.101548 DOI

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829 PubMed DOI PMC

Jöhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob Change Biol 14:495–512. https://doi.org/10.1111/j.1365-2486.2007.01510.x DOI

Kalaitzis JA, Lauro FM, Neilan BA (2009) Mining cyanobacterial genomes for genes encoding complex biosynthetic pathways. Nat Prod Rep 26:1447–1465. https://doi.org/10.1039/b817074f PubMed DOI

Kellmann R, Michali TK, Neilan BA (2008) Identification of a saxitoxin biosynthesis gene with a history of frequent horizontal gene transfers. J Mol Evol 67:526–538. https://doi.org/10.1007/s00239-008-9167-6 PubMed DOI

Koonin EV, Makarova KS (2019) Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B Biol Sci 374:20180087. https://doi.org/10.1098/rstb.2018.0087 PubMed DOI PMC

Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78. https://doi.org/10.1016/j.mib.2017.05.008 PubMed DOI PMC

Kopf M, Möke F, Bauwe H, Hess WR, Hagemann M (2015) Expression profiling of the bloom-forming Cyanobacterium Nodularia CCY9414 under light and oxidative stress conditions. ISME J 9:2139–2152. https://doi.org/10.1038/ismej.2015.16 PubMed DOI PMC

Kortheerakul C, Kageyama H, Waditee-Sirisattha R (2021) Molecular and functional insights into glutathione S-transferase genes associated with salt stress in Halothece sp. PCC7418. Plant Cell Environ 44:3583–3596. https://doi.org/10.1111/pce.14161 PubMed DOI

Kothari A, Vaughn M, Garciapichel F (2013) Comparative genomic analyses of the cyanobacterium, Lyngbya aestuarii BL J, a powerful hydrogen producer. Front Microbiol 4:363. https://doi.org/10.3389/fmicb.2013.00363 PubMed DOI PMC

Krausfeldt LE, Shmakova E, Lee HW, Mazzei V, Loftin KA, Smith RP, Lopez JV (2024) Microbial diversity, genomics, and phage–host interactions of cyanobacterial harmful algal blooms. mSystems 9:e00709–e00723. https://doi.org/10.1128/msystems.00709-23 PubMed DOI PMC

Kumar B, Kaur C, Pareek A, Sopory SK, Singla-Pareek SL (2021) Tracing the evolution of plant glyoxalase III enzymes for structural and functional divergence. Antioxidants 10:648. https://doi.org/10.3390/antiox10050648 PubMed DOI PMC

Lage S, Burian A, Rasmussen U, Costa PR, Annadotter H, Godhe A et al (2016) BMAA extraction of cyanobacteria samples: which method to choose? Environ Sci Pollut Res 23:338–350. https://doi.org/10.1007/s11356-015-5266-0 DOI

Latour D, Perrière F, Purdie D (2022) Higher sensitivity to hydrogen peroxide and light stress conditions of the microcystin producer Microcystis aeruginosa sp. PCC7806 compared to non-producer strains. Harmful Algae 114:102219. https://doi.org/10.1016/j.hal.2022.102219 PubMed DOI

Lawton LA, Metcalf JS, Žegura B, Junek R, Welker M, Törökné A et al (2021) Laboratory analysis of cyanobacterial toxins and bioassays. In: Chorus I, Welker M (eds) Toxic cyanobacteria in water, 2nd edn. CRC, Boca Raton, Florida, pp 745–800 DOI

Lei L, Liu W, Chen Z, Peng L, Xiao LJ, Han BP, Neilan BA (2024) Grazer-induced toxin production is energetically costly and significantly reduces growth of cylindrospermopsin-producing cyanobacteria. Limnol Oceanogr 69:2929–2940. https://doi.org/10.1002/lno.12470 DOI

LeRoux M, Culviner PH, Liu YJ, Littlehale ML, Laub MT (2020) Stress can induce transcription of toxin-antitoxin systems without activating toxin. Mol Cell 79:280–292. https://doi.org/10.1016/j.molcel.2020.05.028 PubMed DOI PMC

Li CJ, Yan CX, Zhang TT, Wan SB, Shan SH (2015) Phytotoxicity of cadmium on peroxidation, superoxide dismutase, catalase, and peroxidase activities in growing peanut (Arachis Hypogaea L). Afr J Biotechnol 14:1151–1157. https://doi.org/10.5897/AJB11.3975 DOI

Li M, Gong L, Cheng F, Yu H, Zhao D, Wang R et al (2021) Toxin-antitoxin RNA pairs safeguard CRISPR-Cas systems. Science 372:eabe5601. https://doi.org/10.1126/science.abe5601 PubMed DOI

Liu H, Chen S, Zhang H, Wang N, Ma B, Liu X, Zhang X (2023) Effects of copper sulfate algaecide on the cell growth, physiological characteristics, the metabolic activity of Microcystis aeruginosa and Raw water application. J Hazard Mater 445:130604. https://doi.org/10.1016/j.jhazmat.2023.130604 PubMed DOI

Los DA, Zorina A, Sinetova M, Kryazhov S, Mironov K, Zinchenko VV (2010) Stress sensors and signal transducers in cyanobacteria. Sensors 10:2386–2415. https://doi.org/10.3390/s100302386 PubMed DOI PMC

Maberly SC, Pitt JA, Davies PS, Carvalho L (2020) Nitrogen and phosphorus limitation and the management of small productive lakes. Inland Waters 10:159–172. https://doi.org/10.1080/20442041.2020.1714384 DOI

Maikova A, Peltier J, Boudry P, Hajnsdorf E, Kint N, Monot M et al (2018) Discovery of new type I toxin-antitoxin systems adjacent to CRISPR arrays in Clostridium difficile. Nucleic Acids Res 46:4733–4751. https://doi.org/10.1093/nar/gky124 PubMed DOI PMC

Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ et al (2015) An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol 13:722–736. https://doi.org/10.1038/nrmicro3569 PubMed DOI PMC

Manning SR, Nobles DR (2017) Impact of global warming on water toxicity: cyanotoxins. Curr Opin Food Sci 18:14–20. https://doi.org/10.1016/j.cofs.2017.09.013 DOI

Manolidi K, Triantis TM, Kaloudis T, Hiskia A (2019) Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria-based food supplements. J Hazard Mater 365:346–365. https://doi.org/10.1016/j.jhazmat.2018.10.084 PubMed DOI

Matsusako T, Toya Y, Yoshikawa K, Shimizu H (2017) Identification of alcohol stress tolerance genes of Synechocystis sp. PCC 6803 using adaptive laboratory evolution. Biotechnol Biofuels 10:1–9. https://doi.org/10.1186/s13068-017-0996-5 DOI

Matthijs HCP, Visser PM, Reeze B, Meeuse J, Slot PC, Wijn G et al (2012) Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Res 46:1460–1472. https://doi.org/10.1016/j.watres.2011.11.016 PubMed DOI

Mejbel HS, Irwin CL, Dodsworth W, Higgins SN, Paterson MJ, Pick FR (2023) Long-term cyanobacterial dynamics from lake sediment DNA in relation to experimental eutrophication, acidification and climate change. Freshw Biol 68:1875–1893. https://doi.org/10.1111/fwb.14074 DOI

Menezes I, Maxwell-McQueeney D, Capelo-Neto J, Pestana CJ, Edwards C, Lawton LA (2021) Oxidative stress in the Cyanobacterium Microcystis aeruginosa PCC 7813: comparison of different analytical cell stress detection assays. Chemosphere 269:128766. https://doi.org/10.1016/j.chemosphere.2020.128766 PubMed DOI

Merel S, Walker D, Chicana R, Snyder S, Baurès E, Thomas O (2013) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327. https://doi.org/10.1016/j.envint.2013.06.013 PubMed DOI

Moraes MA, Rodrigues RA, Schlüter L, Podduturi R, Jørgensen NO, Calijuri MC (2021) Influence of environmental factors on occurrence of cyanobacteria and abundance of saxitoxin-producing cyanobacteria in a subtropical drinking water reservoir in Brazil. Water 13:1716. https://doi.org/10.3390/w13121716 DOI

Mu Y, Chen H, Li J, Han P, Yan Z (2025) Sulfate assimilation regulates antioxidant defense response of the Cyanobacterium Synechococcus elongatus PCC 7942 to high concentrations of carbon dioxide. Appl Environ Microbiol 91:e00115–e00125. https://doi.org/10.1128/aem.00115-25 PubMed DOI PMC

Müller AU, Leibundgut M, Ban N, Weber-Ban E (2019) Structure and functional implications of WYL domain-containing bacterial DNA damage response regulator PafBC. Nat Commun 10:4653. https://doi.org/10.1038/s41467-019-12567-x PubMed DOI PMC

Nisha R, Kiran B, Kaushik A, Kaushik CP (2018) Bioremediation of salt affected soils using cyanobacteria in terms of physical structure, nutrient status and microbial activity. Int J Environ Sci Technol 15:571–580. https://doi.org/10.1007/s13762-017-1419-7 DOI

Norton JP, Mulvey MA (2012) Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathog 8:e1002954. https://doi.org/10.1371/journal.ppat.1002954 PubMed DOI PMC

Novoveská L, Nielsen SL, Eroldoğan OT, Haznedaroglu BZ, Rinkevich B, Fazi S et al (2023) Overview and challenges of large-scale cultivation of photosynthetic microalgae and cyanobacteria. Mar Drugs 21:445. https://doi.org/10.3390/md21080445 PubMed DOI PMC

Orban K, Finkel SE (2022) Dps is a universally conserved dual-action DNA-binding and ferritin protein. J Bacteriol 204:e00036–e00022. https://doi.org/10.1128/jb.00036-22 PubMed DOI PMC

Paerl HW (2017) Controlling harmful cyanobacterial blooms in a climatically more extreme world: management options and research needs. J Plankton Res 39:763–771. https://doi.org/10.1093/plankt/fbx042 DOI

Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58. https://doi.org/10.1126/science.1155398 PubMed DOI

Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745. https://doi.org/10.1016/j.scitotenv.2011.02.001 PubMed DOI

Paget MS (2015) Bacterial Sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules 5:1245–1265. https://doi.org/10.3390/biom5031245 PubMed DOI PMC

Papadimitriou T, Katsiapi M, Vlachopoulos K, Christopoulos A, Laspidou C, Moustaka-Gouni M et al (2018) Cyanotoxins as the common suspects for the dalmatian pelican (Pelecanus crispus) deaths in a mediterranean reconstructed reservoir. Environ Pollut 234:779–787. https://doi.org/10.1016/j.envpol.2017.12.022 PubMed DOI

Pathania R, Srivastava A, Srivastava S, Shukla P (2022) Metabolic systems biology and multi-omics of cyanobacteria: perspectives and future directions. Bioresour Technol 343:126007. https://doi.org/10.1016/j.biortech.2021.126007 PubMed DOI

Petrakis TG, Søgaard TMM, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2005) Physical and functional interaction between elongator and the chromatin-associated KTI12 protein. J Biol Chem 280:19454–19460. https://doi.org/10.1074/jbc.M413373200 PubMed DOI

Piel T, Sandrini G, White E, Xu T, Schuurmans JM, Huisman J et al (2019) Suppressing cyanobacteria with hydrogen peroxide is more effective at high light intensities. Toxins 12:18. https://doi.org/10.3390/toxins12010018 PubMed DOI PMC

Pittera J, Jouhet J, Breton S, Garczarek L, Partensky F, Maréchal É et al (2018) Thermoacclimation and genome adaptation of the membrane lipidome in marine Synechococcus. Environ Microbiol 20:612–631. https://doi.org/10.1111/1462-2920.13985 PubMed DOI

Prabha R, Singh DP, Somvanshi P, Rai A (2016) Functional profiling of cyanobacterial genomes and its role in ecological adaptations. Genomics Data 9:89–94. https://doi.org/10.1016/j.gdata.2016.06.005 PubMed DOI PMC

Rachedi R, Foglino M, Latifi A (2020) Stress signaling in cyanobacteria: A mechanistic overview. Life 10:312. https://doi.org/10.3390/life10120312 PubMed DOI PMC

Rai R, Singh S, Rai KK, Raj A, Sriwastaw S, Rai LC (2021) Regulation of antioxidant defense and glyoxalase systems in cyanobacteria. Plant Physiol Biochem 168:353–372. https://doi.org/10.1016/j.plaphy.2021.09.037 PubMed DOI

Rai P, Pathania R, Bhagat N, Bongirwar R, Shukla P, Srivastava S (2025) Current insights into molecular mechanisms of environmental stress tolerance in cyanobacteria. World J Microbiol Biotechnol 41:53. https://doi.org/10.1007/s11274-025-04260-7 PubMed DOI

Rajput S, Jain S, Dash D, Gupta N, Rajpoot R, Upadhyaya CP et al (2024) Role of cyanotoxins in the development and promotion of cancer. Toxicol Rep 13:101798. https://doi.org/10.1016/j.toxrep.2024.101798 PubMed DOI PMC

Rakić IZ, Đurović AD, Kevrešan ŽS, Kovač RM, Kravić SŽ, Panić SN et al (2025) Exploring biosorption and bioaccumulation capacities of cyanobacteria Nostoc and Anabaena for remediation of heavy metals in wastewater. Int J Environ Sci Technol 1–18. https://doi.org/10.1007/s13762-025-06460-y

Ramisetty BCM, Santhosh RS (2016) Horizontal gene transfer of chromosomal type II toxin–antitoxin systems of Escherichia coli. FEMS Microbiol Lett 363:fnv238. https://doi.org/10.1093/femsle/fnv238 PubMed DOI

Reimann V, Ziemann M, Li H, Zhu T, Behler J, Lu X et al (2020) Specificities and functional coordination between the two Cas6 maturation endonucleases in Anabaena sp. PCC 7120 assign orphan CRISPR arrays to three groups. RNA Biol 17:1442–1453. https://doi.org/10.1080/15476286.2020.1774197 PubMed DOI PMC

Riaz-Bradley A (2019) Transcription in cyanobacteria: A distinctive machinery and putative mechanisms. Biochem Soc Trans 47:679–689. https://doi.org/10.1042/BST20180508 PubMed DOI

Rigosi A, Carey CC, Ibelings BW, Brookes JD (2014) The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol Oceanogr 59:99–114. https://doi.org/10.4319/lo.2014.59.1.0099 DOI

Romanis CS, Timms VJ, Nebauer DJ, Crosbie ND, Neilan BA (2024) Microbiome analysis reveals Microcystis blooms endogenously seeded from benthos within wastewater maturation ponds. Appl Environ Microbiol 90:e01585–e01523. https://doi.org/10.1128/aem.01585-23 PubMed DOI

Romero-Alfano I, Prats E, Almirall XO, Raldúa D, Gómez-Canela C (2024) Analyzing the neurotoxic effects of anatoxin-a and saxitoxin in zebrafish larvae. Aquat Toxicol 276:107088. https://doi.org/10.1016/j.aquatox.2024.107088 PubMed DOI

Saibo NJM, Lourenço T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103:609–623. https://doi.org/10.1093/aob/mcn227 PubMed DOI

Said RM, Al-Badwy AH, Mohamed AA (2023) Oxidative and histological effects of herbicide glufosinate ammonium and cyanobacteria extracted anatoxin-a on land snails Monacha cartusiana. Jordan J Biol Sci 16:1. https://doi.org/10.54319/jjbs/160103 DOI

Salmaso N, Bernard C, Humbert JF, Akçaalan R, Albay M, Ballot A et al (2017) Basic guide to detection and monitoring of potentially toxic cyanobacteria. In: Meriluoto J, Spoof L, Codd GA (eds) Handbook of cyanobacterial monitoring and cyanotoxin analysis, 1st edn. Wiley, Chichester UK, pp 46–69. https://doi.org/10.1002/9781119068761.ch6 DOI

Sandrini G, Huisman J, Matthijs HCP (2015) Potassium sensitivity differs among strains of the harmful Cyanobacterium Microcystis and correlates with the presence of salt tolerance genes. FEMS Microbiol Lett 362:fnv121. https://doi.org/10.1093/femsle/fnv121 PubMed DOI

Scholz I, Lange SJ, Hein S, Hess WR, Backofen R (2013) CRISPR-Cas systems in the Cyanobacterium Synechocystis sp. PCC6803 exhibit distinct processing pathways involving at least two Cas6 and a Cmr2 protein. PLoS ONE 8:e56470. https://doi.org/10.1371/journal.pone.0056470 PubMed DOI PMC

Schuurmans JM, Brinkmann BW, Makower AK, Dittmann E, Huisman J, Matthijs HC (2018) Microcystin interferes with defense against high oxidative stress in harmful cyanobacteria. Harmful Algae 78:47–55. https://doi.org/10.1016/j.hal.2018.07.003 PubMed DOI

Shishido TK, Jokela J, Humisto A, Suurnäkki S, Wahlsten M, Alvarenga DO et al (2019) The biosynthesis of rare homo-amino acid containing variants of microcystin by a benthic Cyanobacterium. Mar Drugs 17:271. https://doi.org/10.3390/md17050271 PubMed DOI PMC

Shishido TK, Delbaje E, Wahlsten M, Vuori I, Jokela J, Gugger M et al (2023) A cylindrospermopsin-producing Cyanobacterium isolated from a microbial mat in the Baltic sea. Toxicon 232:107205. https://doi.org/10.1016/j.toxicon.2023.107205 PubMed DOI

Sinetova MA, Los DA (2016) Systemic analysis of stress transcriptomics of Synechocystis reveals common stress genes and their universal triggers. Mol Biosyst 12:3254–3258. https://doi.org/10.1039/C6MB00551A PubMed DOI

Singh G, Prasad SM (2024) Interplay mechanism of exogenous hydrogen sulfide and nitric oxide in modulating ascorbate–glutathione cycle under nickel-induced oxidative stress in two paddy field cyanobacteria. J Plant Biochem Biotechnol 33:1–18. https://doi.org/10.1007/s13562-024-00929-6 DOI

Singh G, Yadav M, Ghosh C, Rathore JS (2021) Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. Curr Res Microbiol Sci 2:100047. https://doi.org/10.1016/j.crmicr.2021.100047 DOI

Singh VK, Jha S, Rana P, Mishra S, Kumari N, Singh SC et al (2023) Resilience and mitigation strategies of cyanobacteria under ultraviolet radiation stress. Int J Mol Sci 24:12381. https://doi.org/10.3390/ijms241512381 PubMed DOI PMC

Sinha R, Pearson LA, Davis TW, Muenchhoff J, Pratama R, Jex A et al (2014) Comparative genomics of Cylindrospermopsis raciborskii strains with differential toxicities. BMC Genomics 15:1–14. https://doi.org/10.1186/1471-2164-15-83 DOI

Srivastava A, Summers ML, Sobotka R (2020) Cyanobacterial Sigma factors: current and future applications for biotechnological advances. Biotechnol Adv 40:107517. https://doi.org/10.1016/j.biotechadv.2020.107517 PubMed DOI

Srivastava A, Varshney RK, Shukla P (2021) Sigma factor modulation for cyanobacterial metabolic engineering. Trends Microbiol 29:266–277. https://doi.org/10.1016/j.tim.2020.10.012 PubMed DOI

Stancheva R, Brown S, Boyer GL, Wei B, Goel R, Henry S et al (2025) Effect of salinity stress and nitrogen depletion on growth, morphology, and toxin production of freshwater Cyanobacterium Microcoleus anatoxicus Stancheva & Conklin. Hydrobiologia 852:561–574. https://doi.org/10.1007/s10750-024-05586-3 DOI

Stavridou E, Karapetsi L, Nteve GM, Tsintzou G, Chatzikonstantinou M, Tsaousi M et al (2024) Landscape of microalgae omics and metabolic engineering research for strain improvement: an overview. Aquaculture 587:740803. https://doi.org/10.1016/j.aquaculture.2024.740803 DOI

Stewart I, Carmichael WW, Sadler R, McGregor GB, Reardon K, Eaglesham GK et al (2009) Occupational and environmental hazard assessments for the isolation, purification and toxicity testing of cyanobacterial toxins. Environ Health 8:52. https://doi.org/10.1186/1476-069X-8-52 PubMed DOI PMC

Stroom JM, Kardinaal WEA (2016) How to combat cyanobacterial blooms: strategy toward preventive lake restoration and reactive control measures. Aquat Ecol 50:541–576. https://doi.org/10.1007/s10452-016-9593-0 DOI

Tan LT, Goh BP, Tripathi A, Lim MG, Dickinson GH, Lee SS et al (2010) Natural antifoulants from the marine Cyanobacterium Lyngbya majuscula. Biofouling 26:685–695. https://doi.org/10.1080/08927014.2010.508343 PubMed DOI

Tanabe Y, Hodoki Y, Sano T, Tada K, Watanabe MM (2018) Adaptation of the freshwater bloom-forming Cyanobacterium Microcystis aeruginosa to brackish water is driven by recent horizontal transfer of sucrose genes. Front Microbiol 9:1150. https://doi.org/10.3389/fmicb.2018.01150 PubMed DOI PMC

Tanabe Y, Yamaguchi H, Sano T, Kawachi M (2019) A novel salt-tolerant genotype illuminates the sucrose gene evolution in freshwater bloom-forming Cyanobacterium Microcystis aeruginosa. FEMS Microbiol Lett 366:fnz190. https://doi.org/10.1093/femsle/fnz190 PubMed DOI

Tee HS, Wood SA, Bouma-Gregson K, Lear G, Handley KM (2021) Genome streamlining, plasticity, and metabolic versatility distinguish co-occurring toxic and nontoxic cyanobacterial strains of. Microcoleus mBio 12:e02235–e02221. https://doi.org/10.1128/mbio.02235-21 PubMed DOI

Temsah M, Tarhini K, Fadel A, Slim K (2016) Effect of irrigation with lake water containing cylindrospermopsin toxin on seed germination and seedlings growth of Cucumis sativus and Lycopersicon esculatum. Int J Sci Basic Appl Res 27:108–122

Testai E, Scardala S, Vichi S, Buratti FM, Funari E (2016) Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Crit Rev Toxicol 46:385–419. https://doi.org/10.3109/10408444.2015.1137865 PubMed DOI

Theoharaki C, Chronopoulou E, Vlachakis D, Ataya FS, Giannopoulos P, Maurikou S et al (2019) Delineation of the functional and structural properties of the glutathione transferase family from the plant pathogen Erwinia carotovora. Funct Integr Genomics 19:1–12. https://doi.org/10.1007/s10142-018-0618-8 PubMed DOI

Torres MA, Barros MP, Campos SC, Pinto E, Rajamani S, Sayre RT et al (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71:1–15. https://doi.org/10.1016/j.ecoenv.2008.05.009 PubMed DOI

Turunen O, Koskinen S, Kurkela J, Karhuvaara O, Hakkila K, Tyystjärvi T (2022) Roles of close homologues SigB and SigD in heat and high light acclimation of the Cyanobacterium synechocystis sp. PCC 6803. Life 12:162. https://doi.org/10.3390/life12020162 PubMed DOI PMC

Unterholzner SJ, Poppenberger B, Rozhon W (2013) Toxin–antitoxin systems. Mob Genet Elem 3:e26219. https://doi.org/10.4161/mge.26219 DOI

Vachiranuvathin P, Tharasirivat V, Hemnusornnanon T, Jantaro S (2022) Native SodB overexpression of Synechocystis sp. PCC 6803 improves cell growth under alcohol stresses whereas its Gpx2 overexpression impacts on growth recovery from alcohol stressors. Appl Biochem Biotechnol 194:5748–5766. https://doi.org/10.1007/s12010-022-04061-w PubMed DOI

van Aarde RJ, Pimm SL, Guldemond R, Huang R, Maré C (2021) The 2020 elephant die-off in Botswana. PeerJ 9:e10686. https://doi.org/10.7717/peerj.10686 PubMed DOI PMC

Veerman J, Kumar A, Mishra DR (2021) Exceptional landscape-wide cyanobacteria bloom in Okavango delta, Botswana in 2020 coincided with a mass elephant die-off event. Harmful Algae 111:102145. https://doi.org/10.1016/j.hal.2021.102145 PubMed DOI

Verma N, Prasad SM (2023) Modulation of AsA-GSH cycle by exogenous nitric oxide and hydrogen peroxide to minimize the Cd-induced damages in photosynthetic cyanobacteria. Plant Stress 10:100269. https://doi.org/10.1016/j.stress.2023.100269 DOI

Voß B, Bolhuis H, Fewer DP, Kopf M, Möke F, Haas F et al (2013) Insights into the physiology and ecology of the brackish-water-adapted Cyanobacterium Nodularia Spumigena CCY9414 based on a genome-transcriptome analysis. PLoS ONE 8:e60224. https://doi.org/10.1371/journal.pone.0060224 PubMed DOI PMC

Wang L, Lei X, Yang J, Wang S, Liu Y, Liang W (2018) Comparative transcriptome analysis reveals that photosynthesis contributes to drought tolerance of Nostoc flagelliforme (Nostocales, Cyanobacteria). Phycologia 57:113–120. https://doi.org/10.2216/17-18.1 DOI

Wang H, Xu C, Liu Y, Jeppesen E, Svenning JC, Wu J et al (2021) From unusual suspect to serial killer: cyanotoxins boosted by climate change May jeopardize megafauna. Innov 2:100092. https://doi.org/10.1016/j.xinn.2021.100092 DOI

Wargo MJ, Hogan DA (2009) Identification of genes required for Pseudomonas aeruginosa carnitine catabolism. Microbiology 155:2411–2419. https://doi.org/10.1099/mic.0.028787-0 PubMed DOI PMC

Weenink EFJ, Luimstra VM, Schuurmans JM, van Herk MJ, Visser PM, Matthijs HCP (2015) Combatting cyanobacteria with hydrogen peroxide: A laboratory study on the consequences for phytoplankton community and diversity. Front Microbiol 6:714. https://doi.org/10.3389/fmicb.2015.00714 PubMed DOI PMC

Wood R (2016) Acute animal and human poisonings from cyanotoxin exposure—A review of the literature. Environ Int 91:276–282. https://doi.org/10.1016/j.envint.2016.02.026 PubMed DOI

Xiao M, Willis A, Burford MA, Li M (2017) A meta-analysis comparing cell-division and cell-adhesion in Microcystis colony formation. Harmful Algae 67:85–91. https://doi.org/10.1016/j.hal.2017.06.007 PubMed DOI

Xiao M, Hamilton DP, O’Brien KR, Adams MP, Willis A, Burford MA (2020) Are laboratory growth rate experiments relevant to explaining bloom-forming cyanobacteria distributions at global scale? Harmful Algae 92:101732. https://doi.org/10.1016/j.hal.2019.101732 PubMed DOI

Xu HF, Dai GZ, Li RH, Bai Y, Zuo AW, Zhao L et al (2025) Red-light signaling pathway activates desert cyanobacteria to prepare for desiccation tolerance. Proc Natl Acad Sci 122:e2502034122. https://doi.org/10.1073/pnas.2502034122 PubMed DOI

Yadav RK, Tripathi K, Varghese E, Abraham G (2021) Physiological and proteomic studies of the Cyanobacterium Anabaena sp. acclimated to desiccation stress. Curr Microbiol 78:2429–2439. https://doi.org/10.1007/s00284-021-02417-5 PubMed DOI

Yadav P, Singh RP, Rana S, Joshi D, Kumar D, Bhardwaj N et al (2022) Mechanisms of stress tolerance in cyanobacteria under extreme conditions. Stresses 2:531–549. https://doi.org/10.3390/stresses2040036 DOI

Yan F, Li M, Zang S, Xu Z, Bao M, Wu H (2024) UV radiation and temperature increase alter the PSII function and defense mechanisms in a bloom-forming Cyanobacterium Microcystis aeruginosa. Front Microbiol 15:1351796. https://doi.org/10.3389/fmicb.2024.1351796 PubMed DOI PMC

Yang H, Gu X, Chen H, Zeng Q, Mao Z, Ge Y, Yao Y (2024) Harmful planktonic Microcystis and benthic Oscillatoria-induced toxicological effects on the Asian clam (Corbicula fluminea): A survey on histopathology, behavior, oxidative stress, apoptosis and inflammation. Comp Biochem Physiol C Toxicol Pharmacol 283:109961. https://doi.org/10.1016/j.cbpc.2024.109961 PubMed DOI

Yoshida M, Yoshida T, Kashima A, Takashima Y, Hosoda N, Nagasaki K, Hiroishi S (2008) Ecological dynamics of the toxic bloom-forming Cyanobacterium Microcystis aeruginosa and its cyanophages in freshwater. Appl Environ Microbiol 74:3269–3273. https://doi.org/10.1128/AEM.02331-07 PubMed DOI PMC

Youssef DT, Shaala LA, Mohamed GA, Ibrahim SR, Banjar ZM, Badr JM et al (2015) 2,3-seco-2,3-dioxo-lyngbyatoxin A from a red sea strain of the marine Cyanobacterium Moorea producens. Nat Prod Res 29:703–709. https://doi.org/10.1080/14786419.2014.982647 PubMed DOI

Yushin N, Zinicovscaia I, Cepoi L, Chiriac T, Rudi L, Grozdov D (2022) Application of cyanobacteria Arthospira platensis for bioremediation of erbium-contaminated wastewater. Materials 15:6101. https://doi.org/10.3390/ma15176101 PubMed DOI PMC

Zahra Z, Choo DH, Lee H, Parveen A (2020) Cyanobacteria: review of current potentials and applications. Environments 7:1–17. https://doi.org/10.3390/environments7020013 DOI

Zhang J, Shi K, Paerl HW, Rühland KM, Yuan Y, Wang R et al (2023) Ancient DNA reveals potentially toxic cyanobacteria increasing with climate change. Water Res 229:119435. https://doi.org/10.1016/j.watres.2022.119435 PubMed DOI

Zheng Y, Cohen-Karni D, Xu D, Chin HG, Wilson G, Pradhan S et al (2010) A unique family of Mrr-like modification-dependent restriction endonucleases. Nucleic Acids Res 38:5527–5534. https://doi.org/10.1093/nar/gkq327 PubMed DOI PMC

Zheng X, Zhang W, Yuan Y, Li Y, Liu X, Wang X et al (2021) Growth inhibition, toxin production, and oxidative stress caused by three microplastics in Microcystis aeruginosa. Ecotoxicol Environ Saf 208:111575. https://doi.org/10.1016/j.ecoenv.2020.111575 PubMed DOI

Zhu X, Zou R, Liu D, Liu J, Wu X, Jiang J et al (2025) Enhanced salt tolerance in Synechocystis sp. PCC 6803 through adaptive evolution: mechanisms and applications for environmental bioremediation. Microbiol Res 296:128140. https://doi.org/10.1016/j.micres.2025.128140 PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...