Mechanisms underlying low mutation rates in mammalian oocytes and preimplantation embryos

. 2025 Aug 11 ; 53 (15) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40795959

Grantová podpora
OPUS LAP 2020/39/I/NZ3/02545 Polish National Science Center
GACR 21-42225L Polish National Science Center
Charles University

Mammalian oocytes and embryos are known to exhibit a markedly low frequency of de novo mutations compared to somatic cells. We still lack efficient tools to carry out functional studies of the intergenerational mechanism of genome protection, and our view of this phenomenon is constantly being modified in light of the new results. Although oocytes were originally considered a cell type lacking DNA repair, new results indicate that mammalian oocytes might possess a set of unique properties that make them and their descendants resistant to accumulation of DNA damage. Here, we review various factors that can influence oocyte and embryo genome stability and discuss the functional evidence for the uniquely efficient response to DNA damage, particularly in the presence of minor DNA lesions and single-strand breaks. We discuss whether high levels of DNA repair proteins might be the basis for the observed low mutation rate. Finally, we present the idea that the unique characteristics of the chromatin landscape, as well as the limited replication, rather than the abundance of repair factors alone, may be responsible for the intergenerational protection of the genome.

Zobrazit více v PubMed

Lindahl  T  Instability and decay of the primary structure of DNA. Nature. 1993; 362:709–15. 10.1038/362709a0. PubMed DOI

Bont  RD  Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 2004; 19:169–85. 10.1093/mutage/geh025. PubMed DOI

Caldecott  KW  Causes and consequences of DNA single-strand breaks. Trends Biochem Sci. 2024; 49:68–78. 10.1016/j.tibs.2023.11.001. PubMed DOI

Eccles  LJ, Lomax  ME, O’Neill  P  Hierarchy of lesion processing governs the repair, double-strand break formation and mutability of three-lesion clustered DNA damage. Nucleic Acids Res. 2010; 38:1123–34. 10.1093/nar/gkp1070. PubMed DOI PMC

Chadwick  KH, Leenhouts  HP  DNA double strand breaks from two single strand breaks and cell cycle radiation sensitivity. Radiat Prot Dosim. 1994; 52:363–6. 10.1093/oxfordjournals.rpd.a082215. DOI

Pfeiffer  P  Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. 2000; 15:289–302. 10.1093/mutage/15.4.289. PubMed DOI

Vilenchik  MM, Knudson  AG  Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA. 2003; 100:12871–6. 10.1073/pnas.2135498100. PubMed DOI PMC

Tebbs  RS, Flannery  ML, Meneses  JJ  et al.  Requirement for theXrcc1DNA base excision repair gene during early mouse development. Dev Biol. 1999; 208:513–29. 10.1006/dbio.1999.9232. PubMed DOI

Ludwig  DL, MacInnes  MA, Takiguchi  Y  et al.  A murine AP-endonuclease gene-targeted deficiency with post-implantation embryonic progression and ionizing radiation sensitivity. Mutat Res. 1998; 409:17–29. 10.1016/S0921-8777(98)00039-1. PubMed DOI

Larsen  E, Gran  C, Sæther  BE  et al.  Proliferation failure and gamma radiation sensitivity of PubMed DOI PMC

Gu  H, Marth  JD, Orban  PC  et al.  Deletion of a DNA polymerase β gene segment in T cells using cell type-specific gene targeting. Science. 1994; 265:103–6. 10.1126/science.8016642. PubMed DOI

Shao  Z, Lee  BJ, Zhang  H  et al.  Inactive PARP1 causes embryonic lethality and genome instability in a dominant-negative manner. Proc Natl Acad Sci USA. 2023; 120:e2301972120. 10.1073/pnas.2301972120. PubMed DOI PMC

Puebla-Osorio  N, Lacey  DB, Alt  FW  et al.  Early embryonic lethality due to targeted inactivation of DNA ligase III. Mol Cell Biol. 2006; 26:3935–41. 10.1128/MCB.26.10.3935-3941.2006. PubMed DOI PMC

Lindsay  SJ, Rahbari  R, Kaplanis  J  et al.  Similarities and differences in patterns of germline mutation between mice and humans. Nat Commun. 2019; 10:4053. 10.1038/s41467-019-12023-w. PubMed DOI PMC

Gao  Z, Moorjani  P, Sasani  TA  et al.  Overlooked roles of DNA damage and maternal age in generating human germline mutations. Proc Natl Acad Sci USA. 2019; 116:9491–500. 10.1073/pnas.1901259116. PubMed DOI PMC

Spisak  N, De  Manuel M, Milligan  W  et al.  The clock-like accumulation of germline and somatic mutations can arise from the interplay of DNA damage and repair. PLoS Biol. 2024; 22:e3002678. 10.1371/journal.pbio.3002678. PubMed DOI PMC

Milholland  B, Dong  X, Zhang  L  et al.  Differences between germline and somatic mutation rates in humans and mice. Nat Commun. 2017; 8:15183. 10.1038/ncomms15183. PubMed DOI PMC

Roach  JC, Glusman  G, Smit  AFA  et al.  Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science. 2010; 328:636–9. 10.1126/science.1186802. PubMed DOI PMC

Jónsson  H, Sulem  P, Kehr  B  et al.  Parental influence on human germline PubMed DOI

Kong  A, Frigge  ML, Masson  G  et al.  Rate of PubMed DOI PMC

Rahbari  R, Wuster  A, Lindsay  SJ  et al.  Timing, rates and spectra of human germline mutation. Nat Genet. 2016; 48:126–33. 10.1038/ng.3469. PubMed DOI PMC

Ju  YS, Martincorena  I, Gerstung  M  et al.  Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. Nature. 2017; 543:714–8. 10.1038/nature21703. PubMed DOI PMC

Coorens  THH, Moore  L, Robinson  PS  et al.  Extensive phylogenies of human development inferred from somatic mutations. Nature. 2021; 597:387–92. 10.1038/s41586-021-03790-y. PubMed DOI

Park  S, Mali  NM, Kim  R  et al.  Clonal dynamics in early human embryogenesis inferred from somatic mutation. Nature. 2021; 597:393–7. 10.1038/s41586-021-03786-8. PubMed DOI

Uchimura  A, Matsumoto  H, Satoh  Y  et al.  Early embryonic mutations reveal dynamics of somatic and germ cell lineages in mice. Genome Res. 2022; 32:945–55. 10.1101/gr.276363.121. PubMed DOI PMC

Lawson  KA, Hage  WJ  Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found Symp. 1994; 182:68–84. 10.1002/9780470514573.ch5. PubMed DOI

Hajkova  P, Ancelin  K, Waldmann  T  et al.  Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature. 2008; 452:877–81. 10.1038/nature06714. PubMed DOI PMC

Guibert  S, Forné  T, Weber  M  Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res. 2012; 22:633–41. 10.1101/gr.130997.111. PubMed DOI PMC

Hackett  JA, Sengupta  R, Zylicz  JJ  et al.  Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science. 2013; 339:448–52. 10.1126/science.1229277. PubMed DOI PMC

Seisenberger  S, Andrews  S, Krueger  F  et al.  The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell. 2012; 48:849–62. 10.1016/j.molcel.2012.11.001. PubMed DOI PMC

Guo  F, Li  L, Li  J  et al.  Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res. 2017; 27:967–88. 10.1038/cr.2017.82. PubMed DOI PMC

Guo  F, Yan  L, Guo  H  et al.  The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell. 2015; 161:1437–52. 10.1016/j.cell.2015.05.015. PubMed DOI

Lee  S-M, Surani  MA  Epigenetic reprogramming in mouse and human primordial germ cells. Exp Mol Med. 2024; 56:2578–87. 10.1038/s12276-024-01359-z. PubMed DOI PMC

Tang  WWC, Kobayashi  T, Irie  N  et al.  Specification and epigenetic programming of the human germ line. Nat Rev Genet. 2016; 17:585–600. 10.1038/nrg.2016.88. PubMed DOI

Trautmann  E, Guerquin  M-J, Duquenne  C  et al.  Retinoic acid prevents germ cell mitotic arrest in mouse fetal testes. Cell Cycle. 2008; 7:656–64. 10.4161/cc.7.5.5482. PubMed DOI

Western  PS, Miles  DC, van  den Bergen JA  et al.  Dynamic regulation of mitotic arrest in fetal male germ cells. Stem Cells. 2008; 26:339–47. 10.1634/stemcells.2007-0622. PubMed DOI

Payne  CJ  Cycling to and from a stem cell niche: the temporal and spatial odyssey of mitotic male germ cells. Int J Dev Biol. 2013; 57:169–77. 10.1387/ijdb.130006cp. PubMed DOI

Ginsburg  M, Snow  MH, McLaren  A  Primordial germ cells in the mouse embryo during gastrulation. Development. 1990; 110:521–8. 10.1242/dev.110.2.521. PubMed DOI

Koubova  J, Menke  DB, Zhou  Q  et al.  Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA. 2006; 103:2474–9. 10.1073/pnas.0510813103. PubMed DOI PMC

McLaren  A  Primordial germ cells in the mouse. Dev Biol. 2003; 262:1–15. 10.1016/s0012-1606(03)00214-8. PubMed DOI

Sánchez  F, Smitz  J  Molecular control of oogenesis. Biochim Biophys Acta. 2012; 1822:1896–912. 10.1016/j.bbadis.2012.05.013. PubMed DOI

Wu  SC, Zhang  Y  Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010; 11:607–20. 10.1038/nrm2950. PubMed DOI PMC

Bhutani  N, Burns  DM, Blau  HM  DNA demethylation dynamics. Cell. 2011; 146:866–72. 10.1016/j.cell.2011.08.042. PubMed DOI PMC

Vincent  JJ, Huang  Y, Chen  P-Y  et al.  Stage-specific roles for Tet1 and Tet2 in DNA demethylation in primordial germ cells. Cell Stem Cell. 2013; 12:470–8. 10.1016/j.stem.2013.01.016. PubMed DOI PMC

Tahiliani  M, Koh  KP, Shen  Y  et al.  Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009; 324:930–5. 10.1126/science.1170116. PubMed DOI PMC

Ito  S, Shen  L, Dai  Q  et al.  Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011; 333:1300–3. 10.1126/science.1210597. PubMed DOI PMC

He  Y-F, Li  B-Z, Li  Z  et al.  Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011; 333:1303–7. 10.1126/science.1210944. PubMed DOI PMC

Maiti  A, Drohat  AC  Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem. 2011; 286:35334–8. 10.1074/jbc.C111.284620. PubMed DOI PMC

Weber  AR, Krawczyk  C, Robertson  AB  et al.  Biochemical reconstitution of TET1–TDG–BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun. 2016; 7:10806. 10.1038/ncomms10806. PubMed DOI PMC

Thompson  PS, Cortez  D  New insights into abasic site repair and tolerance. DNA Repair (Amst). 2020; 90:102866. 10.1016/j.dnarep.2020.102866. PubMed DOI PMC

Müller  U, Bauer  C, Siegl  M  et al.  TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation. Nucleic Acids Res. 2014; 42:8592–604. 10.1093/nar/gku552. PubMed DOI PMC

Hajkova  P, Jeffries  SJ, Lee  C  et al.  Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science. 2010; 329:78–82. 10.1126/science.1187945. PubMed DOI PMC

Kawasaki  Y, Lee  J, Matsuzawa  A  et al.  Active DNA demethylation is required for complete imprint erasure in primordial germ cells. Sci Rep. 2014; 4:78–82. 10.1038/srep03658. PubMed DOI PMC

Ciccarone  F, Klinger  FG, Catizone  A  et al.  Poly(ADP-ribosyl)ation acts in the DNA demethylation of mouse primordial germ cells also with DNA damage-independent roles. PLoS One. 2012; 7:e46927. 10.1371/journal.pone.0046927. PubMed DOI PMC

Bloom  JC, Schimenti  JC  Sexually dimorphic DNA damage responses and mutation avoidance in the mouse germline. Genes Dev. 2020; 34:1637–49. 10.1101/gad.341602.120. PubMed DOI PMC

Méndez-Tepepa  M, Morales-Cruz  C, García-Nieto  E  et al.  A review of the reproductive system in anuran amphibians. Zoological Lett. 2023; 9:3. 10.1186/s40851-023-00201-0. PubMed DOI PMC

Drost  JB, Lee  WR  Biological basis of germline mutation: comparisons of spontaneous germline mutation rates among drosophila, mouse, and human. Environ Mol Mutagen. 1995; 25:48–64. 10.1002/em.2850250609. PubMed DOI

Forster  P, Hohoff  C, Dunkelmann  B  et al.  Elevated germline mutation rate in teenage fathers. Proc R Soc B. 2015; 282:20142898. 10.1098/rspb.2014.2898. PubMed DOI PMC

De  Manuel M, Wu  FL, Przeworski  M  A paternal bias in germline mutation is widespread in amniotes and can arise independently of cell division numbers. eLife. 2022; 11:e80008. 10.7554/eLife.80008. PubMed DOI PMC

Hahn  MW, Peña-Garcia  Y, Wang  RJ  The ‘faulty male’ hypothesis for sex-biased mutation and disease. Curr Biol. 2023; 33:R1166–72. 10.1016/j.cub.2023.09.028. PubMed DOI PMC

Moore  L, Cagan  A, Coorens  THH  et al.  The mutational landscape of human somatic and germline cells. Nature. 2021; 597:381–6. 10.1038/s41586-021-03822-7. PubMed DOI

Abascal  F, Harvey  LMR, Mitchell  E  et al.  Somatic mutation landscapes at single-molecule resolution. Nature. 2021; 593:405–10. 10.1038/s41586-021-03477-4. PubMed DOI

Franco  I, Johansson  A, Olsson  K  et al.  Somatic mutagenesis in satellite cells associates with human skeletal muscle aging. Nat Commun. 2018; 9:800. 10.1038/s41467-018-03244-6. PubMed DOI PMC

Nakamura  J, Swenberg  JA  Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res. 1999; 59:2522–6. PubMed

Kunkel  TA  The high cost of living. Trends Genet. 1999; 15:93–4. 10.1016/S0168-9525(98)01664-3. PubMed DOI

Lindahl  T, Nyberg  B  Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972; 11:3610–8. 10.1021/bi00769a018. PubMed DOI

La  Salle S, Mertineit  C, Taketo  T  et al.  Windows for sex-specific methylation marked by DNA methyltransferase expression profiles in mouse germ cells. Dev Biol. 2004; 268:403–15. 10.1016/j.ydbio.2003.12.031. PubMed DOI

Shen  JC, Rideout  WM, Jones  PA  The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucl Acids Res. 1994; 22:972–6. 10.1093/nar/22.6.972. PubMed DOI PMC

Bird  AP  DNA methylation and the frequency of CpG in animal DNA. Nucl Acids Res. 1980; 8:1499–504. 10.1093/nar/8.7.1499. PubMed DOI PMC

Tomkova  M, McClellan  MJ, Crevel  G  et al.  Human DNA polymerase ϵ is a source of C>T mutations at CpG dinucleotides. Nat Genet. 2024; 56:2506–16. 10.1038/s41588-024-01945-x. PubMed DOI PMC

Cooper  DN, Mort  M, Stenson  PD  et al.  Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides. Hum Genomics. 2010; 4:406–10. 10.1186/1479-7364-4-6-406. PubMed DOI PMC

Schmutte  C, Yang  AS, Beart  RW  et al.  Base excision repair of U:g mismatches at a mutational hotspot in the p53 gene is more efficient than base excision repair of T:g mismatches in extracts of human colon tumors. Cancer Res. 1995; 55:3742–6. PubMed

Monk  M, Boubelik  M, Lehnert  S  Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development. 1987; 99:371–82. 10.1242/dev.99.3.371. PubMed DOI

Kaput  J, Sneider  TW  Methylation of somatic vs germ cell DNAs analyzed by restriction endonuclease digestions. Nucl Acids Res. 1979; 7:2303–22. 10.1093/nar/7.8.2303. PubMed DOI PMC

Hara  S, Takano  T, Fujikawa  T  et al.  Forced expression of DNA methyltransferases during oocyte growth accelerates the establishment of methylation imprints but not functional genomic imprinting. Hum Mol Genet. 2014; 23:3853–64. 10.1093/hmg/ddu100. PubMed DOI PMC

Yu  B, Dong  X, Gravina  S  et al.  Genome-wide, single-cell DNA methylomics reveals increased non-CpG methylation during Human oocyte maturation. Stem Cell Rep. 2017; 9:397–407. 10.1016/j.stemcr.2017.05.026. PubMed DOI PMC

Chang  C-C, Nagy  ZP, Abdelmassih  R  et al.  Genome-wide epigenetic changes during oocyte growth. Fertil Steril. 2004; 82:S274. 10.1016/j.fertnstert.2004.07.734. DOI

Tomizawa  S-I, Nowacka-Woszuk  J, Kelsey  G  DNA methylation establishment during oocyte growth: mechanisms and significance. Int J Dev Biol. 2012; 56:867–75. 10.1387/ijdb.120152gk. PubMed DOI

Pors  SE, Nikiforov  D, Cadenas  J  et al.  Oocyte diameter predicts the maturation rate of human immature oocytes collected PubMed DOI PMC

Kyogoku  H, Kitajima  TS  The large cytoplasmic volume of oocyte. J Reprod Dev. 2023; 69:1–9. 10.1262/jrd.2022-101. PubMed DOI PMC

Goldmann  JM, Wong  WSW, Pinelli  M  et al.  Parent-of-origin-specific signatures of PubMed DOI

Seplyarskiy  VB, Soldatov  RA, Koch  E  et al.  Population sequencing data reveal a compendium of mutational processes in the human germ line. Science. 2021; 373:1030–5. 10.1126/science.aba7408. PubMed DOI PMC

Polak  P, Arndt  PF  Transcription induces strand-specific mutations at the 5′ end of human genes. Genome Res. 2008; 18:1216–23. 10.1101/gr.076570.108. PubMed DOI PMC

Tubbs  A, Nussenzweig  A  Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017; 168:644–56. 10.1016/j.cell.2017.01.002. PubMed DOI PMC

Lindahl  T, Barnes  DE  Repair of endogenous DNA damage. Cold Spring Harbor Symp Quant Biol. 2000; 65:127–34. 10.1101/sqb.2000.65.127. PubMed DOI

Hahm  JY, Park  J, Jang  E-S  et al.  8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. Exp Mol Med. 2022; 54:1626–42. 10.1038/s12276-022-00822-z. PubMed DOI PMC

Dianov  G, Bischoff  C, Piotrowski  J  et al.  Repair pathways for processing of 8-oxoguanine in DNA by mammalian cell extracts. J Biol Chem. 1998; 273:33811–6. 10.1074/jbc.273.50.33811. PubMed DOI

Kumar  N, Theil  AF, Roginskaya  V  et al.  Global and transcription-coupled repair of 8-oxoG is initiated by nucleotide excision repair proteins. Nat Commun. 2022; 13:974. 10.1038/s41467-022-28642-9. PubMed DOI PMC

Ohno  M, Sakumi  K, Fukumura  R  et al.  8-oxoguanine causes spontaneous de novo germline mutations in mice. Sci Rep. 2014; 4:4689. 10.1038/srep04689. PubMed DOI PMC

Viel  A, Bruselles  A, Meccia  E  et al.  A specific mutational signature associated with DNA 8-oxoguanine persistence in MUTYH-defective colorectal cancer. EBioMedicine. 2017; 20:39–49. 10.1016/j.ebiom.2017.04.022. PubMed DOI PMC

Jansen  J, Olsen  AK, Wiger  R  et al.  Nucleotide excision repair in rat male germ cells: low level of repair in intact cells contrasts with high dual incision activity PubMed DOI PMC

Dan  Dunn J, Alvarez  LA, Zhang  X  et al.  Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol. 2015; 6:472–85. 10.1016/j.redox.2015.09.005. PubMed DOI PMC

Rodríguez-Nuevo  A, Torres-Sanchez  A, Duran  JM  et al.  Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I. Nature. 2022; 607:756–61. 10.1038/s41586-022-04979-5. PubMed DOI PMC

Mtango  NR, Potireddy  S, Latham  KE  Oocyte quality and maternal control of development. Int Rev Cell Mol Biol. 2008; 268:223–90. 10.1016/S1937-6448(08)00807-1. PubMed DOI

Dalbies-Tran  R, Cadoret  V, Desmarchais  A  et al.  A comparative analysis of oocyte development in mammals. Cells. 2020; 9:1002. 10.3390/cells9041002. PubMed DOI PMC

Vitale  F, Cacciottola  L, Yu  FS  et al.  Importance of oxygen tension in human ovarian tissue PubMed DOI

Hoffman  DL, Salter  JD, Brookes  PS  Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am J Physiol Heart Circ Physiol. 2007; 292:H101–8. 10.1152/ajpheart.00699.2006. PubMed DOI

Zhang  X, Ge  J, Wang  Y  et al.  Integrative omics reveals the metabolic patterns during oocyte growth. Mol Cell Proteomics. 2024; 23:100862. 10.1016/j.mcpro.2024.100862. PubMed DOI PMC

Zheng  J  Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review). Oncol Lett. 2012; 4:1151–7. 10.3892/ol.2012.928. PubMed DOI PMC

Weinberg  F, Hamanaka  R, Wheaton  WW  et al.  Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA. 2010; 107:8788–93. 10.1073/pnas.1003428107. PubMed DOI PMC

Lunt  SY, Vander Heiden  MG  Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011; 27:441–64. 10.1146/annurev-cellbio-092910-154237. PubMed DOI

Zhao  Y, Hu  X, Liu  Y  et al.  ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer. 2017; 16:79. 10.1186/s12943-017-0648-1. PubMed DOI PMC

Kierans  SJ, Taylor  CT  Glycolysis: a multifaceted metabolic pathway and signaling hub. J Biol Chem. 2024; 300:107906. 10.1016/j.jbc.2024.107906. PubMed DOI PMC

Li  H, Guglielmetti  C, Sei  YJ  et al.  Neurons require glucose uptake and glycolysis PubMed DOI PMC

Wei  Y, Miao  Q, Zhang  Q  et al.  Aerobic glycolysis is the predominant means of glucose metabolism in neuronal somata, which protects against oxidative damage. Nat Neurosci. 2023; 26:2081–9. 10.1038/s41593-023-01476-4. PubMed DOI

Dienel  GA  Brain glucose metabolism: integration of energetics with function. Physiol Rev. 2019; 99:949–1045. 10.1152/physrev.00062.2017. PubMed DOI

Gan  ES, Ooi  EE  Oxygen: viral friend or foe?. Virol J. 2020; 17:115. 10.1186/s12985-020-01374-2. PubMed DOI PMC

Gonzalez-Freire  M, de Cabo  R, Bernier  M  et al.  Reconsidering the role of mitochondria in aging. J Gerontol A Biol Sci Med Sci. 2015; 70:1334–42. 10.1093/gerona/glv070. PubMed DOI PMC

Gaillard  H, Aguilera  A  Transcription as a threat to genome integrity. Annu Rev Biochem. 2016; 85:291–317. 10.1146/annurev-biochem-060815-014908. PubMed DOI

Milano  L, Gautam  A, Caldecott  KW  DNA damage and transcription stress. Mol Cell. 2024; 84:70–9. 10.1016/j.molcel.2023.11.014. PubMed DOI

Wang  D, Wu  W, Callen  E  et al.  Active DNA demethylation promotes cell fate specification and the DNA damage response. Science. 2022; 378:983–9. 10.1126/science.add9838. PubMed DOI PMC

Green  P, Ewing  B, Miller  W  et al.  Transcription-associated mutational asymmetry in mammalian evolution. Nat Genet. 2003; 33:514–7. 10.1038/ng1103. PubMed DOI

Gates  KS  An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol. 2009; 22:1747–60. 10.1021/tx900242k. PubMed DOI PMC

Lobry  JR  Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol. 1996; 13:660–5. 10.1093/oxfordjournals.molbev.a025626. PubMed DOI

Majewski  J  Dependence of mutational asymmetry on gene-expression levels in the human genome. Am Hum Genet. 2003; 73:688–92. 10.1086/378134. PubMed DOI PMC

Park  C, Qian  W, Zhang  J  Genomic evidence for elevated mutation rates in highly expressed genes. EMBO Rep. 2012; 13:1123–9. 10.1038/embor.2012.165. PubMed DOI PMC

Tadros  W, Lipshitz  HD  The maternal-to-zygotic transition: a play in two acts. Development. 2009; 136:3033–42. 10.1242/dev.033183. PubMed DOI

Flach  G, Johnson  MH, Braude  PR  et al.  The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J. 1982; 1:681–6. 10.1002/j.1460-2075.1982.tb01230.x. PubMed DOI PMC

Lu  X, Gao  Z, Qin  D  et al.  A maternal functional module in the mammalian oocyte-to-embryo transition. Trends Mol Med. 2017; 23:1014–23. 10.1016/j.molmed.2017.09.004. PubMed DOI

Kojima  ML, Hoppe  C, Giraldez  AJ  The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet. 2025; 26:245–67. 10.1038/s41576-024-00792-0. PubMed DOI PMC

Murat  P, Perez  C, Crisp  A  et al.  DNA replication initiation shapes the mutational landscape and expression of the human genome. Sci Adv. 2022; 8:eadd3686. 10.1126/sciadv.add3686. PubMed DOI PMC

Gu  T-P, Guo  F, Yang  H  et al.  The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011; 477:606–10. 10.1038/nature10443. PubMed DOI

Inoue  A, Matoba  S, Zhang  Y  Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation. Cell Res. 2012; 22:1640–9. 10.1038/cr.2012.160. PubMed DOI PMC

Guo  F, Li  X, Liang  D  et al.  Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell. 2014; 15:447–59. 10.1016/j.stem.2014.08.003. PubMed DOI

Lomelí  H, Ramos-Mejía  V, Gertsenstein  M  et al.  Targeted insertion of Cre recombinase into the TNAP gene: excision in primordial germ cells. Genesis. 2000; 26:116–7. 10.1002/(SICI)1526-968X(200002)26:2<116::AID-GENE4>3.0.CO;2-X. PubMed DOI

Cortellino  S, Xu  J, Sannai  M  et al.  Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell. 2011; 146:67–79. 10.1016/j.cell.2011.06.020. PubMed DOI PMC

Cortázar  D, Kunz  C, Selfridge  J  et al.  Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature. 2011; 470:419–23. 10.1038/nature09672. PubMed DOI

Santos  F, Dean  W  Epigenetic reprogramming during early development in mammals. Reproduction. 2004; 127:643–51. 10.1530/rep.1.00221. PubMed DOI

Messerschmidt  DM, Knowles  BB, Solter  D  DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 2014; 28:812–28. 10.1101/gad.234294.113. PubMed DOI PMC

Xu  R, Li  C, Liu  X  et al.  Insights into epigenetic patterns in mammalian early embryos. Protein Cell. 2021; 12:7–28. 10.1007/s13238-020-00757-z. PubMed DOI PMC

Cirio  MC, Ratnam  S, Ding  F  et al.  Preimplantation expression of the somatic form of Dnmt1 suggests a role in the inheritance of genomic imprints. BMC Dev Biol. 2008; 8:9. 10.1186/1471-213X-8-9. PubMed DOI PMC

Dean  W  The elusive Dnmt1 and its role during early development. Epigenetics. 2008; 3:175–8. 10.4161/epi.3.4.6572. PubMed DOI

Tan  J, Li  Y, Li  X  et al.  Pramel15 facilitates zygotic nuclear DNMT1 degradation and DNA demethylation. Nat Commun. 2024; 15:7310. 10.1038/s41467-024-51614-0. PubMed DOI PMC

Wossidlo  M, Arand  J, Sebastiano  V  et al.  Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J. 2010; 29:1877–88. 10.1038/emboj.2010.80. PubMed DOI PMC

Ladstätter  S, Tachibana-Konwalski  K  A surveillance mechanism ensures repair of DNA lesions during zygotic reprogramming. Cell. 2016; 167:1774–87. 10.1016/j.cell.2016.11.009. PubMed DOI PMC

Lan  Z-J, Xu  X, Cooney  AJ  Differential oocyte-specific expression of cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice. Biol Reprod. 2004; 71:1469–74. 10.1095/biolreprod.104.031757. PubMed DOI

Tomkova  M, McClellan  M, Kriaucionis  S  et al.  DNA replication and associated repair pathways are involved in the mutagenesis of methylated cytosine. DNA Repair (Amst). 2018; 62:1–7. 10.1016/j.dnarep.2017.11.005. PubMed DOI

Amouroux  R, Nashun  B, Shirane  K  et al.  De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat Cell Biol. 2016; 18:225–33. 10.1038/ncb3296. PubMed DOI PMC

Ji  D, You  C, Wang  P  et al.  Effects of tet-induced oxidation products of 5-methylcytosine on DNA replication in mammalian cells. Chem Res Toxicol. 2014; 27:1304–9. 10.1021/tx500169u. PubMed DOI PMC

Aitken  SJ, Anderson  CJ, Connor  F  et al.  Pervasive lesion segregation shapes cancer genome evolution. Nature. 2020; 583:265–70. 10.1038/s41586-020-2435-1. PubMed DOI PMC

Maki  H  Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitution mutageneses. Annu Rev Genet. 2002; 36:279–303. 10.1146/annurev.genet.36.042602.094806. PubMed DOI

Sasani  TA, Pedersen  BS, Gao  Z  et al.  Large, three-generation human families reveal post-zygotic mosaicism and variability in germline mutation accumulation. eLife. 2019; 8:e46922. 10.7554/eLife.46922. PubMed DOI PMC

Cooke  MS, Evans  MD, Dizdaroglu  M  et al.  Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003; 17:1195–214. 10.1096/fj.02-0752rev. PubMed DOI

Poetsch  AR  The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J. 2020; 18:207–19. 10.1016/j.csbj.2019.12.013. PubMed DOI PMC

Lord  T, Aitken  RJ  Fertilization stimulates 8-hydroxy-2′-deoxyguanosine repair and antioxidant activity to prevent mutagenesis in the embryo. Dev Biol. 2015; 406:1–13. 10.1016/j.ydbio.2015.07.024. PubMed DOI

Cambi  M, Tamburrino  L, Marchiani  S  et al.  Development of a specific method to evaluate 8-hydroxy,2-deoxyguanosine in sperm nuclei: relationship with semen quality in a cohort of 94 subjects. Reproduction. 2013; 145:227–35. 10.1530/REP-12-0404. PubMed DOI

Meseguer  M, Martínez-Conejero  JA, O’Connor  JE  et al.  The significance of sperm DNA oxidation in embryo development and reproductive outcome in an oocyte donation program: a new model to study a male infertility prognostic factor. Fertil Steril. 2008; 89:1191–9. 10.1016/j.fertnstert.2007.05.005. PubMed DOI

Lopes  AS, Lane  M, Thompson  JG  Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Hum Reprod. 2010; 25:2762–73. 10.1093/humrep/deq221. PubMed DOI

Agarwal  A, Said  TM, Bedaiwy  MA  et al.  Oxidative stress in an assisted reproductive techniques setting. Fertil Steril. 2006; 86:503–12. 10.1016/j.fertnstert.2006.02.088. PubMed DOI

Ruder  EH, Hartman  TJ, Goldman  MB  Impact of oxidative stress on female fertility. Curr Opin Obstet Gynecol. 2009; 21:219–22. 10.1097/GCO.0b013e32832924ba. PubMed DOI PMC

Ségurel  L, Wyman  MJ, Przeworski  M  Determinants of mutation rate variation in the Human germline. Annu Rev Genom Hum Genet. 2014; 15:47–70. 10.1146/annurev-genom-031714-125740. PubMed DOI

Jiricny  J  Postreplicative mismatch repair. Cold Spring Harb Perspect Biol. 2013; 5:a012633. 10.1101/cshperspect.a012633. PubMed DOI PMC

Lujan  SA, Clark  AB, Kunkel  TA  Differences in genome-wide repeat sequence instability conferred by proofreading and mismatch repair defects. Nucleic Acids Res. 2015; 43:4067–74. 10.1093/nar/gkv271. PubMed DOI PMC

Wang  N, Xu  S, Egli  D  Replication stress in mammalian embryo development, differentiation, and reprogramming. Trends Cell Biol. 2023; 33:872–86. 10.1016/j.tcb.2023.03.015. PubMed DOI PMC

Shibutani  T, Ito  S, Toda  M  et al.  Guanine-5-carboxylcytosine base pairs mimic mismatches during DNA replication. Sci Rep. 2014; 4:5220. 10.1038/srep05220. PubMed DOI PMC

Münzel  M, Lischke  U, Stathis  D  et al.  Improved synthesis and mutagenicity of oligonucleotides containing 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. Chemistry. 2011; 17:13782–8. 10.1002/chem.201102782. PubMed DOI

Karino  N, Ueno  Y, Matsuda  A  Synthesis and properties of oligonucleotides containing 5-formyl-2′-deoxycytidine: PubMed DOI PMC

Naldiga  S, Ji  S, Thomforde  J  et al.  Error-prone replication of a 5-formylcytosine-mediated DNA-peptide cross-link in human cells. J Biol Chem. 2019; 294:10619–27. 10.1074/jbc.RA119.008879. PubMed DOI PMC

Palmerola  KL, Amrane  S, De  Los  et al.  Replication stress impairs chromosome segregation and preimplantation development in human embryos. Cell. 2022; 185:2988–3007. 10.1016/j.cell.2022.06.028. PubMed DOI

Nakatani  T, Schauer  T, Altamirano-Pacheco  L  et al.  Emergence of replication timing during early mammalian development. Nature. 2024; 625:401–9. 10.1038/s41586-023-06872-1. PubMed DOI PMC

Takahashi  S, Kyogoku  H, Hayakawa  T  et al.  Embryonic genome instability upon DNA replication timing program emergence. Nature. 2024; 633:686–94. 10.1038/s41586-024-07841-y. PubMed DOI PMC

Xu  S, Wang  N, Zuccaro  MV  et al.  DNA replication in early mammalian embryos is patterned, predisposing lamina-associated regions to fragility. Nat Commun. 2024; 15:5247. 10.1038/s41467-024-49565-7. PubMed DOI PMC

van  den Berg J, van Batenburg  V, Geisenberger  C  et al.  Quantifying DNA replication speeds in single cells by scEdU-seq. Nat Methods. 2024; 21:1175–84. 10.1038/s41592-024-02308-4. PubMed DOI PMC

Guillou  E, Ibarra  A, Coulon  V  et al.  Cohesin organizes chromatin loops at DNA replication factories. Genes Dev. 2010; 24:2812–22. 10.1101/gad.608210. PubMed DOI PMC

Kang  E, Wu  G, Ma  H  et al.  Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos. Nature. 2014; 509:101–4. 10.1038/nature13134. PubMed DOI PMC

Ahuja  AK, Jodkowska  K, Teloni  F  et al.  A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat Commun. 2016; 7:10660. 10.1038/ncomms10660. PubMed DOI PMC

Oktem  O, Oktay  K  Quantitative assessment of the impact of chemotherapy on ovarian follicle reserve and stromal function. Cancer. 2007; 110:2222–9. 10.1002/cncr.23071. PubMed DOI

Eldani  M, Luan  Y, Xu  PC  et al.  Continuous treatment with cisplatin induces the oocyte death of primordial follicles without activation. FASEB J. 2020; 34:13885–99. 10.1096/fj.202001461RR. PubMed DOI PMC

Kimler  BF, Briley  SM, Johnson  BW  et al.  Radiation-induced ovarian follicle loss occurs without overt stromal changes. Reproduction. 2018; 155:553–62. 10.1530/REP-18-0089. PubMed DOI PMC

Suh  E-K, Yang  A, Kettenbach  A  et al.  p63 protects the female germ line during meiotic arrest. Nature. 2006; 444:624–8. 10.1038/nature05337. PubMed DOI

de Vries  SS, Baart  EB, Dekker  M  et al.  Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev. 1999; 13:523–31. 10.1101/gad.13.5.523. PubMed DOI PMC

Romanienko  PJ, Camerini-Otero  RD  The mouse PubMed DOI

Bai  L, Li  P, Xiang  Y  et al.  BRCA1 safeguards genome integrity by activating chromosome asynapsis checkpoint to eliminate recombination-defective oocytes. Proc Natl Acad Sci USA. 2024; 121:e2401386121. 10.1073/pnas.2401386121. PubMed DOI PMC

Di  Giacomo M, Barchi  M, Baudat  F  et al.  Distinct DNA-damage-dependent and -independent responses drive the loss of oocytes in recombination-defective mouse mutants. Proc Natl Acad Sci USA. 2005; 102:737–42. 10.1073/pnas.0406212102. PubMed DOI PMC

Winship  AL, Griffiths  M, Requesens  CL  et al.  The PARP inhibitor, olaparib, depletes the ovarian reserve in mice: implications for fertility preservation. Hum Reprod. 2020; 35:1864–74. 10.1093/humrep/deaa128. PubMed DOI

Vrtis  KB, Dewar  JM, Chistol  G  et al.  Single-strand DNA breaks cause replisome disassembly. Mol Cell. 2021; 81:1309–18. 10.1016/j.molcel.2020.12.039. PubMed DOI PMC

Lin  Y, Raj  J, Li  J  et al.  APE1 senses DNA single-strand breaks for repair and signaling. Nucleic Acids Res. 2020; 48:1925–40. 10.1093/nar/gkz1175. PubMed DOI PMC

Kuzminov  A  Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc Natl Acad Sci USA. 2001; 98:8241–6. 10.1073/pnas.131009198. PubMed DOI PMC

Branzei  D, Foiani  M  Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol. 2008; 9:297–308. 10.1038/nrm2351. PubMed DOI

Tebbs  RS, Thompson  LH, Cleaver  JE  Rescue of Xrcc1 knockout mouse embryo lethality by transgene-complementation. DNA Repair (Amst). 2003; 2:1405–17. 10.1016/j.dnarep.2003.08.007. PubMed DOI

Hua  K, Wang  L, Sun  J  et al.  Impairment of Pol β-related DNA base-excision repair leads to ovarian aging in mice. Aging. 2020; 12:25207–28. 10.18632/aging.104123. PubMed DOI PMC

Nilsen  H  DNA base excision repair of uracil residues in reconstituted nucleosome core particles. EMBO J. 2002; 21:5943–52. 10.1093/emboj/cdf581. PubMed DOI PMC

Balakrishnan  L, Brandt  PD, Lindsey-Boltz  LA  et al.  Long patch base excision repair proceeds via coordinated stimulation of the multienzyme DNA repair complex. J Biol Chem. 2009; 284:15158–72. 10.1074/jbc.M109.000505. PubMed DOI PMC

Su  X, Chen  W, Cai  Q  et al.  Effective generation of maternal genome point mutated porcine embryos by injection of cytosine base editor into germinal vesicle oocytes. Sci China Life Sci. 2020; 63:996–1005. 10.1007/s11427-019-1611-1. PubMed DOI

Cervantes  RB, Stringer  JR, Shao  C  et al.  Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc Natl Acad Sci USA. 2002; 99:3586–90. 10.1073/pnas.062527199. PubMed DOI PMC

Tichy  ED, Pillai  R, Deng  L  et al.  Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks. Stem Cells Dev. 2010; 19:1699–711. 10.1089/scd.2010.0058. PubMed DOI PMC

Intano  GW, McMahan  CA, Walter  RB  et al.  Mixed spermatogenic germ cell nuclear extracts exhibit high base excision repair activity. Nucleic Acids Res. 2001; 29:1366–72. 10.1093/nar/29.6.1366. PubMed DOI PMC

Intano  GW, McMahan  CA, McCarrey  JR  et al.  Base excision repair is limited by different proteins in male germ cell nuclear extracts prepared from young and old mice. Mol Cell Biol. 2002; 22:2410–8. 10.1128/MCB.22.7.2410-2418.2002. PubMed DOI PMC

Olsen  A-K  Highly efficient base excision repair (BER) in human and rat male germ cells. Nucleic Acids Res. 2001; 29:1781–90. 10.1093/nar/29.8.1781. PubMed DOI PMC

Maynard  S, Swistowska  AM, Lee  JW  et al.  Human embryonic stem cells have enhanced repair of multiple forms of DNA damage. Stem Cells. 2008; 26:2266–74. 10.1634/stemcells.2007-1041. PubMed DOI PMC

Zhu  W, Meng  J, Li  Y  et al.  Comparative proteomic landscapes elucidate human preimplantation development and failure. Cell. 2025; 188:814–31. 10.1016/j.cell.2024.12.028. PubMed DOI

Handyside  AH, Hunter  S  Cell division and death in the mouse blastocyst before implantation. Roux's Arch Dev Biol. 1986; 195:519–26. 10.1007/BF00375893. PubMed DOI

Hardy  K, Handyside  AH, Winston  RM  The human blastocyst: cell number, death and allocation during late preimplantation development PubMed DOI

Chafin  DR  Human DNA ligase I efficiently seals nicks in nucleosomes. EMBO J. 2000; 19:5492–501. 10.1093/emboj/19.20.5492. PubMed DOI PMC

Beard  BC, Wilson  SH, Smerdon  MJ  Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes. Proc Natl Acad Sci USA. 2003; 100:7465–70. 10.1073/pnas.1330328100. PubMed DOI PMC

Rodriguez  Y, Smerdon  MJ  The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes. J Biol Chem. 2013; 288:13863–75. 10.1074/jbc.M112.441444. PubMed DOI PMC

Odell  ID, Barbour  J-E, Murphy  DL  et al.  Nucleosome disruption by DNA Ligase III-XRCC1 promotes efficient base excision repair. Mol Cell Biol. 2011; 31:4623–32. 10.1128/MCB.05715-11. PubMed DOI PMC

Hinz  JM, Czaja  W  Facilitation of base excision repair by chromatin remodeling. DNA Repair (Amst). 2015; 36:91–7. 10.1016/j.dnarep.2015.09.011. PubMed DOI PMC

Yazdi  PG, Pedersen  BA, Taylor  JF  et al.  Increasing nucleosome occupancy is correlated with an Increasing mutation rate so long as DNA repair machinery is intact. PLoS One. 2015; 10:e0136574. 10.1371/journal.pone.0136574. PubMed DOI PMC

Zuccotti  M, Piccinelli  A, Rossi  PG  et al.  Chromatin organization during mouse oocyte growth. Mol Reprod Devel. 1995; 41:479–85. 10.1002/mrd.1080410410. PubMed DOI

Zhu  S, Li  J, Wang  X  et al.  The chromatin accessibility landscape of mouse oocytes during configuration transition. Cell Prolif. 2025; 58:e13733. 10.1111/cpr.13733. PubMed DOI PMC

Gu  C, Liu  S, Wu  Q  et al.  Integrative single-cell analysis of transcriptome, DNA methylome and chromatin accessibility in mouse oocytes. Cell Res. 2019; 29:110–23. 10.1038/s41422-018-0125-4. PubMed DOI PMC

Amiad-Pavlov  D, Lorber  D, Bajpai  G  et al.  Live imaging of chromatin distribution reveals novel principles of nuclear architecture and chromatin compartmentalization. Sci Adv. 2021; 7:eabf6251. 10.1126/sciadv.abf6251. PubMed DOI PMC

Popken  J, Brero  A, Koehler  D  et al.  Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of PubMed DOI PMC

Wu  J, Huang  B, Chen  H  et al.  The landscape of accessible chromatin in mammalian preimplantation embryos. Nature. 2016; 534:652–7. 10.1038/nature18606. PubMed DOI

Liu  L, Leng  L, Liu  C  et al.  An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos. Nat Commun. 2019; 10:364. 10.1038/s41467-018-08244-0. PubMed DOI PMC

Karnavas  T, Pintonello  L, Agresti  A  et al.  Histone content increases in differentiating embryonic stem cells. Front Physiol. 2014; 5:330. 10.3389/fphys.2014.00330. PubMed DOI PMC

Bošković  A, Eid  A, Pontabry  J  et al.  Higher chromatin mobility supports totipotency and precedes pluripotency PubMed DOI PMC

Niakan  KK, Han  J, Pedersen  RA  et al.  Human pre-implantation embryo development. Development. 2012; 139:829–41. 10.1242/dev.060426. PubMed DOI PMC

Crosetto  N, Mitra  A, Silva  MJ  et al.  Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods. 2013; 10:361–5. 10.1038/nmeth.2408. PubMed DOI PMC

Cao  H, Salazar-García  L, Gao  F  et al.  Novel approach reveals genomic landscapes of single-strand DNA breaks with nucleotide resolution in human cells. Nat Commun. 2019; 10:5799. 10.1038/s41467-019-13602-7. PubMed DOI PMC

Zilio  N, Ulrich  HD  Exploring the SSBreakome: genome-wide mapping of DNA single-strand breaks by next-generation sequencing. FEBS J. 2021; 288:3948–61. 10.1111/febs.15568. PubMed DOI

Sriramachandran  AM, Petrosino  G, Méndez-Lago  M  et al.  Genome-wide nucleotide-resolution mapping of DNA replication patterns, single-strand breaks, and lesions by GLOE-seq. Mol Cell. 2020; 78:975–85. 10.1016/j.molcel.2020.03.027. PubMed DOI PMC

Chesselet  M-F, MacKenzie  L, Hoang  T  Detection of DNA damage in tissue sections by PubMed DOI

Maehara  Y, Anai  H, Kusumoto  T  et al.  Nick translation detection PubMed PMC

Collins  A, Møller  P, Gajski  G  et al.  Measuring DNA modifications with the comet assay: a compendium of protocols. Nat Protoc. 2023; 18:929–89. 10.1038/s41596-022-00754-y. PubMed DOI PMC

Kordon  MM, Zarębski  M, Solarczyk  K  et al.  STRIDE—A fluorescence method for direct, specific PubMed DOI PMC

Saayman  X, Graham  E, Nathan  WJ  et al.  Centromeres as universal hotspots of DNA breakage, driving RAD51-mediated recombination during quiescence. Mol Cell. 2023; 83:523–38. 10.1016/j.molcel.2023.01.004. PubMed DOI PMC

Lensing  SV, Marsico  G, Hänsel-Hertsch  R  et al.  DSBCapture: PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...