Mechanisms underlying low mutation rates in mammalian oocytes and preimplantation embryos
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
OPUS LAP 2020/39/I/NZ3/02545
Polish National Science Center
GACR 21-42225L
Polish National Science Center
Charles University
PubMed
40795959
PubMed Central
PMC12342927
DOI
10.1093/nar/gkaf760
PII: 8230318
Knihovny.cz E-zdroje
- MeSH
- blastocysta * metabolismus MeSH
- chromatin genetika metabolismus MeSH
- lidé MeSH
- mutace MeSH
- mutační rychlost * MeSH
- nestabilita genomu MeSH
- oocyty * metabolismus MeSH
- oprava DNA MeSH
- poškození DNA MeSH
- savci genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- chromatin MeSH
Mammalian oocytes and embryos are known to exhibit a markedly low frequency of de novo mutations compared to somatic cells. We still lack efficient tools to carry out functional studies of the intergenerational mechanism of genome protection, and our view of this phenomenon is constantly being modified in light of the new results. Although oocytes were originally considered a cell type lacking DNA repair, new results indicate that mammalian oocytes might possess a set of unique properties that make them and their descendants resistant to accumulation of DNA damage. Here, we review various factors that can influence oocyte and embryo genome stability and discuss the functional evidence for the uniquely efficient response to DNA damage, particularly in the presence of minor DNA lesions and single-strand breaks. We discuss whether high levels of DNA repair proteins might be the basis for the observed low mutation rate. Finally, we present the idea that the unique characteristics of the chromatin landscape, as well as the limited replication, rather than the abundance of repair factors alone, may be responsible for the intergenerational protection of the genome.
Zobrazit více v PubMed
Lindahl T Instability and decay of the primary structure of DNA. Nature. 1993; 362:709–15. 10.1038/362709a0. PubMed DOI
Bont RD Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 2004; 19:169–85. 10.1093/mutage/geh025. PubMed DOI
Caldecott KW Causes and consequences of DNA single-strand breaks. Trends Biochem Sci. 2024; 49:68–78. 10.1016/j.tibs.2023.11.001. PubMed DOI
Eccles LJ, Lomax ME, O’Neill P Hierarchy of lesion processing governs the repair, double-strand break formation and mutability of three-lesion clustered DNA damage. Nucleic Acids Res. 2010; 38:1123–34. 10.1093/nar/gkp1070. PubMed DOI PMC
Chadwick KH, Leenhouts HP DNA double strand breaks from two single strand breaks and cell cycle radiation sensitivity. Radiat Prot Dosim. 1994; 52:363–6. 10.1093/oxfordjournals.rpd.a082215. DOI
Pfeiffer P Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. 2000; 15:289–302. 10.1093/mutage/15.4.289. PubMed DOI
Vilenchik MM, Knudson AG Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA. 2003; 100:12871–6. 10.1073/pnas.2135498100. PubMed DOI PMC
Tebbs RS, Flannery ML, Meneses JJ et al. Requirement for theXrcc1DNA base excision repair gene during early mouse development. Dev Biol. 1999; 208:513–29. 10.1006/dbio.1999.9232. PubMed DOI
Ludwig DL, MacInnes MA, Takiguchi Y et al. A murine AP-endonuclease gene-targeted deficiency with post-implantation embryonic progression and ionizing radiation sensitivity. Mutat Res. 1998; 409:17–29. 10.1016/S0921-8777(98)00039-1. PubMed DOI
Larsen E, Gran C, Sæther BE et al. Proliferation failure and gamma radiation sensitivity of PubMed DOI PMC
Gu H, Marth JD, Orban PC et al. Deletion of a DNA polymerase β gene segment in T cells using cell type-specific gene targeting. Science. 1994; 265:103–6. 10.1126/science.8016642. PubMed DOI
Shao Z, Lee BJ, Zhang H et al. Inactive PARP1 causes embryonic lethality and genome instability in a dominant-negative manner. Proc Natl Acad Sci USA. 2023; 120:e2301972120. 10.1073/pnas.2301972120. PubMed DOI PMC
Puebla-Osorio N, Lacey DB, Alt FW et al. Early embryonic lethality due to targeted inactivation of DNA ligase III. Mol Cell Biol. 2006; 26:3935–41. 10.1128/MCB.26.10.3935-3941.2006. PubMed DOI PMC
Lindsay SJ, Rahbari R, Kaplanis J et al. Similarities and differences in patterns of germline mutation between mice and humans. Nat Commun. 2019; 10:4053. 10.1038/s41467-019-12023-w. PubMed DOI PMC
Gao Z, Moorjani P, Sasani TA et al. Overlooked roles of DNA damage and maternal age in generating human germline mutations. Proc Natl Acad Sci USA. 2019; 116:9491–500. 10.1073/pnas.1901259116. PubMed DOI PMC
Spisak N, De Manuel M, Milligan W et al. The clock-like accumulation of germline and somatic mutations can arise from the interplay of DNA damage and repair. PLoS Biol. 2024; 22:e3002678. 10.1371/journal.pbio.3002678. PubMed DOI PMC
Milholland B, Dong X, Zhang L et al. Differences between germline and somatic mutation rates in humans and mice. Nat Commun. 2017; 8:15183. 10.1038/ncomms15183. PubMed DOI PMC
Roach JC, Glusman G, Smit AFA et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science. 2010; 328:636–9. 10.1126/science.1186802. PubMed DOI PMC
Jónsson H, Sulem P, Kehr B et al. Parental influence on human germline PubMed DOI
Kong A, Frigge ML, Masson G et al. Rate of PubMed DOI PMC
Rahbari R, Wuster A, Lindsay SJ et al. Timing, rates and spectra of human germline mutation. Nat Genet. 2016; 48:126–33. 10.1038/ng.3469. PubMed DOI PMC
Ju YS, Martincorena I, Gerstung M et al. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. Nature. 2017; 543:714–8. 10.1038/nature21703. PubMed DOI PMC
Coorens THH, Moore L, Robinson PS et al. Extensive phylogenies of human development inferred from somatic mutations. Nature. 2021; 597:387–92. 10.1038/s41586-021-03790-y. PubMed DOI
Park S, Mali NM, Kim R et al. Clonal dynamics in early human embryogenesis inferred from somatic mutation. Nature. 2021; 597:393–7. 10.1038/s41586-021-03786-8. PubMed DOI
Uchimura A, Matsumoto H, Satoh Y et al. Early embryonic mutations reveal dynamics of somatic and germ cell lineages in mice. Genome Res. 2022; 32:945–55. 10.1101/gr.276363.121. PubMed DOI PMC
Lawson KA, Hage WJ Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found Symp. 1994; 182:68–84. 10.1002/9780470514573.ch5. PubMed DOI
Hajkova P, Ancelin K, Waldmann T et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature. 2008; 452:877–81. 10.1038/nature06714. PubMed DOI PMC
Guibert S, Forné T, Weber M Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res. 2012; 22:633–41. 10.1101/gr.130997.111. PubMed DOI PMC
Hackett JA, Sengupta R, Zylicz JJ et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science. 2013; 339:448–52. 10.1126/science.1229277. PubMed DOI PMC
Seisenberger S, Andrews S, Krueger F et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell. 2012; 48:849–62. 10.1016/j.molcel.2012.11.001. PubMed DOI PMC
Guo F, Li L, Li J et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res. 2017; 27:967–88. 10.1038/cr.2017.82. PubMed DOI PMC
Guo F, Yan L, Guo H et al. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell. 2015; 161:1437–52. 10.1016/j.cell.2015.05.015. PubMed DOI
Lee S-M, Surani MA Epigenetic reprogramming in mouse and human primordial germ cells. Exp Mol Med. 2024; 56:2578–87. 10.1038/s12276-024-01359-z. PubMed DOI PMC
Tang WWC, Kobayashi T, Irie N et al. Specification and epigenetic programming of the human germ line. Nat Rev Genet. 2016; 17:585–600. 10.1038/nrg.2016.88. PubMed DOI
Trautmann E, Guerquin M-J, Duquenne C et al. Retinoic acid prevents germ cell mitotic arrest in mouse fetal testes. Cell Cycle. 2008; 7:656–64. 10.4161/cc.7.5.5482. PubMed DOI
Western PS, Miles DC, van den Bergen JA et al. Dynamic regulation of mitotic arrest in fetal male germ cells. Stem Cells. 2008; 26:339–47. 10.1634/stemcells.2007-0622. PubMed DOI
Payne CJ Cycling to and from a stem cell niche: the temporal and spatial odyssey of mitotic male germ cells. Int J Dev Biol. 2013; 57:169–77. 10.1387/ijdb.130006cp. PubMed DOI
Ginsburg M, Snow MH, McLaren A Primordial germ cells in the mouse embryo during gastrulation. Development. 1990; 110:521–8. 10.1242/dev.110.2.521. PubMed DOI
Koubova J, Menke DB, Zhou Q et al. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA. 2006; 103:2474–9. 10.1073/pnas.0510813103. PubMed DOI PMC
McLaren A Primordial germ cells in the mouse. Dev Biol. 2003; 262:1–15. 10.1016/s0012-1606(03)00214-8. PubMed DOI
Sánchez F, Smitz J Molecular control of oogenesis. Biochim Biophys Acta. 2012; 1822:1896–912. 10.1016/j.bbadis.2012.05.013. PubMed DOI
Wu SC, Zhang Y Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010; 11:607–20. 10.1038/nrm2950. PubMed DOI PMC
Bhutani N, Burns DM, Blau HM DNA demethylation dynamics. Cell. 2011; 146:866–72. 10.1016/j.cell.2011.08.042. PubMed DOI PMC
Vincent JJ, Huang Y, Chen P-Y et al. Stage-specific roles for Tet1 and Tet2 in DNA demethylation in primordial germ cells. Cell Stem Cell. 2013; 12:470–8. 10.1016/j.stem.2013.01.016. PubMed DOI PMC
Tahiliani M, Koh KP, Shen Y et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009; 324:930–5. 10.1126/science.1170116. PubMed DOI PMC
Ito S, Shen L, Dai Q et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011; 333:1300–3. 10.1126/science.1210597. PubMed DOI PMC
He Y-F, Li B-Z, Li Z et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011; 333:1303–7. 10.1126/science.1210944. PubMed DOI PMC
Maiti A, Drohat AC Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem. 2011; 286:35334–8. 10.1074/jbc.C111.284620. PubMed DOI PMC
Weber AR, Krawczyk C, Robertson AB et al. Biochemical reconstitution of TET1–TDG–BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun. 2016; 7:10806. 10.1038/ncomms10806. PubMed DOI PMC
Thompson PS, Cortez D New insights into abasic site repair and tolerance. DNA Repair (Amst). 2020; 90:102866. 10.1016/j.dnarep.2020.102866. PubMed DOI PMC
Müller U, Bauer C, Siegl M et al. TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation. Nucleic Acids Res. 2014; 42:8592–604. 10.1093/nar/gku552. PubMed DOI PMC
Hajkova P, Jeffries SJ, Lee C et al. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science. 2010; 329:78–82. 10.1126/science.1187945. PubMed DOI PMC
Kawasaki Y, Lee J, Matsuzawa A et al. Active DNA demethylation is required for complete imprint erasure in primordial germ cells. Sci Rep. 2014; 4:78–82. 10.1038/srep03658. PubMed DOI PMC
Ciccarone F, Klinger FG, Catizone A et al. Poly(ADP-ribosyl)ation acts in the DNA demethylation of mouse primordial germ cells also with DNA damage-independent roles. PLoS One. 2012; 7:e46927. 10.1371/journal.pone.0046927. PubMed DOI PMC
Bloom JC, Schimenti JC Sexually dimorphic DNA damage responses and mutation avoidance in the mouse germline. Genes Dev. 2020; 34:1637–49. 10.1101/gad.341602.120. PubMed DOI PMC
Méndez-Tepepa M, Morales-Cruz C, García-Nieto E et al. A review of the reproductive system in anuran amphibians. Zoological Lett. 2023; 9:3. 10.1186/s40851-023-00201-0. PubMed DOI PMC
Drost JB, Lee WR Biological basis of germline mutation: comparisons of spontaneous germline mutation rates among drosophila, mouse, and human. Environ Mol Mutagen. 1995; 25:48–64. 10.1002/em.2850250609. PubMed DOI
Forster P, Hohoff C, Dunkelmann B et al. Elevated germline mutation rate in teenage fathers. Proc R Soc B. 2015; 282:20142898. 10.1098/rspb.2014.2898. PubMed DOI PMC
De Manuel M, Wu FL, Przeworski M A paternal bias in germline mutation is widespread in amniotes and can arise independently of cell division numbers. eLife. 2022; 11:e80008. 10.7554/eLife.80008. PubMed DOI PMC
Hahn MW, Peña-Garcia Y, Wang RJ The ‘faulty male’ hypothesis for sex-biased mutation and disease. Curr Biol. 2023; 33:R1166–72. 10.1016/j.cub.2023.09.028. PubMed DOI PMC
Moore L, Cagan A, Coorens THH et al. The mutational landscape of human somatic and germline cells. Nature. 2021; 597:381–6. 10.1038/s41586-021-03822-7. PubMed DOI
Abascal F, Harvey LMR, Mitchell E et al. Somatic mutation landscapes at single-molecule resolution. Nature. 2021; 593:405–10. 10.1038/s41586-021-03477-4. PubMed DOI
Franco I, Johansson A, Olsson K et al. Somatic mutagenesis in satellite cells associates with human skeletal muscle aging. Nat Commun. 2018; 9:800. 10.1038/s41467-018-03244-6. PubMed DOI PMC
Nakamura J, Swenberg JA Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res. 1999; 59:2522–6. PubMed
Kunkel TA The high cost of living. Trends Genet. 1999; 15:93–4. 10.1016/S0168-9525(98)01664-3. PubMed DOI
Lindahl T, Nyberg B Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972; 11:3610–8. 10.1021/bi00769a018. PubMed DOI
La Salle S, Mertineit C, Taketo T et al. Windows for sex-specific methylation marked by DNA methyltransferase expression profiles in mouse germ cells. Dev Biol. 2004; 268:403–15. 10.1016/j.ydbio.2003.12.031. PubMed DOI
Shen JC, Rideout WM, Jones PA The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucl Acids Res. 1994; 22:972–6. 10.1093/nar/22.6.972. PubMed DOI PMC
Bird AP DNA methylation and the frequency of CpG in animal DNA. Nucl Acids Res. 1980; 8:1499–504. 10.1093/nar/8.7.1499. PubMed DOI PMC
Tomkova M, McClellan MJ, Crevel G et al. Human DNA polymerase ϵ is a source of C>T mutations at CpG dinucleotides. Nat Genet. 2024; 56:2506–16. 10.1038/s41588-024-01945-x. PubMed DOI PMC
Cooper DN, Mort M, Stenson PD et al. Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides. Hum Genomics. 2010; 4:406–10. 10.1186/1479-7364-4-6-406. PubMed DOI PMC
Schmutte C, Yang AS, Beart RW et al. Base excision repair of U:g mismatches at a mutational hotspot in the p53 gene is more efficient than base excision repair of T:g mismatches in extracts of human colon tumors. Cancer Res. 1995; 55:3742–6. PubMed
Monk M, Boubelik M, Lehnert S Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development. 1987; 99:371–82. 10.1242/dev.99.3.371. PubMed DOI
Kaput J, Sneider TW Methylation of somatic vs germ cell DNAs analyzed by restriction endonuclease digestions. Nucl Acids Res. 1979; 7:2303–22. 10.1093/nar/7.8.2303. PubMed DOI PMC
Hara S, Takano T, Fujikawa T et al. Forced expression of DNA methyltransferases during oocyte growth accelerates the establishment of methylation imprints but not functional genomic imprinting. Hum Mol Genet. 2014; 23:3853–64. 10.1093/hmg/ddu100. PubMed DOI PMC
Yu B, Dong X, Gravina S et al. Genome-wide, single-cell DNA methylomics reveals increased non-CpG methylation during Human oocyte maturation. Stem Cell Rep. 2017; 9:397–407. 10.1016/j.stemcr.2017.05.026. PubMed DOI PMC
Chang C-C, Nagy ZP, Abdelmassih R et al. Genome-wide epigenetic changes during oocyte growth. Fertil Steril. 2004; 82:S274. 10.1016/j.fertnstert.2004.07.734. DOI
Tomizawa S-I, Nowacka-Woszuk J, Kelsey G DNA methylation establishment during oocyte growth: mechanisms and significance. Int J Dev Biol. 2012; 56:867–75. 10.1387/ijdb.120152gk. PubMed DOI
Pors SE, Nikiforov D, Cadenas J et al. Oocyte diameter predicts the maturation rate of human immature oocytes collected PubMed DOI PMC
Kyogoku H, Kitajima TS The large cytoplasmic volume of oocyte. J Reprod Dev. 2023; 69:1–9. 10.1262/jrd.2022-101. PubMed DOI PMC
Goldmann JM, Wong WSW, Pinelli M et al. Parent-of-origin-specific signatures of PubMed DOI
Seplyarskiy VB, Soldatov RA, Koch E et al. Population sequencing data reveal a compendium of mutational processes in the human germ line. Science. 2021; 373:1030–5. 10.1126/science.aba7408. PubMed DOI PMC
Polak P, Arndt PF Transcription induces strand-specific mutations at the 5′ end of human genes. Genome Res. 2008; 18:1216–23. 10.1101/gr.076570.108. PubMed DOI PMC
Tubbs A, Nussenzweig A Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017; 168:644–56. 10.1016/j.cell.2017.01.002. PubMed DOI PMC
Lindahl T, Barnes DE Repair of endogenous DNA damage. Cold Spring Harbor Symp Quant Biol. 2000; 65:127–34. 10.1101/sqb.2000.65.127. PubMed DOI
Hahm JY, Park J, Jang E-S et al. 8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. Exp Mol Med. 2022; 54:1626–42. 10.1038/s12276-022-00822-z. PubMed DOI PMC
Dianov G, Bischoff C, Piotrowski J et al. Repair pathways for processing of 8-oxoguanine in DNA by mammalian cell extracts. J Biol Chem. 1998; 273:33811–6. 10.1074/jbc.273.50.33811. PubMed DOI
Kumar N, Theil AF, Roginskaya V et al. Global and transcription-coupled repair of 8-oxoG is initiated by nucleotide excision repair proteins. Nat Commun. 2022; 13:974. 10.1038/s41467-022-28642-9. PubMed DOI PMC
Ohno M, Sakumi K, Fukumura R et al. 8-oxoguanine causes spontaneous de novo germline mutations in mice. Sci Rep. 2014; 4:4689. 10.1038/srep04689. PubMed DOI PMC
Viel A, Bruselles A, Meccia E et al. A specific mutational signature associated with DNA 8-oxoguanine persistence in MUTYH-defective colorectal cancer. EBioMedicine. 2017; 20:39–49. 10.1016/j.ebiom.2017.04.022. PubMed DOI PMC
Jansen J, Olsen AK, Wiger R et al. Nucleotide excision repair in rat male germ cells: low level of repair in intact cells contrasts with high dual incision activity PubMed DOI PMC
Dan Dunn J, Alvarez LA, Zhang X et al. Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol. 2015; 6:472–85. 10.1016/j.redox.2015.09.005. PubMed DOI PMC
Rodríguez-Nuevo A, Torres-Sanchez A, Duran JM et al. Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I. Nature. 2022; 607:756–61. 10.1038/s41586-022-04979-5. PubMed DOI PMC
Mtango NR, Potireddy S, Latham KE Oocyte quality and maternal control of development. Int Rev Cell Mol Biol. 2008; 268:223–90. 10.1016/S1937-6448(08)00807-1. PubMed DOI
Dalbies-Tran R, Cadoret V, Desmarchais A et al. A comparative analysis of oocyte development in mammals. Cells. 2020; 9:1002. 10.3390/cells9041002. PubMed DOI PMC
Vitale F, Cacciottola L, Yu FS et al. Importance of oxygen tension in human ovarian tissue PubMed DOI
Hoffman DL, Salter JD, Brookes PS Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am J Physiol Heart Circ Physiol. 2007; 292:H101–8. 10.1152/ajpheart.00699.2006. PubMed DOI
Zhang X, Ge J, Wang Y et al. Integrative omics reveals the metabolic patterns during oocyte growth. Mol Cell Proteomics. 2024; 23:100862. 10.1016/j.mcpro.2024.100862. PubMed DOI PMC
Zheng J Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review). Oncol Lett. 2012; 4:1151–7. 10.3892/ol.2012.928. PubMed DOI PMC
Weinberg F, Hamanaka R, Wheaton WW et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA. 2010; 107:8788–93. 10.1073/pnas.1003428107. PubMed DOI PMC
Lunt SY, Vander Heiden MG Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011; 27:441–64. 10.1146/annurev-cellbio-092910-154237. PubMed DOI
Zhao Y, Hu X, Liu Y et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer. 2017; 16:79. 10.1186/s12943-017-0648-1. PubMed DOI PMC
Kierans SJ, Taylor CT Glycolysis: a multifaceted metabolic pathway and signaling hub. J Biol Chem. 2024; 300:107906. 10.1016/j.jbc.2024.107906. PubMed DOI PMC
Li H, Guglielmetti C, Sei YJ et al. Neurons require glucose uptake and glycolysis PubMed DOI PMC
Wei Y, Miao Q, Zhang Q et al. Aerobic glycolysis is the predominant means of glucose metabolism in neuronal somata, which protects against oxidative damage. Nat Neurosci. 2023; 26:2081–9. 10.1038/s41593-023-01476-4. PubMed DOI
Dienel GA Brain glucose metabolism: integration of energetics with function. Physiol Rev. 2019; 99:949–1045. 10.1152/physrev.00062.2017. PubMed DOI
Gan ES, Ooi EE Oxygen: viral friend or foe?. Virol J. 2020; 17:115. 10.1186/s12985-020-01374-2. PubMed DOI PMC
Gonzalez-Freire M, de Cabo R, Bernier M et al. Reconsidering the role of mitochondria in aging. J Gerontol A Biol Sci Med Sci. 2015; 70:1334–42. 10.1093/gerona/glv070. PubMed DOI PMC
Gaillard H, Aguilera A Transcription as a threat to genome integrity. Annu Rev Biochem. 2016; 85:291–317. 10.1146/annurev-biochem-060815-014908. PubMed DOI
Milano L, Gautam A, Caldecott KW DNA damage and transcription stress. Mol Cell. 2024; 84:70–9. 10.1016/j.molcel.2023.11.014. PubMed DOI
Wang D, Wu W, Callen E et al. Active DNA demethylation promotes cell fate specification and the DNA damage response. Science. 2022; 378:983–9. 10.1126/science.add9838. PubMed DOI PMC
Green P, Ewing B, Miller W et al. Transcription-associated mutational asymmetry in mammalian evolution. Nat Genet. 2003; 33:514–7. 10.1038/ng1103. PubMed DOI
Gates KS An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol. 2009; 22:1747–60. 10.1021/tx900242k. PubMed DOI PMC
Lobry JR Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol. 1996; 13:660–5. 10.1093/oxfordjournals.molbev.a025626. PubMed DOI
Majewski J Dependence of mutational asymmetry on gene-expression levels in the human genome. Am Hum Genet. 2003; 73:688–92. 10.1086/378134. PubMed DOI PMC
Park C, Qian W, Zhang J Genomic evidence for elevated mutation rates in highly expressed genes. EMBO Rep. 2012; 13:1123–9. 10.1038/embor.2012.165. PubMed DOI PMC
Tadros W, Lipshitz HD The maternal-to-zygotic transition: a play in two acts. Development. 2009; 136:3033–42. 10.1242/dev.033183. PubMed DOI
Flach G, Johnson MH, Braude PR et al. The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J. 1982; 1:681–6. 10.1002/j.1460-2075.1982.tb01230.x. PubMed DOI PMC
Lu X, Gao Z, Qin D et al. A maternal functional module in the mammalian oocyte-to-embryo transition. Trends Mol Med. 2017; 23:1014–23. 10.1016/j.molmed.2017.09.004. PubMed DOI
Kojima ML, Hoppe C, Giraldez AJ The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet. 2025; 26:245–67. 10.1038/s41576-024-00792-0. PubMed DOI PMC
Murat P, Perez C, Crisp A et al. DNA replication initiation shapes the mutational landscape and expression of the human genome. Sci Adv. 2022; 8:eadd3686. 10.1126/sciadv.add3686. PubMed DOI PMC
Gu T-P, Guo F, Yang H et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011; 477:606–10. 10.1038/nature10443. PubMed DOI
Inoue A, Matoba S, Zhang Y Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation. Cell Res. 2012; 22:1640–9. 10.1038/cr.2012.160. PubMed DOI PMC
Guo F, Li X, Liang D et al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell. 2014; 15:447–59. 10.1016/j.stem.2014.08.003. PubMed DOI
Lomelí H, Ramos-Mejía V, Gertsenstein M et al. Targeted insertion of Cre recombinase into the TNAP gene: excision in primordial germ cells. Genesis. 2000; 26:116–7. 10.1002/(SICI)1526-968X(200002)26:2<116::AID-GENE4>3.0.CO;2-X. PubMed DOI
Cortellino S, Xu J, Sannai M et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell. 2011; 146:67–79. 10.1016/j.cell.2011.06.020. PubMed DOI PMC
Cortázar D, Kunz C, Selfridge J et al. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature. 2011; 470:419–23. 10.1038/nature09672. PubMed DOI
Santos F, Dean W Epigenetic reprogramming during early development in mammals. Reproduction. 2004; 127:643–51. 10.1530/rep.1.00221. PubMed DOI
Messerschmidt DM, Knowles BB, Solter D DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 2014; 28:812–28. 10.1101/gad.234294.113. PubMed DOI PMC
Xu R, Li C, Liu X et al. Insights into epigenetic patterns in mammalian early embryos. Protein Cell. 2021; 12:7–28. 10.1007/s13238-020-00757-z. PubMed DOI PMC
Cirio MC, Ratnam S, Ding F et al. Preimplantation expression of the somatic form of Dnmt1 suggests a role in the inheritance of genomic imprints. BMC Dev Biol. 2008; 8:9. 10.1186/1471-213X-8-9. PubMed DOI PMC
Dean W The elusive Dnmt1 and its role during early development. Epigenetics. 2008; 3:175–8. 10.4161/epi.3.4.6572. PubMed DOI
Tan J, Li Y, Li X et al. Pramel15 facilitates zygotic nuclear DNMT1 degradation and DNA demethylation. Nat Commun. 2024; 15:7310. 10.1038/s41467-024-51614-0. PubMed DOI PMC
Wossidlo M, Arand J, Sebastiano V et al. Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J. 2010; 29:1877–88. 10.1038/emboj.2010.80. PubMed DOI PMC
Ladstätter S, Tachibana-Konwalski K A surveillance mechanism ensures repair of DNA lesions during zygotic reprogramming. Cell. 2016; 167:1774–87. 10.1016/j.cell.2016.11.009. PubMed DOI PMC
Lan Z-J, Xu X, Cooney AJ Differential oocyte-specific expression of cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice. Biol Reprod. 2004; 71:1469–74. 10.1095/biolreprod.104.031757. PubMed DOI
Tomkova M, McClellan M, Kriaucionis S et al. DNA replication and associated repair pathways are involved in the mutagenesis of methylated cytosine. DNA Repair (Amst). 2018; 62:1–7. 10.1016/j.dnarep.2017.11.005. PubMed DOI
Amouroux R, Nashun B, Shirane K et al. De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat Cell Biol. 2016; 18:225–33. 10.1038/ncb3296. PubMed DOI PMC
Ji D, You C, Wang P et al. Effects of tet-induced oxidation products of 5-methylcytosine on DNA replication in mammalian cells. Chem Res Toxicol. 2014; 27:1304–9. 10.1021/tx500169u. PubMed DOI PMC
Aitken SJ, Anderson CJ, Connor F et al. Pervasive lesion segregation shapes cancer genome evolution. Nature. 2020; 583:265–70. 10.1038/s41586-020-2435-1. PubMed DOI PMC
Maki H Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitution mutageneses. Annu Rev Genet. 2002; 36:279–303. 10.1146/annurev.genet.36.042602.094806. PubMed DOI
Sasani TA, Pedersen BS, Gao Z et al. Large, three-generation human families reveal post-zygotic mosaicism and variability in germline mutation accumulation. eLife. 2019; 8:e46922. 10.7554/eLife.46922. PubMed DOI PMC
Cooke MS, Evans MD, Dizdaroglu M et al. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003; 17:1195–214. 10.1096/fj.02-0752rev. PubMed DOI
Poetsch AR The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J. 2020; 18:207–19. 10.1016/j.csbj.2019.12.013. PubMed DOI PMC
Lord T, Aitken RJ Fertilization stimulates 8-hydroxy-2′-deoxyguanosine repair and antioxidant activity to prevent mutagenesis in the embryo. Dev Biol. 2015; 406:1–13. 10.1016/j.ydbio.2015.07.024. PubMed DOI
Cambi M, Tamburrino L, Marchiani S et al. Development of a specific method to evaluate 8-hydroxy,2-deoxyguanosine in sperm nuclei: relationship with semen quality in a cohort of 94 subjects. Reproduction. 2013; 145:227–35. 10.1530/REP-12-0404. PubMed DOI
Meseguer M, Martínez-Conejero JA, O’Connor JE et al. The significance of sperm DNA oxidation in embryo development and reproductive outcome in an oocyte donation program: a new model to study a male infertility prognostic factor. Fertil Steril. 2008; 89:1191–9. 10.1016/j.fertnstert.2007.05.005. PubMed DOI
Lopes AS, Lane M, Thompson JG Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Hum Reprod. 2010; 25:2762–73. 10.1093/humrep/deq221. PubMed DOI
Agarwal A, Said TM, Bedaiwy MA et al. Oxidative stress in an assisted reproductive techniques setting. Fertil Steril. 2006; 86:503–12. 10.1016/j.fertnstert.2006.02.088. PubMed DOI
Ruder EH, Hartman TJ, Goldman MB Impact of oxidative stress on female fertility. Curr Opin Obstet Gynecol. 2009; 21:219–22. 10.1097/GCO.0b013e32832924ba. PubMed DOI PMC
Ségurel L, Wyman MJ, Przeworski M Determinants of mutation rate variation in the Human germline. Annu Rev Genom Hum Genet. 2014; 15:47–70. 10.1146/annurev-genom-031714-125740. PubMed DOI
Jiricny J Postreplicative mismatch repair. Cold Spring Harb Perspect Biol. 2013; 5:a012633. 10.1101/cshperspect.a012633. PubMed DOI PMC
Lujan SA, Clark AB, Kunkel TA Differences in genome-wide repeat sequence instability conferred by proofreading and mismatch repair defects. Nucleic Acids Res. 2015; 43:4067–74. 10.1093/nar/gkv271. PubMed DOI PMC
Wang N, Xu S, Egli D Replication stress in mammalian embryo development, differentiation, and reprogramming. Trends Cell Biol. 2023; 33:872–86. 10.1016/j.tcb.2023.03.015. PubMed DOI PMC
Shibutani T, Ito S, Toda M et al. Guanine-5-carboxylcytosine base pairs mimic mismatches during DNA replication. Sci Rep. 2014; 4:5220. 10.1038/srep05220. PubMed DOI PMC
Münzel M, Lischke U, Stathis D et al. Improved synthesis and mutagenicity of oligonucleotides containing 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. Chemistry. 2011; 17:13782–8. 10.1002/chem.201102782. PubMed DOI
Karino N, Ueno Y, Matsuda A Synthesis and properties of oligonucleotides containing 5-formyl-2′-deoxycytidine: PubMed DOI PMC
Naldiga S, Ji S, Thomforde J et al. Error-prone replication of a 5-formylcytosine-mediated DNA-peptide cross-link in human cells. J Biol Chem. 2019; 294:10619–27. 10.1074/jbc.RA119.008879. PubMed DOI PMC
Palmerola KL, Amrane S, De Los et al. Replication stress impairs chromosome segregation and preimplantation development in human embryos. Cell. 2022; 185:2988–3007. 10.1016/j.cell.2022.06.028. PubMed DOI
Nakatani T, Schauer T, Altamirano-Pacheco L et al. Emergence of replication timing during early mammalian development. Nature. 2024; 625:401–9. 10.1038/s41586-023-06872-1. PubMed DOI PMC
Takahashi S, Kyogoku H, Hayakawa T et al. Embryonic genome instability upon DNA replication timing program emergence. Nature. 2024; 633:686–94. 10.1038/s41586-024-07841-y. PubMed DOI PMC
Xu S, Wang N, Zuccaro MV et al. DNA replication in early mammalian embryos is patterned, predisposing lamina-associated regions to fragility. Nat Commun. 2024; 15:5247. 10.1038/s41467-024-49565-7. PubMed DOI PMC
van den Berg J, van Batenburg V, Geisenberger C et al. Quantifying DNA replication speeds in single cells by scEdU-seq. Nat Methods. 2024; 21:1175–84. 10.1038/s41592-024-02308-4. PubMed DOI PMC
Guillou E, Ibarra A, Coulon V et al. Cohesin organizes chromatin loops at DNA replication factories. Genes Dev. 2010; 24:2812–22. 10.1101/gad.608210. PubMed DOI PMC
Kang E, Wu G, Ma H et al. Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos. Nature. 2014; 509:101–4. 10.1038/nature13134. PubMed DOI PMC
Ahuja AK, Jodkowska K, Teloni F et al. A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat Commun. 2016; 7:10660. 10.1038/ncomms10660. PubMed DOI PMC
Oktem O, Oktay K Quantitative assessment of the impact of chemotherapy on ovarian follicle reserve and stromal function. Cancer. 2007; 110:2222–9. 10.1002/cncr.23071. PubMed DOI
Eldani M, Luan Y, Xu PC et al. Continuous treatment with cisplatin induces the oocyte death of primordial follicles without activation. FASEB J. 2020; 34:13885–99. 10.1096/fj.202001461RR. PubMed DOI PMC
Kimler BF, Briley SM, Johnson BW et al. Radiation-induced ovarian follicle loss occurs without overt stromal changes. Reproduction. 2018; 155:553–62. 10.1530/REP-18-0089. PubMed DOI PMC
Suh E-K, Yang A, Kettenbach A et al. p63 protects the female germ line during meiotic arrest. Nature. 2006; 444:624–8. 10.1038/nature05337. PubMed DOI
de Vries SS, Baart EB, Dekker M et al. Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev. 1999; 13:523–31. 10.1101/gad.13.5.523. PubMed DOI PMC
Romanienko PJ, Camerini-Otero RD The mouse PubMed DOI
Bai L, Li P, Xiang Y et al. BRCA1 safeguards genome integrity by activating chromosome asynapsis checkpoint to eliminate recombination-defective oocytes. Proc Natl Acad Sci USA. 2024; 121:e2401386121. 10.1073/pnas.2401386121. PubMed DOI PMC
Di Giacomo M, Barchi M, Baudat F et al. Distinct DNA-damage-dependent and -independent responses drive the loss of oocytes in recombination-defective mouse mutants. Proc Natl Acad Sci USA. 2005; 102:737–42. 10.1073/pnas.0406212102. PubMed DOI PMC
Winship AL, Griffiths M, Requesens CL et al. The PARP inhibitor, olaparib, depletes the ovarian reserve in mice: implications for fertility preservation. Hum Reprod. 2020; 35:1864–74. 10.1093/humrep/deaa128. PubMed DOI
Vrtis KB, Dewar JM, Chistol G et al. Single-strand DNA breaks cause replisome disassembly. Mol Cell. 2021; 81:1309–18. 10.1016/j.molcel.2020.12.039. PubMed DOI PMC
Lin Y, Raj J, Li J et al. APE1 senses DNA single-strand breaks for repair and signaling. Nucleic Acids Res. 2020; 48:1925–40. 10.1093/nar/gkz1175. PubMed DOI PMC
Kuzminov A Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc Natl Acad Sci USA. 2001; 98:8241–6. 10.1073/pnas.131009198. PubMed DOI PMC
Branzei D, Foiani M Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol. 2008; 9:297–308. 10.1038/nrm2351. PubMed DOI
Tebbs RS, Thompson LH, Cleaver JE Rescue of Xrcc1 knockout mouse embryo lethality by transgene-complementation. DNA Repair (Amst). 2003; 2:1405–17. 10.1016/j.dnarep.2003.08.007. PubMed DOI
Hua K, Wang L, Sun J et al. Impairment of Pol β-related DNA base-excision repair leads to ovarian aging in mice. Aging. 2020; 12:25207–28. 10.18632/aging.104123. PubMed DOI PMC
Nilsen H DNA base excision repair of uracil residues in reconstituted nucleosome core particles. EMBO J. 2002; 21:5943–52. 10.1093/emboj/cdf581. PubMed DOI PMC
Balakrishnan L, Brandt PD, Lindsey-Boltz LA et al. Long patch base excision repair proceeds via coordinated stimulation of the multienzyme DNA repair complex. J Biol Chem. 2009; 284:15158–72. 10.1074/jbc.M109.000505. PubMed DOI PMC
Su X, Chen W, Cai Q et al. Effective generation of maternal genome point mutated porcine embryos by injection of cytosine base editor into germinal vesicle oocytes. Sci China Life Sci. 2020; 63:996–1005. 10.1007/s11427-019-1611-1. PubMed DOI
Cervantes RB, Stringer JR, Shao C et al. Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc Natl Acad Sci USA. 2002; 99:3586–90. 10.1073/pnas.062527199. PubMed DOI PMC
Tichy ED, Pillai R, Deng L et al. Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks. Stem Cells Dev. 2010; 19:1699–711. 10.1089/scd.2010.0058. PubMed DOI PMC
Intano GW, McMahan CA, Walter RB et al. Mixed spermatogenic germ cell nuclear extracts exhibit high base excision repair activity. Nucleic Acids Res. 2001; 29:1366–72. 10.1093/nar/29.6.1366. PubMed DOI PMC
Intano GW, McMahan CA, McCarrey JR et al. Base excision repair is limited by different proteins in male germ cell nuclear extracts prepared from young and old mice. Mol Cell Biol. 2002; 22:2410–8. 10.1128/MCB.22.7.2410-2418.2002. PubMed DOI PMC
Olsen A-K Highly efficient base excision repair (BER) in human and rat male germ cells. Nucleic Acids Res. 2001; 29:1781–90. 10.1093/nar/29.8.1781. PubMed DOI PMC
Maynard S, Swistowska AM, Lee JW et al. Human embryonic stem cells have enhanced repair of multiple forms of DNA damage. Stem Cells. 2008; 26:2266–74. 10.1634/stemcells.2007-1041. PubMed DOI PMC
Zhu W, Meng J, Li Y et al. Comparative proteomic landscapes elucidate human preimplantation development and failure. Cell. 2025; 188:814–31. 10.1016/j.cell.2024.12.028. PubMed DOI
Handyside AH, Hunter S Cell division and death in the mouse blastocyst before implantation. Roux's Arch Dev Biol. 1986; 195:519–26. 10.1007/BF00375893. PubMed DOI
Hardy K, Handyside AH, Winston RM The human blastocyst: cell number, death and allocation during late preimplantation development PubMed DOI
Chafin DR Human DNA ligase I efficiently seals nicks in nucleosomes. EMBO J. 2000; 19:5492–501. 10.1093/emboj/19.20.5492. PubMed DOI PMC
Beard BC, Wilson SH, Smerdon MJ Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes. Proc Natl Acad Sci USA. 2003; 100:7465–70. 10.1073/pnas.1330328100. PubMed DOI PMC
Rodriguez Y, Smerdon MJ The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes. J Biol Chem. 2013; 288:13863–75. 10.1074/jbc.M112.441444. PubMed DOI PMC
Odell ID, Barbour J-E, Murphy DL et al. Nucleosome disruption by DNA Ligase III-XRCC1 promotes efficient base excision repair. Mol Cell Biol. 2011; 31:4623–32. 10.1128/MCB.05715-11. PubMed DOI PMC
Hinz JM, Czaja W Facilitation of base excision repair by chromatin remodeling. DNA Repair (Amst). 2015; 36:91–7. 10.1016/j.dnarep.2015.09.011. PubMed DOI PMC
Yazdi PG, Pedersen BA, Taylor JF et al. Increasing nucleosome occupancy is correlated with an Increasing mutation rate so long as DNA repair machinery is intact. PLoS One. 2015; 10:e0136574. 10.1371/journal.pone.0136574. PubMed DOI PMC
Zuccotti M, Piccinelli A, Rossi PG et al. Chromatin organization during mouse oocyte growth. Mol Reprod Devel. 1995; 41:479–85. 10.1002/mrd.1080410410. PubMed DOI
Zhu S, Li J, Wang X et al. The chromatin accessibility landscape of mouse oocytes during configuration transition. Cell Prolif. 2025; 58:e13733. 10.1111/cpr.13733. PubMed DOI PMC
Gu C, Liu S, Wu Q et al. Integrative single-cell analysis of transcriptome, DNA methylome and chromatin accessibility in mouse oocytes. Cell Res. 2019; 29:110–23. 10.1038/s41422-018-0125-4. PubMed DOI PMC
Amiad-Pavlov D, Lorber D, Bajpai G et al. Live imaging of chromatin distribution reveals novel principles of nuclear architecture and chromatin compartmentalization. Sci Adv. 2021; 7:eabf6251. 10.1126/sciadv.abf6251. PubMed DOI PMC
Popken J, Brero A, Koehler D et al. Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of PubMed DOI PMC
Wu J, Huang B, Chen H et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature. 2016; 534:652–7. 10.1038/nature18606. PubMed DOI
Liu L, Leng L, Liu C et al. An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos. Nat Commun. 2019; 10:364. 10.1038/s41467-018-08244-0. PubMed DOI PMC
Karnavas T, Pintonello L, Agresti A et al. Histone content increases in differentiating embryonic stem cells. Front Physiol. 2014; 5:330. 10.3389/fphys.2014.00330. PubMed DOI PMC
Bošković A, Eid A, Pontabry J et al. Higher chromatin mobility supports totipotency and precedes pluripotency PubMed DOI PMC
Niakan KK, Han J, Pedersen RA et al. Human pre-implantation embryo development. Development. 2012; 139:829–41. 10.1242/dev.060426. PubMed DOI PMC
Crosetto N, Mitra A, Silva MJ et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods. 2013; 10:361–5. 10.1038/nmeth.2408. PubMed DOI PMC
Cao H, Salazar-García L, Gao F et al. Novel approach reveals genomic landscapes of single-strand DNA breaks with nucleotide resolution in human cells. Nat Commun. 2019; 10:5799. 10.1038/s41467-019-13602-7. PubMed DOI PMC
Zilio N, Ulrich HD Exploring the SSBreakome: genome-wide mapping of DNA single-strand breaks by next-generation sequencing. FEBS J. 2021; 288:3948–61. 10.1111/febs.15568. PubMed DOI
Sriramachandran AM, Petrosino G, Méndez-Lago M et al. Genome-wide nucleotide-resolution mapping of DNA replication patterns, single-strand breaks, and lesions by GLOE-seq. Mol Cell. 2020; 78:975–85. 10.1016/j.molcel.2020.03.027. PubMed DOI PMC
Chesselet M-F, MacKenzie L, Hoang T Detection of DNA damage in tissue sections by PubMed DOI
Maehara Y, Anai H, Kusumoto T et al. Nick translation detection PubMed PMC
Collins A, Møller P, Gajski G et al. Measuring DNA modifications with the comet assay: a compendium of protocols. Nat Protoc. 2023; 18:929–89. 10.1038/s41596-022-00754-y. PubMed DOI PMC
Kordon MM, Zarębski M, Solarczyk K et al. STRIDE—A fluorescence method for direct, specific PubMed DOI PMC
Saayman X, Graham E, Nathan WJ et al. Centromeres as universal hotspots of DNA breakage, driving RAD51-mediated recombination during quiescence. Mol Cell. 2023; 83:523–38. 10.1016/j.molcel.2023.01.004. PubMed DOI PMC
Lensing SV, Marsico G, Hänsel-Hertsch R et al. DSBCapture: PubMed DOI PMC