Blue-Red LED Light Modulates Morphophysiological and Metabolic Responses in the Medicinal Plant Nepeta nuda

. 2025 Jul 24 ; 14 (15) : . [epub] 20250724

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40805634

Grantová podpora
KP-06-N56/9/12.11.2021 Bulgarian National Science Fund, Ministry of Education and Science

Light quality and duration profoundly influence the growth and productivity of plant species. This study investigated the effects of a blue-red LED light combination, known to induce flowering, on the physiological state and content of biologically active substances in catmint (Nepeta nuda L.) grown under controlled in vitro conditions. White light (W) was used as a control and compared with two blue-red intensities: BR (high-intensity blue-red light) and BRS (low-intensity blue-red light or "BR with shadow"). BR-treated plants showed increased leaf area, mesophyll thickness, biomass and starch content but reduced levels of plastid pigments. BR also modified the oxidative state of plants by inducing lipid peroxidation while simultaneously activating ROS scavenging mechanisms and enhancing phenolic antioxidants. Interestingly, BR decreased the accumulation of the Nepeta sp.-specific iridoid, nepetalactone. These effects appear to be regulated by the phytohormones auxin, abscisic acid and jasmonates. BRS treatment produced effects similar to the W control but led to increased plant height and reduced leaf area and thickness. Both BR and BRS regimes induced the accumulation of proteins and amino acids. We conclude that blue-red light can enhance the survival capacity of micropropagated N. nuda during subsequent soil adaptation, suggesting that similar light pre-treatment could improve plant performance under stress conditions.

Zobrazit více v PubMed

Kozai T., Fujiwara K., Runkle E.S. LED Lighting for Urban Agriculture. 1st ed. Springer; Singapore: 2016.

Thoma F., Somborn-Schulz A., Schlehuber D., Keuter V., Deerberg G. Effects of light on secondary metabolites in selected leafy greens: A review. Front. Plant Sci. 2020;11:497. doi: 10.3389/fpls.2020.00497. PubMed DOI PMC

Zhiponova M., Paunov M., Anev S., Petrova N., Krumova S., Raycheva A., Goltsev V., Tzvetkova N., Taneva S., Sapunov K., et al. Special issue in honour of Prof. Reto J. Strasser—JIP-test as a tool for early diagnostics of plant growth and flowering upon selected light recipe. Photosynthetica. 2020;58:399–408. doi: 10.32615/ps.2019.174. DOI

Zhang S., Zhang L., Zou H., Qiu L., Zheng Y., Yang D., Wang Y. Effects of light on secondary metabolite biosynthesis in medicinal plants. Front. Plant Sci. 2021;12:781236. doi: 10.3389/fpls.2021.781236. PubMed DOI PMC

Bao Y., Liu X., Feng C.-H., Niu M.-X., Liu C., Wang H.-L., Yin W., Xia X. Light and light signals regulate growth and development in woody plants. Forests. 2024;15:523. doi: 10.3390/f15030523. DOI

Wei C., Luo G., Jin Z., Li J., Li Y. Physiological and structural changes in leaves of Platycrater arguta seedlings exposed to Increasing Light Intensities. Plants. 2024;13:1263. doi: 10.3390/plants13091263. PubMed DOI PMC

Manukyan A. Effects of PAR and UV-B radiation on herbal yield, bioactive compounds and their antioxidant capacity of some medicinal plants under controlled environmental conditions. Photochem. Photobiol. 2013;89:406–414. doi: 10.1111/j.1751-1097.2012.01242.x. PubMed DOI

Schilisting T., Sá A.C.S., da Silva Filho D.P., da Silva V.M., Navroski M.C., de Oliveira Pereira M., Nascimento B., Moraes C., de Andrade R.S., Estopa R.A., et al. Developmental and Physiological Effects of the Light Source and Cultivation Environment on Mini Cuttings of Eucalyptus dunnii Maiden. Forests. 2025;16:901. doi: 10.3390/f16060901. DOI

Raffo A., Mozzanini E., Ferrari Nicoli S., Lupotto E., Cervelli C. Effect of light intensity and water availability on plant growth, essential oil production and composition in Rosmarinus officinalis L. Eur. Food Res. Technol. 2019;246:167–177. doi: 10.1007/s00217-019-03396-9. DOI

Yeddes W., Chalghoum A., Aidi-Wannes W., Ksouri R., Saidani Tounsi M. Effect of bioclimatic area and season on phenolics and antioxidant activities of rosemary (Rosmarinus officinalis L.) leaves. J. Essent. Oil Res. 2019;31:432–443. doi: 10.1080/10412905.2019.1577305. DOI

Kozłowska W., Matkowski A., Zielińska S. Light intensity and temperature effect on Salvia yangii (B. T. Drew) Metabolic profile in vitro. Front. Plant Sci. 2022;13:888509. doi: 10.3389/fpls.2022.888509. PubMed DOI PMC

Mišić D., Šiler B., Gašić U., Avramov S., Živković S., Živković J.N., Milutinović M., Tešić Ž. Simultaneous UHPLC/DAD/(+/) HESI-MS/MS analysis of phenolic acids and nepetalactones in methanol extracts of Nepeta species: A possible application in chemotaxonomic studies. Phytochem. Anal. 2015;26:72–85. doi: 10.1002/pca.2538. PubMed DOI

Aničić N., Matekalo D., Skorić M., Pećinar I., Brkušanin M., Nestorović Živković J., Dmitrović S., Dajić Stevanović Z., Schulz H., Mišić D. Trichome-specific and developmentally regulated biosynthesis of nepetalactones in leaves of cultivated Nepeta rtanjensis plants. Ind. Crops Prod. 2018;117:347–358. doi: 10.1016/j.indcrop.2018.03.019. DOI

Nestorović Ž.J., Aničić N., Matekalo D., Skorić M., Filipović B., Marković T., Dmitrović S. Polyethylene Glycol (PEG)-induced dehydration alters enzymatic and non-enzymatic components of the antioxidant defense system in Nepeta nervosa Royle ex Bentham. Horticulturae. 2023;9:1277. doi: 10.3390/horticulturae9121277. DOI

Petrova D., Gašić U., Yocheva L., Hinkov A., Yordanova Z., Chaneva G., Mantovska D., Paunov M., Ivanova L., Rogova M., et al. Catmint (Nepeta nuda L.) Phylogenetics and metabolic responses in variable growth conditions. Front. Plant Sci. 2022;13:866777. doi: 10.3389/fpls.2022.866777. PubMed DOI PMC

Zaharieva A., Rusanov K., Rusanova M., Paunov M., Yordanova Z., Mantovska D., Tsacheva I., Petrova D., Mishev K., Dobrev P.I., et al. Uncovering the interrelation between metabolite profiles and bioactivity of in vitro- and wild-grown catmint (Nepeta nuda L.) Metabolites. 2023;13:1099. doi: 10.3390/metabo13101099. PubMed DOI PMC

Petrović L., Filipović B., Skorić M., Šiler B., Banjanac T., Matekalo D., Nestorović Živković J., Dmitrović S., Aničić N., Milutinović M., et al. Molecular background of the diverse metabolic profiles in leaves and inflorescences of naked catmint (Nepeta nuda L.) Front. Plant Sci. 2024;15:1452804. doi: 10.3389/fpls.2024.1452804. PubMed DOI PMC

Tokarz K., Makowski W., Banasiuk R., Krolicka A., Piwowarczyk B. Response of Dionaea muscipula J. Ellis to light stress in in vitro: Physiological study. Plant Cell Tiss. Organ Cult. 2018;134:65–77. doi: 10.1007/s11240-018-1400-2. DOI

Demmig-Adams B., Adams W.W., 3rd Antioxidants in photosynthesis and human nutrition. Science. 2002;298:2149–2153. doi: 10.1126/science.1078002. PubMed DOI

Aničić N., Matekalo D., Skorić M., Živković J.N., Petrović L., Dragićević M., Dmitrović S., Mišić D. Alterations in nepetalactone metabolism during polyethylene glycol (PEG)-induced dehydration stress in two Nepeta species. Phytochemistry. 2020;174:112340. doi: 10.1016/j.phytochem.2020.112340. PubMed DOI

Kurepa J., Shull T.E., Smalle J.A. Friends in arms: Flavonoids and the auxin/cytokinin balance in terrestrialization. Plants. 2023;12:517. doi: 10.3390/plants12030517. PubMed DOI PMC

Lee Z., Kim S., Choi S.J., Joung E., Kwon M., Park H.J., Shim J.S. Regulation of flowering time by environmental factors in plants. Plants. 2023;12:3680. doi: 10.3390/plants12213680. PubMed DOI PMC

Zhang Y., Berman A., Shani E. Plant hormone transport and localization: Signaling molecules on the move. Annu. Rev. Plant Biol. 2023;74:453–479. doi: 10.1146/annurev-arplant-070722-015329. PubMed DOI

Aćimović M., Lončar B., Pezo M., Stanković Jeremić J., Cvetković M., Rat M., Pezo L. Volatile compounds of Nepeta nuda L. from Rtanj Mountain (Serbia) Horticulturae. 2022;8:85. doi: 10.3390/horticulturae8020085. DOI

Kobaisy M., Tellez M.R., Dayan F.E., Mamonov L.K., Mukanova G.S., Sitpaeva G.T., Gemejieva N.G. Composition and phytotoxic activity of Nepeta pannonica L. essential oil. J. Essent. Oil Res. 2005;17:704–707. doi: 10.1080/10412905.2005.9699037. DOI

Miladinović D.L., Ilić B.S., Kocić B.D. Chemoinformatics approach to antibacterial studies of essential oils. Nat. Prod. Commun. 2015;10:1063–1066. doi: 10.1177/1934578X1501000667. PubMed DOI

Lichtenthaler H.K., Buschmann C., Doli M., Fietz H.J., Bach T., Kozel U., Meier D., Rahmsdorf U. Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynth. Res. 1981;2:115–141. doi: 10.1007/BF00028752. PubMed DOI

Wang J., Lu W., Tong Y.X., Yang Q.C. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci. 2016;7:250. doi: 10.3389/fpls.2016.00250. PubMed DOI PMC

Clark L.J., Hamilton J.G.C., Chapman J.V., Rhodes M.J.C., Hallahan D.L. Analysis of monoterpenoids in glandular trichomes of the catmint Nepeta racemosa. Plant J. 1997;11:1387–1393. doi: 10.1046/j.1365-313X.1997.11061387.x. DOI

Murashige T., Skoog F.A. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Abràmoff M.D., Magalhães P.J., Ram S.J. Image processing with ImageJ. Biophotonics Intern. 2004;11:36–42.

Yakimova E.T., Yordanova Z.P., Slavov S., Kapchina-Toteva V.M., Woltering E.J. Alternaria alternata AT toxin induces programmed cell death in tobacco. J. Phytopathol. 2009;157:592–601. doi: 10.1111/j.1439-0434.2008.01535.x. DOI

Kumar D., Yusuf M.A., Singh P., Sardar M., Sarin N.B. Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. [(accessed on 21 July 2025)];Bio Protoc. 2014 8:e1108. doi: 10.21769/BioProtoc.1108. Available online: https://www.bio-protocol.org/e1108. DOI

López-Hidalgo C., Meijón M., Lamelas L., Valledor L. The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and MDA from a small amount of sample. Plant Cell Environ. 2021;44:1977–1986. doi: 10.1111/pce.14007. PubMed DOI

Chaneva G., Tomov A., Paunov M., Hristova V., Ganeva V., Mihaylova N., Anev S., Krumov N., Yordanova Z., Tsenov B., et al. Jewel orchid’s biology and physiological response to aquaponic water as a potential fertilizer. Plants. 2022;11:3181. doi: 10.3390/plants11223181. PubMed DOI PMC

Singleton V.L., Orthofer R., Lamuela-Raventós R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method. Enzymol. 1999;299:152–178. doi: 10.1016/S0076-6879(99)99017-1. DOI

Brand-Williams W., Cuvelier M.E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995;28:25–30. doi: 10.1016/S0023-6438(95)80008-5. DOI

Petrović L., Skorić M., Šiler B., Banjanac T., Gašić U., Matekalo D., Lukić T., Nestorović Živković J., Dmitrović S., Aničić N., et al. Patterns of genetic variation of Nepeta nuda L. from the Central Balkans: Understanding drivers of chemical diversity. Plants. 2024;13:1483. doi: 10.3390/plants13111483. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...