Blue-Red LED Light Modulates Morphophysiological and Metabolic Responses in the Medicinal Plant Nepeta nuda
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
KP-06-N56/9/12.11.2021
Bulgarian National Science Fund, Ministry of Education and Science
PubMed
40805634
PubMed Central
PMC12348697
DOI
10.3390/plants14152285
PII: plants14152285
Knihovny.cz E-zdroje
- Klíčová slova
- ROS, leaf anatomy, phenolic compounds, phytohormones, plastid pigments, volatiles,
- Publikační typ
- časopisecké články MeSH
Light quality and duration profoundly influence the growth and productivity of plant species. This study investigated the effects of a blue-red LED light combination, known to induce flowering, on the physiological state and content of biologically active substances in catmint (Nepeta nuda L.) grown under controlled in vitro conditions. White light (W) was used as a control and compared with two blue-red intensities: BR (high-intensity blue-red light) and BRS (low-intensity blue-red light or "BR with shadow"). BR-treated plants showed increased leaf area, mesophyll thickness, biomass and starch content but reduced levels of plastid pigments. BR also modified the oxidative state of plants by inducing lipid peroxidation while simultaneously activating ROS scavenging mechanisms and enhancing phenolic antioxidants. Interestingly, BR decreased the accumulation of the Nepeta sp.-specific iridoid, nepetalactone. These effects appear to be regulated by the phytohormones auxin, abscisic acid and jasmonates. BRS treatment produced effects similar to the W control but led to increased plant height and reduced leaf area and thickness. Both BR and BRS regimes induced the accumulation of proteins and amino acids. We conclude that blue-red light can enhance the survival capacity of micropropagated N. nuda during subsequent soil adaptation, suggesting that similar light pre-treatment could improve plant performance under stress conditions.
Agrobioinstitute Agricultural Academy 1164 Sofia Bulgaria
Faculty of Biology Sofia University St Kliment Ohridski 1164 Sofia Bulgaria
Institute of Experimental Botany of the Czech Academy of Sciences 165 00 Prague Czech Republic
Institute of Plant Physiology and Genetics Bulgarian Academy of Sciences 1113 Sofia Bulgaria
Zobrazit více v PubMed
Kozai T., Fujiwara K., Runkle E.S. LED Lighting for Urban Agriculture. 1st ed. Springer; Singapore: 2016.
Thoma F., Somborn-Schulz A., Schlehuber D., Keuter V., Deerberg G. Effects of light on secondary metabolites in selected leafy greens: A review. Front. Plant Sci. 2020;11:497. doi: 10.3389/fpls.2020.00497. PubMed DOI PMC
Zhiponova M., Paunov M., Anev S., Petrova N., Krumova S., Raycheva A., Goltsev V., Tzvetkova N., Taneva S., Sapunov K., et al. Special issue in honour of Prof. Reto J. Strasser—JIP-test as a tool for early diagnostics of plant growth and flowering upon selected light recipe. Photosynthetica. 2020;58:399–408. doi: 10.32615/ps.2019.174. DOI
Zhang S., Zhang L., Zou H., Qiu L., Zheng Y., Yang D., Wang Y. Effects of light on secondary metabolite biosynthesis in medicinal plants. Front. Plant Sci. 2021;12:781236. doi: 10.3389/fpls.2021.781236. PubMed DOI PMC
Bao Y., Liu X., Feng C.-H., Niu M.-X., Liu C., Wang H.-L., Yin W., Xia X. Light and light signals regulate growth and development in woody plants. Forests. 2024;15:523. doi: 10.3390/f15030523. DOI
Wei C., Luo G., Jin Z., Li J., Li Y. Physiological and structural changes in leaves of Platycrater arguta seedlings exposed to Increasing Light Intensities. Plants. 2024;13:1263. doi: 10.3390/plants13091263. PubMed DOI PMC
Manukyan A. Effects of PAR and UV-B radiation on herbal yield, bioactive compounds and their antioxidant capacity of some medicinal plants under controlled environmental conditions. Photochem. Photobiol. 2013;89:406–414. doi: 10.1111/j.1751-1097.2012.01242.x. PubMed DOI
Schilisting T., Sá A.C.S., da Silva Filho D.P., da Silva V.M., Navroski M.C., de Oliveira Pereira M., Nascimento B., Moraes C., de Andrade R.S., Estopa R.A., et al. Developmental and Physiological Effects of the Light Source and Cultivation Environment on Mini Cuttings of Eucalyptus dunnii Maiden. Forests. 2025;16:901. doi: 10.3390/f16060901. DOI
Raffo A., Mozzanini E., Ferrari Nicoli S., Lupotto E., Cervelli C. Effect of light intensity and water availability on plant growth, essential oil production and composition in Rosmarinus officinalis L. Eur. Food Res. Technol. 2019;246:167–177. doi: 10.1007/s00217-019-03396-9. DOI
Yeddes W., Chalghoum A., Aidi-Wannes W., Ksouri R., Saidani Tounsi M. Effect of bioclimatic area and season on phenolics and antioxidant activities of rosemary (Rosmarinus officinalis L.) leaves. J. Essent. Oil Res. 2019;31:432–443. doi: 10.1080/10412905.2019.1577305. DOI
Kozłowska W., Matkowski A., Zielińska S. Light intensity and temperature effect on Salvia yangii (B. T. Drew) Metabolic profile in vitro. Front. Plant Sci. 2022;13:888509. doi: 10.3389/fpls.2022.888509. PubMed DOI PMC
Mišić D., Šiler B., Gašić U., Avramov S., Živković S., Živković J.N., Milutinović M., Tešić Ž. Simultaneous UHPLC/DAD/(+/) HESI-MS/MS analysis of phenolic acids and nepetalactones in methanol extracts of Nepeta species: A possible application in chemotaxonomic studies. Phytochem. Anal. 2015;26:72–85. doi: 10.1002/pca.2538. PubMed DOI
Aničić N., Matekalo D., Skorić M., Pećinar I., Brkušanin M., Nestorović Živković J., Dmitrović S., Dajić Stevanović Z., Schulz H., Mišić D. Trichome-specific and developmentally regulated biosynthesis of nepetalactones in leaves of cultivated Nepeta rtanjensis plants. Ind. Crops Prod. 2018;117:347–358. doi: 10.1016/j.indcrop.2018.03.019. DOI
Nestorović Ž.J., Aničić N., Matekalo D., Skorić M., Filipović B., Marković T., Dmitrović S. Polyethylene Glycol (PEG)-induced dehydration alters enzymatic and non-enzymatic components of the antioxidant defense system in Nepeta nervosa Royle ex Bentham. Horticulturae. 2023;9:1277. doi: 10.3390/horticulturae9121277. DOI
Petrova D., Gašić U., Yocheva L., Hinkov A., Yordanova Z., Chaneva G., Mantovska D., Paunov M., Ivanova L., Rogova M., et al. Catmint (Nepeta nuda L.) Phylogenetics and metabolic responses in variable growth conditions. Front. Plant Sci. 2022;13:866777. doi: 10.3389/fpls.2022.866777. PubMed DOI PMC
Zaharieva A., Rusanov K., Rusanova M., Paunov M., Yordanova Z., Mantovska D., Tsacheva I., Petrova D., Mishev K., Dobrev P.I., et al. Uncovering the interrelation between metabolite profiles and bioactivity of in vitro- and wild-grown catmint (Nepeta nuda L.) Metabolites. 2023;13:1099. doi: 10.3390/metabo13101099. PubMed DOI PMC
Petrović L., Filipović B., Skorić M., Šiler B., Banjanac T., Matekalo D., Nestorović Živković J., Dmitrović S., Aničić N., Milutinović M., et al. Molecular background of the diverse metabolic profiles in leaves and inflorescences of naked catmint (Nepeta nuda L.) Front. Plant Sci. 2024;15:1452804. doi: 10.3389/fpls.2024.1452804. PubMed DOI PMC
Tokarz K., Makowski W., Banasiuk R., Krolicka A., Piwowarczyk B. Response of Dionaea muscipula J. Ellis to light stress in in vitro: Physiological study. Plant Cell Tiss. Organ Cult. 2018;134:65–77. doi: 10.1007/s11240-018-1400-2. DOI
Demmig-Adams B., Adams W.W., 3rd Antioxidants in photosynthesis and human nutrition. Science. 2002;298:2149–2153. doi: 10.1126/science.1078002. PubMed DOI
Aničić N., Matekalo D., Skorić M., Živković J.N., Petrović L., Dragićević M., Dmitrović S., Mišić D. Alterations in nepetalactone metabolism during polyethylene glycol (PEG)-induced dehydration stress in two Nepeta species. Phytochemistry. 2020;174:112340. doi: 10.1016/j.phytochem.2020.112340. PubMed DOI
Kurepa J., Shull T.E., Smalle J.A. Friends in arms: Flavonoids and the auxin/cytokinin balance in terrestrialization. Plants. 2023;12:517. doi: 10.3390/plants12030517. PubMed DOI PMC
Lee Z., Kim S., Choi S.J., Joung E., Kwon M., Park H.J., Shim J.S. Regulation of flowering time by environmental factors in plants. Plants. 2023;12:3680. doi: 10.3390/plants12213680. PubMed DOI PMC
Zhang Y., Berman A., Shani E. Plant hormone transport and localization: Signaling molecules on the move. Annu. Rev. Plant Biol. 2023;74:453–479. doi: 10.1146/annurev-arplant-070722-015329. PubMed DOI
Aćimović M., Lončar B., Pezo M., Stanković Jeremić J., Cvetković M., Rat M., Pezo L. Volatile compounds of Nepeta nuda L. from Rtanj Mountain (Serbia) Horticulturae. 2022;8:85. doi: 10.3390/horticulturae8020085. DOI
Kobaisy M., Tellez M.R., Dayan F.E., Mamonov L.K., Mukanova G.S., Sitpaeva G.T., Gemejieva N.G. Composition and phytotoxic activity of Nepeta pannonica L. essential oil. J. Essent. Oil Res. 2005;17:704–707. doi: 10.1080/10412905.2005.9699037. DOI
Miladinović D.L., Ilić B.S., Kocić B.D. Chemoinformatics approach to antibacterial studies of essential oils. Nat. Prod. Commun. 2015;10:1063–1066. doi: 10.1177/1934578X1501000667. PubMed DOI
Lichtenthaler H.K., Buschmann C., Doli M., Fietz H.J., Bach T., Kozel U., Meier D., Rahmsdorf U. Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynth. Res. 1981;2:115–141. doi: 10.1007/BF00028752. PubMed DOI
Wang J., Lu W., Tong Y.X., Yang Q.C. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci. 2016;7:250. doi: 10.3389/fpls.2016.00250. PubMed DOI PMC
Clark L.J., Hamilton J.G.C., Chapman J.V., Rhodes M.J.C., Hallahan D.L. Analysis of monoterpenoids in glandular trichomes of the catmint Nepeta racemosa. Plant J. 1997;11:1387–1393. doi: 10.1046/j.1365-313X.1997.11061387.x. DOI
Murashige T., Skoog F.A. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Abràmoff M.D., Magalhães P.J., Ram S.J. Image processing with ImageJ. Biophotonics Intern. 2004;11:36–42.
Yakimova E.T., Yordanova Z.P., Slavov S., Kapchina-Toteva V.M., Woltering E.J. Alternaria alternata AT toxin induces programmed cell death in tobacco. J. Phytopathol. 2009;157:592–601. doi: 10.1111/j.1439-0434.2008.01535.x. DOI
Kumar D., Yusuf M.A., Singh P., Sardar M., Sarin N.B. Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. [(accessed on 21 July 2025)];Bio Protoc. 2014 8:e1108. doi: 10.21769/BioProtoc.1108. Available online: https://www.bio-protocol.org/e1108. DOI
López-Hidalgo C., Meijón M., Lamelas L., Valledor L. The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and MDA from a small amount of sample. Plant Cell Environ. 2021;44:1977–1986. doi: 10.1111/pce.14007. PubMed DOI
Chaneva G., Tomov A., Paunov M., Hristova V., Ganeva V., Mihaylova N., Anev S., Krumov N., Yordanova Z., Tsenov B., et al. Jewel orchid’s biology and physiological response to aquaponic water as a potential fertilizer. Plants. 2022;11:3181. doi: 10.3390/plants11223181. PubMed DOI PMC
Singleton V.L., Orthofer R., Lamuela-Raventós R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method. Enzymol. 1999;299:152–178. doi: 10.1016/S0076-6879(99)99017-1. DOI
Brand-Williams W., Cuvelier M.E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995;28:25–30. doi: 10.1016/S0023-6438(95)80008-5. DOI
Petrović L., Skorić M., Šiler B., Banjanac T., Gašić U., Matekalo D., Lukić T., Nestorović Živković J., Dmitrović S., Aničić N., et al. Patterns of genetic variation of Nepeta nuda L. from the Central Balkans: Understanding drivers of chemical diversity. Plants. 2024;13:1483. doi: 10.3390/plants13111483. PubMed DOI PMC