Enhanced Electrochemical Performance of Binder-Free Fluorine-Vanadium-Doped CoMoO4 Nanosheets via In Situ MXene Integration for Energy Storage Applications
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40814300
PubMed Central
PMC12345410
DOI
10.1021/acsaem.5c01660
Knihovny.cz E-resources
- Keywords
- MXene, doping, energy storage, hydrothermal, supercapacitor, transition metal,
- Publication type
- Journal Article MeSH
Designing an affordable device that seamlessly combines efficient electrochemical energy storage with straightforward, robust protocols represents a promising pathway for ushering in the next generation of green power solutions and fostering a sustainable society. In this work, CoMoO4, vanadium-doped CoMoO4 (V-CoMoO4), and fluorine-vanadium-doped CoMoO4 (F-V-CoMoO4) were synthesized in situ on nickel foam (NF) using a hydrothermal method, followed by thermal treatment, resulting in a hierarchical structure with interconnected nanosheets and open porous channels. V2C MXene was used as the vanadium source, which was fully oxidized during the synthesis. This unique architecture is particularly advantageous for supercapacitor applications, as it facilitates efficient electrolyte flow, promotes the formation of oxygen defects that enhance ion transport, and ultimately maximizes electrochemical performances. At a current density of 2.5 mA/cm2, the F-V-CoMoO4 electrode achieves an areal capacitance of approximately 2250 mF/cm2 (900 F/g at 1 A/g), outperforming pristine CoMoO4 (180 mF/cm2, 72 F/g) and V-doped CoMoO4 (810 mF/cm2, 324 F/g). An asymmetric supercapacitor is fabricated using an F-V-CoMoO4@NF//AC@NF device and PVA/KOH gel electrolyte, showing excellent redox behavior and cycling stability, with 100% capacity retention after 2000 cycles at a current density of 1 Ag-1. Moreover, the developed device exhibits a specific energy density of 11.5 Whkg-1 and a power density of 225 Wkg-1 at a current density of 0.3 A/g. These findings highlight the potential of F-V doping in enhancing the electrochemical properties of CoMoO4-based electrodes.
See more in PubMed
Liu X., Li Y., Zeng L., Li X., Chen N., Bai S., He H., Wang Q., Zhang C.. A review on mechanochemistry: Approaching advanced energy materials with greener force. Adv. Materials. 2022;34(46):2108327. doi: 10.1002/adma.202108327. PubMed DOI
Ding Y., Jiang J., Wu Y., Zhang Y., Zhou J., Zhang Y., Huang Q., Zheng Z.. Porous Conductive Textiles for Wearable Electronics. Chem. Rev. 2024;124(4):1535–1648. doi: 10.1021/acs.chemrev.3c00507. PubMed DOI
Yan Z., Luo S., Li Q., Wu Z., Liu S.. Recent advances in flexible wearable supercapacitors: properties, fabrication, and applications. Adv. Sci. 2024;11(8):2302172. doi: 10.1002/advs.202302172. PubMed DOI PMC
Fic K., Platek A., Piwek J., Frackowiak E.. Sustainable materials for electrochemical capacitors. Mater. Today. 2018;21(4):437–454. doi: 10.1016/j.mattod.2018.03.005. DOI
Noori A., El-Kady M. F., Rahmanifar M. S., Kaner R. B., Mousavi M. F.. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 2019;48(5):1272–1341. doi: 10.1039/C8CS00581H. PubMed DOI
Ahrens L., Mikulics M., Schröder S., Mayer J., Hardtdegen H. H.. Laser-Micro-Annealing of Microcrystalline Ni-Rich NCM Oxide: Towards Micro-Cathodes Integrated on Polyethylene Terephthalate Flexible Substrates. Materials. 2025;18(3):680. doi: 10.3390/ma18030680. PubMed DOI PMC
Akbar A. R., Peng G., Li Y., Iqbal R., Saleem A., Wang G., Khan A. S., Ali M., Tahir M., Assiri M. A., Ali G., Liu F.. Hierarchical NiCo@ NiOOH@ CoMoO4 Core–Shell Heterostructure on Carbon Cloth for High-Performance Asymmetric Supercapacitors. Small. 2023;19(44):2304686. doi: 10.1002/smll.202304686. PubMed DOI
Liu M., Lin H., Sun L., Ying Y., He B., Liu Y.. Enhanced charge storage in supercapacitors using carbon nanotubes and N-doped graphene quantum dots-modified (NiMn) Co2O4. J. Colloid Interface Sci. 2025;678:763–771. doi: 10.1016/j.jcis.2024.09.039. PubMed DOI
Mai L. Q., Yang F., Zhao Y. L., Xu X., Xu L., Luo Y. Z.. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat. Commun. 2011;2(1):381. doi: 10.1038/ncomms1387. PubMed DOI
Li W., Wang X., Hu Y., Sun L., Gao C., Zhang C., Liu H., Duan M.. Hydrothermal synthesized of CoMoO4 microspheres as excellent electrode material for supercapacitor. Nanoscale Res. Lett. 2018;13:120. doi: 10.1186/s11671-018-2540-3. PubMed DOI PMC
Liu M.-C., Kong L.-B., Lu C., Li X.-M., Luo Y.-C., Kang L.. Facile fabrication of CoMoO4 nanorods as electrode material for electrochemical capacitors. Mater. Lett. 2013;94:197–200. doi: 10.1016/j.matlet.2012.12.057. DOI
Li F., Huang Z., Hu R., Chen W., Liu Y., Qi X.. Self-assembled CoMoO4/3D worm-like expanded graphite composites for high performance supercapacitors. J. Power Sources. 2025;632:236305. doi: 10.1016/j.jpowsour.2025.236305. DOI
Yang W.-D., Xiang J., Zhao R.-D., Loy S., Li M.-T., Ma D.-M., Li J., Wu F.-F.. Nanoengineering of ZnCo2O4@ CoMoO4 heterogeneous structures for supercapacitor and water splitting applications. Ceram. Int. 2023;49(3):4422–4434. doi: 10.1016/j.ceramint.2022.09.329. DOI
Shameem A., Devendran P., Murugan A., Siva V., Bahadur S. A.. Cost-effective synthesis of efficient La doped CoMoO4 nanocomposite electrode for sustainable high-energy symmetric supercapacitors. J. Energy Storage. 2023;73:108856. doi: 10.1016/j.est.2023.108856. DOI
Jiang J., Zhou W., Li W., Huang Z., Zhang M., Jin J., Xie J.. Construction of electron-interactive CoMoO4@ CoP core–shell structure on boron-doped graphene aerogel as strongly interface coupled hybrid electrodes for high flexible supercapacitor. Chem. Eng. J. 2024;496:154123. doi: 10.1016/j.cej.2024.154123. DOI
Wang T., Ma W., Zhang Y., Guo J., Li T., Wang S., Yang D. a.. Construction of CoMoO4@Ni3S2 core-shell heterostructures nanorod arrays for high-performance supercapacitors. J. Energy Storage. 2021;35:102319. doi: 10.1016/j.est.2021.102319. DOI
Jothilakshmi T., Deepika S., Sivakumar N., Meghanathan K. L.. Metal-organic framework-derived ZnCo2O4@CoMoO4 positive electrode for high-performance asymmetric supercapacitors. Mater. Chem. Phys. 2025;334:130484. doi: 10.1016/j.matchemphys.2025.130484. DOI
Wang X., Su T., Luo Y., Quan L., Zhong L., Li R., Zhou T., Liu M., Zhao Y., Lai X., Bi J., Gao D.. Achieving superior lithium storage performances of CoMoO4 anode for lithium-ion batteries by Si-doping dual vacancies engineering. Acta Mater. 2022;225:117600. doi: 10.1016/j.actamat.2021.117600. DOI
Wang J., Zhang X., Wei Q., Lv H., Tian Y., Tong Z., Liu X., Hao J., Qu H., Zhao J., Li Y., Mai L.. 3D self-supported nanopine forest-like Co3O4@CoMoO4 core–shell architectures for high-energy solid state supercapacitors. Nano Energy. 2016;19:222–233. doi: 10.1016/j.nanoen.2015.10.036. DOI
Young C., Wu A.-Y., Li R.-Y.. Synergistic charge storage enhancement in supercapacitors via Ti3C2Tx MXene and CoMoO4 nanoparticles. Micromachines. 2024;15(2):234. doi: 10.3390/mi15020234. PubMed DOI PMC
Ghosh S., Samanta P., Jang W., Yang C.-M., Murmu N. C., Kuila T.. Improvement of the Supercapacitor Performance of Nickel Molybdenum Chalcogenides/Reduced Graphene Oxide Composites through Vanadium-Doping Induced Crystal Strain Relaxation and Band Gap Modification. ACS Appl. Energy Mater. 2022;5(2):1528–1541. doi: 10.1021/acsaem.1c02932. DOI
Wang C., Xu H., Wang Y., Shang H., Jin L., Ren F., Song T., Guo J., Du Y.. Hollow V-doped CoMx (M= P, S, O) nanoboxes as efficient OER electrocatalysts for overall water splitting. Inorg. Chem. 2020;59(16):11814–11822. doi: 10.1021/acs.inorgchem.0c01832. PubMed DOI
Xie W., Huang J., Huang L., Geng S., Song S., Tsiakaras P., Wang Y.. Novel fluorine-doped cobalt molybdate nanosheets with enriched oxygen-vacancies for improved oxygen evolution reaction activity. Appl. Catal., B. 2022;303:120871. doi: 10.1016/j.apcatb.2021.120871. DOI
Cen Z., Yang F., Wan J., Xu K.. F-doped NiCo2O4@ CoMoO4 as an advanced electrode for aqueous Zn-ion batteries. Chem. Commun. 2023;59(56):8708–8710. doi: 10.1039/D3CC00970J. PubMed DOI
Wu B., Li M., Mazánek V., Liao Z., Ying Y., Oliveira F. M., Dekanovsky L., Jan L., Hou G., Antonatos N., Wei Q., Li M., Pal B., He J., Koňáková D., Vejmělková E., Sofer Z.. In Situ Vanadium-Deficient Engineering of V2C MXene: A Pathway to Enhanced Zinc-Ion Batteries. Small Methods. 2024;8:2301461. doi: 10.1002/smtd.202301461. PubMed DOI
Smidstrup S., Markussen T., Vancraeyveld P., Wellendorff J., Schneider J., Gunst T., Verstichel B., Stradi D., Khomyakov P. A., Vej-Hansen U. G., Lee M. E., Chill S. T., Rasmussen F., Penazzi G., Corsetti F., Ojanperä A., Jensen K., Palsgaard M. L. N., Martinez U., Blom A., Brandbyge M., Stokbro K.. QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys.: Condens. Matter. 2019;32:015901. doi: 10.1088/1361-648X/ab4007. PubMed DOI
Wang R., Wang Q., Zhang D., Zhang Q., Jiang L., Liu Y., Wang Q., Wang X.. Hierarchical phosphorus-doped CoMoO4‑x nanoarrays accelerate the water dissociation for efficient hydrogen evolution under alkaline electrolyte. J. Power Sources. 2025;626:235743. doi: 10.1016/j.jpowsour.2024.235743. DOI
Gao Z., Shen T., Zeng Z., Chang S., Guo Z., Xu X., Li Y., Wu D., Jia R.. Cation/anion-doping induced electronic structure modulation of CoMoO4 for enhanced hydrogen evolution. J. Colloid Interface Sci. 2025;677:569–576. doi: 10.1016/j.jcis.2024.08.012. PubMed DOI
Ma X., Wei B., Yuan M., Li J., Liang S., Wu Y., Dai D., Xu L.. Self-supported phosphorus-doped CoMoO4 rod bundles for efficient hydrogen evolution. J. Mater. Sci. 2020;55:6502–6512. doi: 10.1007/s10853-020-04448-2. DOI
Oku M., Hirokawa K.. X-ray photoelectron spectroscopy of Co3O4, Fe3O4, Mn3O4, and related compounds. J. Electron Spectrosc. Relat. Phenom. 1976;8(5):475–481. doi: 10.1016/0368-2048(76)80034-5. DOI
Meng J., Fu J., Yang X., Wei M., Liang S., Zang H.-Y., Tan H., Wang Y., Li Y.. Efficient MMoO4 (M = Co, Ni) carbon cloth electrodes for water oxidation. Inorg. Chem. Frontiers. 2017;4(11):1791–1797. doi: 10.1039/C7QI00435D. DOI
Yao J., Gong Y., Yang S., Xiao P., Zhang Y., Keyshar K., Ye G., Ozden S., Vajtai R., Ajayan P. M.. CoMoO4 Nanoparticles Anchored on Reduced Graphene Oxide Nanocomposites as Anodes for Long-Life Lithium-Ion Batteries. ACS Appl. Mater. Interfaces. 2014;6(22):20414–20422. doi: 10.1021/am505983m. PubMed DOI
Fan J., Qu H., Li Y., Zhang J., Savilov S. V., Chen M.. Simultaneously introducing N dopants and O vacancies in CoMoO4 for high-performance hybrid capacitors. J. Energy Storage. 2024;103:114349. doi: 10.1016/j.est.2024.114349. DOI
Wei R., Bu X., Gao W., Villaos R. A. B., Macam G., Huang Z.-Q., Lan C., Chuang F.-C., Qu Y., Ho J. C.. Engineering Surface Structure of Spinel Oxides via High-Valent Vanadium Doping for Remarkably Enhanced Electrocatalytic Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces. 2019;11(36):33012–33021. doi: 10.1021/acsami.9b10868. PubMed DOI
Wu Z., Khalafallah D., Teng C., Wang X., Zou Q., Chen J., Zhi M., Hong Z.. Vanadium doped hierarchical porous nickel-cobalt layered double hydroxides nanosheet arrays for high-performance supercapacitor. J. Alloys Compd. 2020;838:155604. doi: 10.1016/j.jallcom.2020.155604. DOI
Rossi L., Palacio M., Villabrille P. I., Rosso J. A.. V-doped TiO2 photocatalysts and their application to pollutant degradation. Environ. Sci. Pollut. Res. 2021;28:24112–24123. doi: 10.1007/s11356-021-12339-5. PubMed DOI
Chi K., Zhang Z., Lv Q., Xie C., Xiao J., Xiao F., Wang S.. Well-ordered oxygen-deficient CoMoO4 and Fe2O3 nanoplate arrays on 3D graphene foam: toward flexible asymmetric supercapacitors with enhanced capacitive properties. ACS Appl. Mater. Interfaces. 2017;9(7):6044–6053. doi: 10.1021/acsami.6b14810. PubMed DOI
Zhang X., Luo J., Tang P., Ye X., Peng X., Tang H., Sun S.-G., Fransaer J.. A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: a supercapacitor case with superior rate performance and high mass loading. Nano Energy. 2017;31:311–321. doi: 10.1016/j.nanoen.2016.11.024. DOI
Yun X., Lu T., Zhou R., Lu Z., Li J., Zhu Y.. Heterostructured NiSe2/CoSe2 hollow microspheres as battery-type cathode for hybrid supercapacitors: Electrochemical kinetics and energy storage mechanism. Chem. Eng. J. 2021;426:131328. doi: 10.1016/j.cej.2021.131328. DOI
Barik R., Barik G., Tanwar V., Ingole P. P.. Supercapacitor performance and charge storage mechanism of brannerite type CuV2O6/PANI nanocomposites synthesis with their theoretical aspects. Electrochim. Acta. 2022;410:140015. doi: 10.1016/j.electacta.2022.140015. DOI
Narale D. K., Kumbhar P. D., Bhosale R. R., Patil K. D., Jambhale C. L., Kim J. H., Kolekar S. S.. Rational design of NiMoO4@ CoMoO4 core-shell microrods a promising binder-free positive electrode for high-performance asymmetric supercapacitor application. J. Power Sources. 2024;601:234291. doi: 10.1016/j.jpowsour.2024.234291. DOI
Sun Q., He T., Li Y.. A novel all solid-state asymmetric supercapacitor with superior electrochemical performance in a wide temperature range using a hydroquinone modified graphene xerogel as the cathode and N-doped Ti 3C2Tx as the anode. J. Mater. Chem. A. 2020;8(4):1687–1696. doi: 10.1039/C9TA09447D. DOI
Dang Y., Wang G., Su G., Lu Z., Wang Y., Liu T., Pu X., Wang X., Wu C., Song C., Zhao Q., Rao H., Sun M.. Rational construction of a Ni/CoMoO4 heterostructure with strong Ni–O–Co bonds for improving multifunctional nanozyme activity. ACS Nano. 2022;16(3):4536–4550. doi: 10.1021/acsnano.1c11012. PubMed DOI
Shaheen I., Ahmad K. S., Zequine C., Gupta R. K., Thomas A., Malik M. A.. Organic template-assisted green synthesis of CoMoO4 nanomaterials for the investigation of energy storage properties. RSC Adv. 2020;10:8115–8129. doi: 10.1039/C9RA09477F. PubMed DOI PMC
Zhang X., Yue L., Zhang S., Feng Y., An L., Wang M., Mi J.. Nickel-doped cobalt molybdate nanorods with excellent cycle stability for aqueous asymmetric supercapacitor. Int. J. Hydrogen Energy. 2020;45(15):8853–8865. doi: 10.1016/j.ijhydene.2020.01.127. DOI
Ramulu B., Nagaraju G., Chandra Sekhar S., Hussain S. K., Narsimulu D., Yu J. S.. Synergistic effects of cobalt molybdate@ phosphate core–shell architectures with ultrahigh capacity for rechargeable hybrid supercapacitors. ACS Appl. Mater. Interfaces. 2019;11(44):41245–41257. doi: 10.1021/acsami.9b11707. PubMed DOI