Unveiling the Hidden Feast: A Model to Translate Molecular Detection Into Predation Rate-Application Example on Biological Control by Generalist Predators in Agricultural Fields
Status Publisher Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
ANR-17-CE32-0011
ANR NGB
Université de Rennes 1
ANR-20-PCPA-0008
SPECIFICS
- Keywords
- carabid beetle, hierarchical Bayesian model, molecular trophic ecology, pest regulation, predation rate,
- Publication type
- Journal Article MeSH
Few processes are as decisive as predation in shaping the structure and dynamics of ecological communities. For most predator species, however, the number of prey items killed by a predator in a day (predation rate) remains impossible to assess because direct observations are scarce or impossible to acquire. For such species, molecular gut content analyses are routinely used to test for the presence of a prey in the predator's gut. Specifically, our model uses a novel mechanistic representation of predation and digestion to integrate field data on prey detection and laboratory data on prey molecular signal decay in the predator's gut. Model fit provides an estimate of the slope and intercept of the digestion curve (molecular signal decay) and an estimate of the predation rate. In a case study targeting 25 carabid beetle species and 5 types of prey in agricultural fields (winter wheat), we use our model to estimate predation rates for each predator-prey pair. Based on predation rate estimates, we introduce a new biocontrol indicator at community scale and explore its potential for advanced agroecological research. We discuss the performance of our model on the basis of the scant information available in the literature and detail its conditions of application to highlight its advantages over existing predation models.
Department of Biology University of Victoria Victoria British Columbia Canada
Functional Diversity in Agro Ecosystems Crop Research Institute Praha 6 Czech Republic
IGEPP INRAE Institut Agro Univ Rennes Angers France
See more in PubMed
Ahmed, D. A., A. Beidas, S. V. Petrovskii, et al. 2023. “Simulating Capture Efficiency of Pitfall Traps Based on Sampling Strategy and the Movement of Ground‐Dwelling Arthropods.” Methods in Ecology and Evolution 14, no. 11: 2827–2843. https://doi.org/10.1111/2041‐210X.14174.
Andow, D. A., and D. P. Paula. 2023. “Estimating Predation Rates From Molecular Gut Content Analysis.” Molecular Ecology Resources 23, no. 5: 1023–1033. https://doi.org/10.1111/1755‐0998.13769.
Andow, D. A., and D. P. Paula. 2024. “Estimating Relative Per Capita Predation Rates From Molecular Gut Content Analysis.” Biological Control 192: 105499. https://doi.org/10.1016/j.biocontrol.2024.105499.
Bianchi, F. J. J. A., C. J. H. Booij, and T. Tscharntke. 2006. “Sustainable Pest Regulation in Agricultural Landscapes: A Review on Landscape Composition, Biodiversity and Natural Pest Control.” Proceedings of the Royal Society B: Biological Sciences 273: 1715–1727. https://doi.org/10.1098/rspb.2006.3530.
Birkhofer, K., H. Bylund, P. Dalin, et al. 2017. “Methods to Identify the Prey of Invertebrate Predators in Terrestrial Field Studies.” Ecology and Evolution 7, no. 6: 1942–1953. https://doi.org/10.1002/ece3.2791.
Carbonne, B., D. A. Bohan, and S. Petit. 2020. “Key Carabid Species Drive Spring Weed Seed Predation of Viola arvensis.” Biological Control 141: 104148. https://doi.org/10.1016/j.biocontrol.2019.104148.
Coblentz, K. E., A. E. Rosenblatt, and M. Novak. 2017. “The Application of Bayesian Hierarchical Models to Quantify Individual Diet Specialization.” Ecology 98, no. 6: 1535–1547. https://doi.org/10.1002/ecy.1802.
Cressie, N., C. A. Calder, J. S. Clark, J. M. Ver Hoef, and C. K. Wikle. 2009. “Accounting for Uncertainty in Ecological Analysis: The Strengths and Limitations of Hierarchical Statistical Modeling.” Ecological Applications 19, no. 3: 553–570. https://doi.org/10.1890/07‐0744.1.
Curtsdotter, A., H. T. Banks, J. E. Banks, et al. 2019. “Ecosystem Function in Predator–Prey Food Webs—Confronting Dynamic Models With Empirical Data.” Journal of Animal Ecology 88, no. 2: 196–210. https://doi.org/10.1111/1365‐2656.12892.
Deagle, B. E., A. C. Thomas, J. C. McInnes, et al. 2019. “2019 Counting With DNA in Metabarcoding Studies: How Should We Convert Sequence Reads to Dietary Data?” Molecular Ecology 28: 391–406. https://doi.org/10.1111/mec.14734.
Dempster, J. P. 1960. “A Quantitative Study of the Predators on the Eggs and Larvae of the Broom Beetle, Phytodecta Olivacea Forster, Using the Precipitin Test.” Journal of Animal Ecology 29, no. 1: 149–167. https://doi.org/10.2307/2275.
Ellison, A. M. 2004. “Bayesian Inference in Ecology.” Ecology Letters 7, no. 6: 509–520. https://doi.org/10.1111/j.1461‐0248.2004.00603.x.
Fabre, F., C.‐A. Dedryver, M. Plantegenest, M. Hullé, and E. Rivot. 2010. “Hierarchical Bayesian Modelling of Plant Colonisation by Winged Aphids: Inferring Dispersal Processes by Linking Aerial and Field Count Data.” Ecological Modelling 221, no. 15: 1770–1778. https://doi.org/10.1016/j.ecolmodel.2010.04.006.
Feit, B., N. Blüthgen, M. Traugott, and M. Jonsson. 2019. “Resilience of Ecosystem Processes: A New Approach Shows That Functional Redundancy of Biological Control Services Is Reduced by Landscape Simplification.” Ecology Letters 22, no. 10: 1568–1577. https://doi.org/10.1111/ele.13347.
Furlong, M. J. 2015. “Knowing Your Enemies: Integrating Molecular and Ecological Methods to Assess the Impact of Arthropod Predators on Crop Pests.” Insect Science 22, no. 1: 6–19. https://doi.org/10.1111/1744‐7917.12157.
Ge, Y., L. Zhang, Z. Qin, et al. 2019. “Different Predation Capacities and Mechanisms of Harmonia axyridis (Coleoptera: Coccinellidae) on Two Morphotypes of Pear Psylla Cacopsylla Chinensis (Hemiptera: Psyllidae).” PLoS One 14, no. 4: e0215834. https://doi.org/10.1371/journal.pone.0215834.
Gelman, A., and D. B. Rubin. 1992. “Inference From Iterative Simulation Using Multiple Sequences.” Statistical Science 7, no. 4: 457–472. https://doi.org/10.1214/ss/1177011136.
Greenstone, M. H. 1979. “Spider Feeding Behaviour Optimises Dietary Essential Amino Acid Composition.” Nature 282, no. 5738: 501–503. https://doi.org/10.1038/282501a0.
Greenstone, M. H., M. E. Payton, D. C. Weber, and A. M. Simmons. 2014. “The Detectability Half‐Life in Arthropod Predator–Prey Research: What It Is, Why We Need It, How to Measure It, and How to Use It.” Molecular Ecology 23, no. 15: 3799–3813. https://doi.org/10.1111/mec.12552.
Greenstone, M. H., Z. Szendrei, M. E. Payton, D. L. Rowley, T. C. Coudron, and D. C. Weber. 2010. “Choosing Natural Enemies for Conservation Biological Control: Use of the Prey Detectability Half‐Life to Rank Key Predators of Colorado Potato Beetle.” Entomologia Experimentalis et Applicata 136, no. 1: 97–107. https://doi.org/10.1111/j.1570‐7458.2010.01006.x.
Griffen, B. D. 2021. “Considerations When Applying the Consumer Functional Response Measured Under Artificial Conditions.” Frontiers in Ecology and Evolution 9: 713147. https://doi.org/10.3389/fevo.2021.713147.
Iverson, S. J., C. Field, W. D. Bowen, and W. Blanchard. 2004. “Quantitative Fatty Acid Signature Analysis: A New Method of Estimating Predator Diets.” Ecological Monographs 74, no. 2: 211–235. https://doi.org/10.1890/02‐4105.
King, R. A., D. S. Read, M. Traugott, and W. O. C. Symondson. 2008. “INVITED REVIEW: Molecular Analysis of Predation: A Review of Best Practice for DNA‐Based Approaches.” Molecular Ecology 17, no. 4: 947–963. https://doi.org/10.1111/j.1365‐294X.2007.03613.x.
Kromp, B. 1999. “Carabid Beetles in Sustainable Agriculture: A Review on Pest Control Efficacy, Cultivation Impacts and Enhancement.” Agriculture, Ecosystems & Environment 74, no. 1: 187–228. https://doi.org/10.1016/S0167‐8809(99)00037‐7.
Lamb, P. D., E. Hunter, J. K. Pinnegar, S. Creer, R. G. Davies, and M. I. Taylor. 2019. “How Quantitative Is Metabarcoding: A Meta‐Analytical Approach.” Molecular Ecology 28, no. 2: 420–430. https://doi.org/10.1111/mec.14920.
Larochelle, A., and Association des entomologistes amateurs du Québec. 1990. The Food of Carabid Beetles: (Coleoptera: Carabidae, Including Cicindelinae). Association des entomologistes amateurs du Québec. https://books.google.fr/books?id=mjuawAEACAAJ.
Lister, A., M. B. Usher, and W. Block. 1987. “Description and Quantification of Field Attack Rates by Predatory Mites: An Example Using an Electrophoresis Method With a Species of Antarctic Mite.” Oecologia 72, no. 2: 185–191. https://doi.org/10.1007/BF00379265.
Mills, M. G. L., and T. M. Shenk. 1992. “Predator–Prey Relationships: The Impact of Lion Predation on Wildebeest and Zebra Populations.” Journal of Animal Ecology 61, no. 3: 693–702. https://doi.org/10.2307/5624.
Nakamura, M., and K. Nakamura. 1977. “Population Dynamics of the Chestnut Gall Wasp, Dryocosmus Kuriphilus Yasumatsu (Hymenoptera: Cynipidae).” Oecologia 27, no. 2: 97–116. https://doi.org/10.1007/BF00345816.
Naranjo, S. E., and J. R. Hagler. 2001. “Toward the Quantification of Predation With Predator Gut Immunoassays: A New Approach Integrating Functional Response Behavior.” Biological Control 20, no. 2: 175–189. https://doi.org/10.1006/bcon.2000.0892.
O'Bryan, C. J., A. R. Braczkowski, H. L. Beyer, et al. 2018. “The Contribution of Predators and Scavengers to Human Well‐Being.” Nature Ecology & Evolution 2: 229–236. https://doi.org/10.1038/s41559‐017‐0421‐2.
Pawar, S., A. I. Dell, and V. M. Savage. 2012. “Dimensionality of Consumer Search Space Drives Trophic Interaction Strengths.” Nature 486, no. 7404: 485–489. https://doi.org/10.1038/nature11131.
Pereira, C. L., Z. Ersoy, M. T. P. Gilbert, D. Gravel, M. B. Araújo, and M. G. Matias. 2023. “Future‐Proofing Environmental DNA and Trait‐Based Predictions of Food Webs.” Bioscience 73, no. 12: 862–878. https://doi.org/10.1093/biosci/biad089.
Perennes, M., T. Diekötter, H. Hoffmann, E. A. Martin, B. Schröder, and B. Burkhard. 2023. “Modelling Potential Natural Pest Control Ecosystem Services Provided by Arthropods in Agricultural Landscapes.” Agriculture, Ecosystems & Environment 342: 108250. https://doi.org/10.1016/j.agee.2022.108250.
Rall, B. C., U. Brose, M. Hartvig, et al. 2012. “Universal Temperature and Body‐Mass Scaling of Feeding Rates.” Philosophical Transactions of the Royal Society B 367, no. 1605: 2923–2934. https://doi.org/10.1098/rstb.2012.0242.
Rothschild, G. H. L. 1966. “A Study of a Natural Population of Conomelus anceps (Germar) (Homoptera: Delphacidae) Including Observations on Predation Using the Precipitin Test.” Journal of Animal Ecology 35, no. 3: 413–434. https://doi.org/10.2307/2483.
Sacco‐Martret de Préville, A., S. Ortiz‐Martinez, M. Plantegenest, and E. Canard. 2022. “Effect of Conservation Agriculture on Aphid Biocontrol by Generalist (Carabid Beetle) and Specialist (Parasitoids Wasp) Natural Enemy Communities in Winter Wheat.” Frontiers in Ecology and Evolution 10: 893787. https://doi.org/10.3389/fevo.2022.893787.
Sacco‐Martret de Préville, A., K. Staudacher, M. Traugott, D. A. Bohan, M. Plantegenest, and E. Canard. 2024. “Prey Switching and Natural Regulation Potential of Carabid Communities Over the Winter Wheat Cropping Season.” SSRN Scholarly Paper. Rochester, NY. https://doi.org/10.2139/ssrn.4748189.
Snyder, W. E. 2019. “Give Predators a Complement: Conserving Natural Enemy Biodiversity to Improve Biocontrol.” Biological Control 135: 73–82. https://doi.org/10.1016/j.biocontrol.2019.04.017.
Sopp, P. I., K. D. Sunderland, J. S. Fenlon, and S. D. Wratten. 1992. “An Improved Quantitative Method for Estimating Invertebrate Predation in the Field Using an Enzyme‐Linked Immunosorbent Assay (ELISA).” Journal of Applied Ecology 29, no. 2: 295–302. https://doi.org/10.2307/2404498.
Stell, E., R. Bommarco, A. N. Laubmeier, H. Meiss, and O. Therond. 2024. “From a Local Descriptive to a Generic Predictive Model of Cereal Aphid Regulation by Predators.” Journal of Animal Ecology 93, no. 7: 943–957. https://doi.org/10.1111/1365‐2656.14115.
Sunderland, K. D., N. E. Crook, D. L. Stacey, and B. J. Fuller. 1987. “A Study of Feeding by Polyphagous Predators on Cereal Aphids Using Elisa and Gut Dissection.” Journal of Applied Ecology 24, no. 3: 907–933. https://doi.org/10.2307/2403989.
Symondson, W. O. C., K. D. Sunderland, and M. H. Greenstone. 2002. “Can Generalist Predators Be Effective Biocontrol Agents?” Annual Review of Entomology 47, no. 1: 561–594. https://doi.org/10.1146/annurev.ento.47.091201.145240.
Traugott, M., S. Kamenova, L. Ruess, J. Seeber, and M. Plantegenest. 2013. “Chapter Three ‐ Empirically Characterising Trophic Networks: What Emerging DNA‐Based Methods, Stable Isotope and Fatty Acid Analyses Can Offer.” In Advances in Ecological Research, Ecological Networks in an Agricultural World, edited by G. Woodward and D. A. Bohan, vol. 49, 177–224. Academic Press. https://doi.org/10.1016/B978‐0‐12‐420002‐9.00003‐2.
Uiterwaal, S. F., and J. P. DeLong. 2024. “Foraging Rates From Metabarcod‐Ing: Predators Have Reduced Functional Responses in Wild, Diverseprey Communities.” Ecology Letters 27: e14394.
Vialatte, A., A. Tibi, A. Alignier, et al. 2021. “Chapter Four ‐ Promoting Crop Pest Control by Plant Diversification in Agricultural Landscapes: A Conceptual Framework for Analysing Feedback Loops Between Agro‐Ecological and Socio‐Economic Effects.” In Advances in Ecological Research, The Future of Agricultural Landscapes, Part III, edited by D. A. Bohan, A. J. Dumbrell, and A. J. Vanbergen, vol. 65, 133–165. Academic Press. https://doi.org/10.1016/bs.aecr.2021.10.004.
Wootton, J. T. 1997. “Estimates and Tests of Per Capita Interaction Strength: Diet, Abundance, and Impact of Intertidally Foraging Birds.” Ecological Monographs 67, no. 1: 45–64. https://doi.org/10.1890/0012‐9615(1997)067[0045:EATOPC]2.0.CO;2.