The effect of WWTP products amendments on Phaseolus vulgaris rhizosphere and its ability to inactivate clarithromycin
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
QK21020080
Ministerstvo Zemědělství
QK21020080
Ministerstvo Zemědělství
QK21020080
Ministerstvo Zemědělství
QK21020080
Ministerstvo Zemědělství
QK21020080
Ministerstvo Zemědělství
QK21020080
Ministerstvo Zemědělství
QK21020080
Ministerstvo Zemědělství
063/2023/P
Grantová agentura Jihočeské univerzity v Českých Budějovicích
PubMed
40846880
DOI
10.1038/s41598-025-14953-6
PII: 10.1038/s41598-025-14953-6
Knihovny.cz E-resources
- Keywords
- Streptomyces, Antimicrobial resistance, Biodegradation, Macrolides, Micropollutants, Soil microbiome,
- MeSH
- Anti-Bacterial Agents * pharmacology MeSH
- Phaseolus * microbiology drug effects growth & development MeSH
- Phylogeny MeSH
- Clarithromycin * pharmacology metabolism MeSH
- Microbiota drug effects MeSH
- Wastewater * chemistry MeSH
- Soil Microbiology MeSH
- Rhizosphere * MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents * MeSH
- Clarithromycin * MeSH
- Wastewater * MeSH
- RNA, Ribosomal, 16S MeSH
With increasing efforts to reuse wastewater treatment plant (WWTP) products in agriculture, assessing their impact on soil-plant systems is crucial, while the effects of accompanying antibiotic residues on soil microbial communities have not yet been adequately studied. This study focuses on clarithromycin (CLR), highly present in wastewater, and investigates the CLR-degradation potential of plant-associated microorganisms. Phaseolus vulgaris plants were grown in raised beds filled with Haplic Cambisol and amended with or without WWTP products (treated wastewater, biosolid, or composted biosolid), as a source of CLR residues. The rhizosphere microbiomes after biosolid amendments was significantly enriched by Pseudomonadaceae as assessed by 16S rRNA metagenomics and cultures enriched by CLR revealed dominance of Proteobacteria. However, no degradation of CLR by microbial consortia or enrichment cultures was observed, suggesting the multiplication of CLR-resistant bacteria with other resistance mechanisms. Cultivation-based approach combined with antibiotic modulation assays and subsequent LC-MS analysis confirmed the complete CLR removal by seven phylogenetic groups of actinomycetes in vitro. The proportion of isolates indicated that the rhizosphere is a natural reservoir for CLR-inactivating microorganisms; however, the amendment of soils with WWTP products can significantly increase their abundance and diversity.
See more in PubMed
Chieb, M. & Gachomo, E. W. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant. Biol. 23, 407 (2023). PubMed PMC
Eichmann, R., Richards, L. & Schäfer, P. Hormones as go-betweens in plant Microbiome assembly. Plant J. 105, 518–541 (2021). PubMed PMC
Li, J., Wang, C., Liang, W. & Liu, S. Rhizosphere microbiome: the emerging barrier in Plant-Pathogen interactions. Front Microbiol 12, (2021).
Wang, J. et al. A review on microorganisms in constructed wetlands for typical pollutant removal: species, function, and diversity. Front Microbiol 13, 845725 (2022).
Khasawneh, O. F. S. & Palaniandy, P. Occurrence and removal of pharmaceuticals in wastewater treatment plants. Process Saf. Environ. Prot. 150, 532–556 (2021).
Vodyanitskii, Y. N. & Yakovlev, A. S. Contamination of soils and groundwater with new organic micropollutants: A review. Eurasian Soil. Sci. 49, 560–569 (2016).
Baz-Lomba, J. A. et al. Comparison of pharmaceutical, illicit drug, alcohol, nicotine and caffeine levels in wastewater with sale, seizure and consumption data for 8 European cities. BMC Public. Health. 16, 1035 (2016). PubMed PMC
WHO. WHO’s List of Medically Important Antimicrobials: A Risk Management Tool for Mitigating Antimicrobial Resistance Due To Non-Human Use (Geneva, 2024).
European Centre for Disease Prevention and Control. Antimicrobial consumption in the EU/EEA (ESAC-Net) - Annual Epidemiological Report for 2022. Stockholm: ECDC. (2023).
Zhao, R. et al. Deciphering of microbial community and antibiotic resistance genes in activated sludge reactors under high selective pressure of different antibiotics. Water Res. 151, 388–402 (2019). PubMed
Rodriguez-Mozaz, S. et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 140, 105733 (2020). PubMed
Bielen, A. et al. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Res. 126, 79–87 (2017). PubMed
Ivanová, L. et al. Pharmaceuticals and illicit drugs – A new threat to the application of sewage sludge in agriculture. Sci. Total Environ. 634, 606–615 (2018). PubMed
Yang, L. et al. Application of biosolids drives the diversity of antibiotic resistance genes in soil and lettuce at harvest. Soil. Biol. Biochem. 122, 131–140 (2018).
Bengtsson-Palme, J. et al. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci. Total Environ. 572, 697–712 (2016). PubMed
Wolters, B. et al. Biosolids for safe land application: does wastewater treatment plant size matters when considering antibiotics, pollutants, microbiome, mobile genetic elements and associated resistance genes? Environ. Microbiol. 24, 1573–1589 (2022). PubMed PMC
Bengtsson-Palme, J. & Larsson, D. G. J. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ. Int. 86, 140–149 (2016). PubMed
Adriaenssens, N. et al. Consumption of macrolides, Lincosamides and streptogramins in the community, European union/european economic area, 1997–2017. J. Antimicrob. Chemother. 76, 30–36 (2021).
Baumann, M. et al. Aquatic toxicity of the macrolide antibiotic clarithromycin and its metabolites. Chemosphere 120, 192–198 (2015). PubMed
Booth, A., Aga, D. S. & Wester, A. L. Retrospective analysis of the global antibiotic residues that exceed the predicted no effect concentration for antimicrobial resistance in various environmental matrices. Environ. Int. 141, 105796 (2020). PubMed
Monahan, C., Morris, D., Nag, R. & Cummins, E. Risk ranking of macrolide antibiotics – Release levels, resistance formation potential and ecological risk. Sci. Total Environ. 859, 160022 (2023). PubMed
Wilkinson, J. L. et al. Pharmaceutical pollution of the world ’ s rivers. 119, 1–10 (2022).
Yi, X., Lin, C., Ong, E. J. L., Wang, M. & Zhou, Z. Occurrence and distribution of trace levels of antibiotics in surface waters and soils driven by non-point source pollution and anthropogenic pressure. Chemosphere 216, 213–223 (2019). PubMed
García-Valverde, M. et al. Long-term effects on the agroecosystem of using reclaimed water on commercial crops. Science Total Environment 859, 160462 (2023).
Baranauskaite-Fedorova, I. & Dvarioniene, J. Management of macrolide antibiotics (Erythromycin, clarithromycin and Azithromycin) in the environment: A case study of environmental pollution in Lithuania. Water (Switzerland). 15, 10 (2023).
Mejías, C., Martín, J., Santos, J. L., Aparicio, I. & Alonso, E. Occurrence of pharmaceuticals and their metabolites in sewage sludge and soil: A review on their distribution and environmental risk assessment. Trends Environ. Anal. Chem. 30, e00125 (2021).
Kodešová, R. et al. Pharmaceuticals’ sorptions relative to properties of thirteen different soils. Sci. Total Environ. 511, 435–443 (2015). PubMed
Rodríguez-López, L. et al. Clarithromycin as soil and environmental pollutant: Adsorption-desorption processes and influence of pH. Environ Res 233, 116520 (2023).
Kodešová, R. et al. An analysis of the dissipation of pharmaceuticals under thirteen different soil conditions. Sci. Total Environ. 544, 369–381 (2016). PubMed
Pan, M. & Chu, L. M. Adsorption and degradation of five selected antibiotics in agricultural soil. Sci. Total Environ. 545–546, 48–56 (2016). PubMed
Shen, D. et al. The fate of erythromycin in soils and its effect on soil microbial community structure. Sci. Total Environ. 820, 153373 (2022). PubMed
Wei, L. et al. Transformation of erythromycin during secondary effluent soil aquifer recharging: removal contribution and degradation path. J. Environ. Sci. (China). 51, 173–180 (2017). PubMed
Topp, E., Renaud, J., Sumarah, M. & Sabourin, L. Reduced persistence of the macrolide antibiotics erythromycin, clarithromycin and Azithromycin in agricultural soil following several years of exposure in the field. Sci. Total Environ. 562, 136–144 (2016). PubMed
Zhou, P. et al. Cellular metabolism network of Bacillus Thuringiensis related to erythromycin stress and degradation. Ecotoxicol. Environ. Saf. 160, 328–341 (2018). PubMed
Wang, Y. S., Zheng, X. C., Hu, Q. W. & Zheng, Y. G. Degradation of abamectin by newly isolated Stenotrophomonas maltophilia ZJB-14120 and characterization of its abamectin-tolerance mechanism. Res. Microbiol. 166, 408–418 (2015). PubMed
Bhullar, K. et al. Antibiotic resistance is prevalent in an isolated cave Microbiome. PLoS One. 7, 1–11 (2012).
Zhang, W., Qiu, L., Gong, A. & Yuan, X. Isolation and characterization of a high-efficiency erythromycin A-degrading ochrobactrum sp. strain. Mar. Pollut Bull. 114, 896–902 (2017). PubMed
Chenxi, W., Spongberg, A. L. & Witter, J. D. Determination of the persistence of pharmaceuticals in biosolids using liquid-chromatography tandem mass spectrometry. Chemosphere 73, 511–518 (2008). PubMed
Terzic, S. et al. Biotransformation of macrolide antibiotics using enriched activated sludge culture: kinetics, transformation routes and ecotoxicological evaluation. J. Hazard. Mater. 349, 143–152 (2018). PubMed
Devanshi, S., Shah, K. R., Arora, S. & Saxena, S. Actinomycetes as an environmental scrubber. in Crude Oil (eds Abdel-Raouf, M. E. & El-Keshawy, M. H.) (IntechOpen, Rijeka, doi: https://doi.org/10.5772/intechopen.99187 . (2021).
Özel Duygan, B. D., Gaille, C., Fenner, K. & van der Meer, J. R. Assessing antibiotics biodegradation and effects at Sub-inhibitory concentrations by quantitative microbial community Deconvolution. Front. Environ. Sci. 9, 1–17 (2021).
Ren, J. et al. Biodegradation of erythromycin by Delftia lacustris RJJ-61 and characterization of its erythromycin esterase. J. Basic. Microbiol. 61, 55–62 (2021). PubMed
Sauvêtre, A. et al. Enrichment of endophytic actinobacteria in roots and rhizomes of miscanthus × giganteus plants exposed to diclofenac and sulfamethoxazole. Environ. Sci. Pollut. Res. 27, 11892–11904 (2020).
Mawang, C. I., Azman, A. S., Fuad, A. S. M. & Ahamad, M. Actinobacteria: an eco-friendly and promising technology for the bioaugmentation of contaminants. Biotechnol. Rep. 32, e00679 (2021).
Ajibola, A. S. & Zwiener, C. Occurrence and risk assessment of antibiotic residues in sewage sludge of two Nigerian hospital wastewater treatment plants. Water Air Soil. Pollut. 233, 405 (2022).
European Commission. Proposal for a Directive on Urban Wastewater Treatment. Document 52022PC0541. vol. 0345. (2022).
Chroňáková, A. et al. Arenosol epieuric and haplic Cambisol show a similar level of resilience of microbial communities when irrigated with treated wastewater in a temperate climate. Appl. Soil. Ecol. 204, 105693 (2024).
Datel, J. V. & Hrabankova, A. Pharmaceuticals load in the Svihov water reservoir (Czech Republic) and impacts on quality of treated drinking water. Water (Switzerland) 12, 1387 (2020).
Medina-Pérez, G. et al. Bacterial Communities in the Rhizosphere of Common Bean Plants (Phaseolus vulgaris L.) Grown in an Arable Soil Amended with TiO2 Nanoparticles. Agronomy 14, (2024).
Rahube, T. O. et al. Impact of fertilizing with Raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest. Appl. Environ. Microbiol. 80, 6898–6907 (2014). PubMed PMC
Herbrík, A. et al. A human Lung-Associated streptomyces sp. TR1341 produces various secondary metabolites responsible for virulence, cytotoxicity and modulation of immune response. Front. Microbiol. 10, 1–17 (2020).
Kotrbová, L. et al. Evaluation and comparison of antibiotic susceptibility profiles of streptomyces spp. From clinical specimens revealed common and region-dependent resistance patterns. Sci. Rep. 12, 1–12 (2022).
López, J. L. et al. Growth rate is a dominant factor predicting the rhizosphere effect. ISME J. 17, 1396–1405 (2023). PubMed PMC
Kim, Y. H. & Cerniglia, C. E. Influence of erythromycin a on the microbial populations in aquaculture sediment microcosms. Aquat. Toxicol. 73, 230–241 (2005). PubMed
Golkar, T., Zielinski, M. & Berghuis, A. M. Look and outlook on enzyme-mediated macrolide resistance. Front. Microbiol. 9, 1–15 (2018).
Vester, B. & Douthwaite, S. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob. Agents Chemother. 45, 1–12 (2001). PubMed PMC
European Committee on Antimicrobial Susceptibility Testing. Data from the EUCAST MIC distribution website, last accessedSeptember, https://www.eucast.org (2022).
CLSI. M24. Susceptibility Testing of Mycobacteria, and Other Aerobic Actinomycetes; Approved Standard-2nd Ed. CLSI guidlines vol. 31. (2011).
Shepherd, M. D., Kharel, M. K., Bosserman, M. A. & Rohr, J. Laboratory maintenance of streptomyces species. Curr. Protoc. Microbiol. 1–10 https://doi.org/10.1002/9780471729259.mc10e01s18 (2010).
Quirós, L. M., Carbajo, R. J., Braña, A. F. & Salas, J. A. Glycosylation of macrolide antibiotics. Purification and kinetic studies of a macrolide glycosyltransferase from streptomyces antibioticus. J. Biol. Chem. 275, 11713–11720 (2000). PubMed
Dhindwal, P. et al. A neglected and emerging antimicrobial resistance gene encodes for a serine-dependent macrolide esterase. Proc. Natl. Acad. Sci. U S A. 120, 15–17 (2023).
Baquero, F., Coque, T. M. & Martínez, J. L. Natural detoxification of antibiotics in the environment: A one health perspective. Front. Microbiol. 13, 1–11 (2022).
Nor Amdan, N. A., Shahrulzamri, N. A. & Hashim, R. Mohamad jamil, N. Understanding the evolution of macrolides resistance: A mini review. J. Glob Antimicrob. Resist. 38, 368–375 (2024). PubMed
Zhang, A. N. et al. An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nat. Commun. 12, 1–11 (2021).
Aminov, R. I. & Mackie, R. I. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol. Lett. 271, 147–161 (2007). PubMed
Fér, M., Kodešová, R., Klement, A. & Nikodem, A. The impact of treated wastewater and biosolids from the municipal wastewater treatment plant on water and carbon dioxide effluxes from soils. J. Hydrology Hydromechanics. 70, 276–283 (2022).
Fér, M., Kodešová, R., Nikodem, A., Klement, A. & Pavlů, L. Carbon dioxide and water effluxes from soils affected by reclaimed wastewater and sludge from the wastewater treatment plant during the three-year period. Biol. (Bratisl). https://doi.org/10.1007/s11756-023-01588-z (2024).
Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27, 31–36 (1962).
Bloem, J., Veninga, M. & Shepherd, J. Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Appl. Environ. Microbiol. 61, 926–936 (1995). PubMed PMC
Shirling, E. B. & Gottlieb, D. Methods for characterization of streptomyces species1. Int. J. Syst. Evol. Microbiol. 16, 313–340 (1966).
Kelsic, E. D., Zhao, J., Vetsigian, K. & Kishony, R. Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature 521, 516–519 (2015). PubMed PMC
Kodešová, R. et al. Contamination of water, soil, and plants by micropollutants from reclaimed wastewater and sludge from a wastewater treatment plant. Sci. Total Environ. 907, 167965 (2024). PubMed
Petříčková, K. et al. Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques. Front. Microbiol. 6, 1–15 (2015).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). PubMed
Lanoot, B. et al. BOX-PCR fingerprinting as a powerful tool to reveal synonymous names in the genus streptomyces. Emended descriptions are proposed for the species streptomyces.cinereorectus, S. fradiae, S. tricolor, S. colombiensis, S. filamentosus, S. vinaceus and S. phaeopurpureus. Syst. Appl. Microbiol. 27, 84–92 (2004). PubMed
Ciccarelli, F. D., Doerks, T., Creevey, C. J. & Snel, B. Bork, P. of a highly resolved tree of life. Sci. (1979). 311, 1283–1287 (2006).
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U S A. 108, 4516–4522 (2011). PubMed
Callahan, B. J. et al. DADA2: High-resolution sample inference from illumina amplicon data. Nat. Methods. 13, 581–583 (2016). PubMed PMC
Callahan, B. J. et al. Replication and refinement of a vaginal microbial signature of preterm birth in two Racially distinct cohorts of US women. Proc. Natl. Acad. Sci. U S A. 114, 9966–9971 (2017). PubMed PMC
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013). PubMed
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007). PubMed PMC
R Core Team. R: A Language and Environment for Statistical Computing. (2021).
McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of Microbiome census data. PLoS One. 8, e61217 (2013). PubMed PMC
Hugerth, L. W. & Andersson, A. F. Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Front. Microbiol. 8, 1561 (2017). PubMed PMC
Love, M. I., Huber, W. & Anders, S. Moderated Estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). PubMed PMC
Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer-, 2016). https://doi.org/10.1007/978-3-319-24277-4