Memantine Administration Enhances Glutamatergic and GABAergic Pathways in the Human Hippocampus of Alzheimer's Disease Patients

. 2025 Aug ; 25 (15) : 42-49. [epub] 20250709

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40879647

Grantová podpora
24-10026S Grantová Agentura České Republiky
00064190 Ministerstvo Zdravotnictví Ceské Republiky
00179906 Ministerstvo Zdravotnictví Ceské Republiky
Cooperatio-Neurosciences Univerzita Karlova v Praze
CZ.02.01.01/00/22_008/0004562 Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO5107 Ministerstvo Školství, Mládeže a Tělovýchovy

One of the traditional treatments in Alzheimer's disease (AD) is administration of memantine, the NMDA receptor antagonist. However, the molecular mechanism of the complex memantine action and the impact on the hippocampal proteome in humans is unknown. In this study, hippocampal proteins extracted from formalin-fixed paraffin-embedded post mortem tissues obtained from healthy donors (n = 15), AD patients not treated with memantine (n = 11), and AD patients treated with memantine (n = 8) were investigated using tandem mass tag (TMT)-based quantitative proteomics. Memantine medication induced subtle but distinct changes in the hippocampal proteome in AD patients. Although it did not prevent the metabolic and physiologic decline associated with AD pathology, memantine administration upregulated several mitochondrially encoded proteins and mitigated the proteomic pattern of activated phagocytes. Furthermore, memantine specifically enhanced the expression of postsynaptic glutamatergic and GABAergic receptors and components of the respective pathways without affecting presynaptic proteome. This suggests that memantine treatment in AD patients not only alleviates excitotoxic stress by inhibiting NMDA receptor activity, but also triggers broader adaptations in the synaptic signaling and plasticity.

Zobrazit více v PubMed

Ballard C., Gauthier S., Corbett A., Brayne C., Aarsland D., and Jones E., “Alzheimer's Disease,” Lancet 377, no. 9770 (2011): 1019–1031. PubMed

Terao I. and Kodama W., “Comparative Efficacy, Tolerability and Acceptability of Donanemab, Lecanemab, Aducanumab and Lithium on Cognitive Function in Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review and Network Meta‐Analysis,” Ageing Research Reviews 94 (2024): 102203. PubMed

Kuca K., “Current Approaches Against Alzheimer's Disease in Clinical Trials,” Journal of the Brazilian Chemical Society 27, no. 4 (2016): 641–649.

Parsons C. G., Danysz W., and Quack G., “Memantine Is a Clinically Well Tolerated N‐Methyl‐D‐Aspartate (NMDA) Receptor Antagonist–A Review of Preclinical Data,” Neuropharmacology 38, no. 6 (1999): 735–767. PubMed

McShane R., “Memantine for Dementia,” Cochrane Database of Systematic Reviews (Online) 3, no. 3 (2019): Cd003154. PubMed

Karimi Tari P., Parsons C. G., Collingridge G. L., and Rammes G., “Memantine: Updating a Rare Success Story in Pro‐Cognitive Therapeutics,” Neuropharmacology 244 (2024): 109737. PubMed

Traynelis S. F., Wollmuth L. P., Mcbain C. J., et al., “Glutamate Receptor Ion Channels: Structure, Regulation, and Function,” Pharmacological Reviews 62, no. 3 (2010): 405–496. PubMed PMC

Reiner A. and Levitz J., “Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert,” Neuron 98, no. 6 (2018): 1080–1098. PubMed PMC

Crupi R., Impellizzeri D., and Cuzzocrea S., “Role of Metabotropic Glutamate Receptors in Neurological Disorders,” Frontiers in Molecular Neuroscience 12 (2019): 20. PubMed PMC

Haytural H., Benfeitas R., Schedin‐Weiss S., et al., “Insights Into the Changes in the Proteome of Alzheimer Disease Elucidated by a Meta‐Analysis,” Scientific Data 8, no. 1 (2021): 312. PubMed PMC

Zhou X., Wang L., Xiao W., et al., “Memantine Improves Cognitive Function and Alters Hippocampal and Cortical Proteome in Triple Transgenic Mouse Model of Alzheimer's Disease,” Experimental Neurobiology 28, no. 3 (2019): 390–403. PubMed PMC

Zhou X., “Memantine Improves Cognitive Function and Alters Hippocampal and Cortical Proteome in Triple Transgenic Mouse Model of Alzheimer's Disease,” Experimental Neurobiology 28, no. 3 (2019): 390–403. PubMed PMC

Alfredsson J., Fabrik I., Gorreja F., et al., “Isobaric Labeling‐Based Quantitative Proteomics of FACS‐Purified Immune Cells and Epithelial Cells From the Intestine of Crohn's Disease Patients Reveals Proteome Changes of Potential Importance in Disease Pathogenesis,” Proteomics 23, no. 5 (2023): 2200366. PubMed

Zougman A., Selby P. J., and Banks R. E., “Suspension Trapping (STrap) Sample Preparation Method for Bottom‐Up Proteomics Analysis,” Proteomics 14, no. 9 (2014): 1006–1000. PubMed

Kong A. T., Leprevost F. V., Avtonomov D. M., Mellacheruvu D., and Nesvizhskii A. I., “MSFragger: Ultrafast and Comprehensive Peptide Identification in Mass Spectrometry‐Based Proteomics,” Nature Methods 14, no. 5 (2017): 513–520. PubMed PMC

Yang K. L., Yu F., Teo G. C., et al., “MSBooster: Improving Peptide Identification Rates Using Deep Learning‐Based Features,” Nature Communications 14, no. 1 (2023): 4539. PubMed PMC

Käll L., Canterbury J. D., Weston J., Noble W. S., and MacCoss M. J., “Semi‐Supervised Learning for Peptide Identification From Shotgun Proteomics Datasets,” Nature Methods 4, no. 11 (2007): 923–925. PubMed

Clark D. J., Dhanasekaran S. M., Petralia F., et al., “Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma,” Cell 179, no. 4 (2019): 964–983.e31. PubMed PMC

Perez‐Riverol Y., Bai J., Bandla C., et al., “The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry‐Based Proteomics Evidences,” Nucleic Acids Research 50, no. D1 (2021): D543–D552. PubMed PMC

Mcallister J., Ghosh S., Berry D., et al., “Effects of Memantine on Mitochondrial Function,” Biochemical Pharmacology 75, no. 4 (2008): 956–964. PubMed PMC

Wei X., Gao H., Zou J., et al., “Contra‐Directional Coupling of Nur77 and Nurr1 in Neurodegeneration: A Novel Mechanism for Memantine‐Induced Anti‐Inflammation and Anti‐Mitochondrial Impairment,” Molecular Neurobiology 53, no. 9 (2016): 5876–5892. PubMed

Hirano K., Fujimaki M., Sasazawa Y., et al., “Neuroprotective Effects of Memantine via Enhancement of Autophagy,” Biochemical and Biophysical Research Communications 518, no. 1 (2019): 161–170. PubMed

De Wet S., Mangali A., Batt R., et al., “The Highs and Lows of Memantine‐An Autophagy and Mitophagy Inducing Agent That Protects Mitochondria,” Cells 12, no. 13 (2023): 1726. PubMed PMC

Réus G. Z., Stringari R. B., Rezin G. T., et al., “Administration of Memantine and Imipramine Alters Mitochondrial respiratory Chain and Creatine Kinase Activities in Rat Brain,” Journal of Neural Transmission (Vienna) 119, no. 4 (2012): 481–491. PubMed

Gingrich J. R., Pelkey K. A., Fam S. R., et al., “Unique Domain Anchoring of Src to Synaptic NMDA Receptors via the Mitochondrial Protein NADH Dehydrogenase Subunit 2,” PNAS 101, no. 16 (2004): 6237–6242. PubMed PMC

Scanlon D. P., Bah A., Krzeminski M., et al., “An Evolutionary Switch in ND2 Enables Src Kinase Regulation of NMDA Receptors,” Nature Communications 8 (2017): 15220. PubMed PMC

D'Souza A. R. and Minczuk M., “Mitochondrial Transcription and Translation: Overview,” Essays in Biochemistry 62, no. 3 (2018): 309–320. PubMed PMC

Ashleigh T., Swerdlow R. H., and Beal M. F., “The Role of Mitochondrial Dysfunction in Alzheimer's Disease Pathogenesis,” Alzheimers Dement 19, no. 1 (2023): 333–342. PubMed

Bhatia S., Rawal R., Sharma P., Singh T., Singh M., and Singh V., “Mitochondrial Dysfunction in Alzheimer's Disease: Opportunities for Drug Development,” Current Neuropharmacology 20, no. 4 (2022): 675–692. PubMed PMC

Thomsen M. S., Routhe L. J., and Moos T., “The Vascular Basement Membrane in the Healthy and Pathological Brain,” Journal of Cerebral Blood Flow and Metabolism 37, no. 10 (2017): 3300–3317. PubMed PMC

Fabrik I., Bilkei‐Gorzo O., Öberg M., et al., “Lung Macrophages Utilize Unique Cathepsin K‐Dependent Phagosomal Machinery to Degrade Intracellular Collagen,” Life Science Alliance 6, no. 4 (2023): 202201535. PubMed PMC

Kinney J. W., Bemiller S. M., Murtishaw A. S., Leisgang A. M., Salazar A. M., and Lamb B. T., “Inflammation as a Central Mechanism in Alzheimer's Disease,” Alzheimers Dement (N Y) 4 (2018): 575–590. PubMed PMC

Heneka M. T., Carson M. J., Khoury J El, et al., “Neuroinflammation in Alzheimer's Disease,” Lancet Neurology 14, no. 4 (2015): 388–405. PubMed PMC

Akiyama H., “Inflammation and Alzheimer's Disease,” Neurobiology of Aging 21, no. 3 (2000): 383–421. PubMed PMC

Lowinus T., Bose T., Busse S., et al., “Immunomodulation by Memantine in Therapy of Alzheimer's Disease Is Mediated Through Inhibition of Kv1.3 Channels and T Cell Responsiveness,” Oncotarget 7, no. 33 (2016): 53797–53807. PubMed PMC

Simma N., Bose T., Kahlfuß S., et al., “NMDA‐Receptor Antagonists Block B‐Cell Function but Foster IL‐10 Production in BCR/CD40‐Activated B Cells,” Cell Communication and Signaling 12 (2014): 75. PubMed PMC

Koopmans F., Van Nierop P., Andres‐Alonso M., et al., “SynGO: An Evidence‐Based, Expert‐Curated Knowledge Base for the Synapse,” Neuron 103, no. 2 (2019): 217–234.e4. PubMed PMC

Quan M. N., Zhang N., Wang Y. Y., Zhang T., and Yang Z., “Possible Antidepressant Effects and Mechanisms of Memantine in Behaviors and Synaptic Plasticity of a Depression Rat Model,” Neuroscience 182 (2011): 88–97. PubMed

Pozo K. and Goda Y., “Unraveling Mechanisms of Homeostatic Synaptic Plasticity,” Neuron 66, no. 3 (2010): 337–351. PubMed PMC

Wen Y., Dong Z., Liu J., et al., “Glutamate and GABAA Receptor Crosstalk Mediates Homeostatic Regulation of Neuronal Excitation in the Mammalian Brain,” Signal Transduction and Targeted Therapy 7, no. 1 (2022): 340. PubMed PMC

Kantamneni S., “Cross‐Talk and Regulation Between Glutamate and GABAB Receptors,” Frontiers in Cellular Neuroscience 9 (2015). PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...