Memantine Administration Enhances Glutamatergic and GABAergic Pathways in the Human Hippocampus of Alzheimer's Disease Patients
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
24-10026S
Grantová Agentura České Republiky
00064190
Ministerstvo Zdravotnictví Ceské Republiky
00179906
Ministerstvo Zdravotnictví Ceské Republiky
Cooperatio-Neurosciences
Univerzita Karlova v Praze
CZ.02.01.01/00/22_008/0004562
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO5107
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
40879647
PubMed Central
PMC12329391
DOI
10.1002/pmic.70006
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer's disease, FFPE, glutamate receptors, hippocampus, memantine, metabolism, proteomics,
- MeSH
- Alzheimerova nemoc * metabolismus farmakoterapie patologie MeSH
- antagonisté excitačních aminokyselin * farmakologie MeSH
- hipokampus * metabolismus účinky léků patologie MeSH
- kyselina glutamová * metabolismus MeSH
- lidé MeSH
- memantin * farmakologie aplikace a dávkování terapeutické užití MeSH
- proteom metabolismus MeSH
- proteomika metody MeSH
- receptory GABA metabolismus MeSH
- receptory N-methyl-D-aspartátu metabolismus antagonisté a inhibitory MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- signální transdukce účinky léků MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antagonisté excitačních aminokyselin * MeSH
- kyselina glutamová * MeSH
- memantin * MeSH
- proteom MeSH
- receptory GABA MeSH
- receptory N-methyl-D-aspartátu MeSH
One of the traditional treatments in Alzheimer's disease (AD) is administration of memantine, the NMDA receptor antagonist. However, the molecular mechanism of the complex memantine action and the impact on the hippocampal proteome in humans is unknown. In this study, hippocampal proteins extracted from formalin-fixed paraffin-embedded post mortem tissues obtained from healthy donors (n = 15), AD patients not treated with memantine (n = 11), and AD patients treated with memantine (n = 8) were investigated using tandem mass tag (TMT)-based quantitative proteomics. Memantine medication induced subtle but distinct changes in the hippocampal proteome in AD patients. Although it did not prevent the metabolic and physiologic decline associated with AD pathology, memantine administration upregulated several mitochondrially encoded proteins and mitigated the proteomic pattern of activated phagocytes. Furthermore, memantine specifically enhanced the expression of postsynaptic glutamatergic and GABAergic receptors and components of the respective pathways without affecting presynaptic proteome. This suggests that memantine treatment in AD patients not only alleviates excitotoxic stress by inhibiting NMDA receptor activity, but also triggers broader adaptations in the synaptic signaling and plasticity.
3rd Faculty of Medicine Charles University Ruska 87 Prague Czech Republic
Biomedical Research Centre University Hospital Hradec Kralove Hradec Kralove Czech Republic
Clinic of Neurology 3rd Faculty of Medicine and Thomayer Hospital Prague Czech Republic
Department of Pathology Military University Hospital Prague Prague Czech Republic
Institute of Experimental Medicine of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Ballard C., Gauthier S., Corbett A., Brayne C., Aarsland D., and Jones E., “Alzheimer's Disease,” Lancet 377, no. 9770 (2011): 1019–1031. PubMed
Terao I. and Kodama W., “Comparative Efficacy, Tolerability and Acceptability of Donanemab, Lecanemab, Aducanumab and Lithium on Cognitive Function in Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review and Network Meta‐Analysis,” Ageing Research Reviews 94 (2024): 102203. PubMed
Kuca K., “Current Approaches Against Alzheimer's Disease in Clinical Trials,” Journal of the Brazilian Chemical Society 27, no. 4 (2016): 641–649.
Parsons C. G., Danysz W., and Quack G., “Memantine Is a Clinically Well Tolerated N‐Methyl‐D‐Aspartate (NMDA) Receptor Antagonist–A Review of Preclinical Data,” Neuropharmacology 38, no. 6 (1999): 735–767. PubMed
McShane R., “Memantine for Dementia,” Cochrane Database of Systematic Reviews (Online) 3, no. 3 (2019): Cd003154. PubMed
Karimi Tari P., Parsons C. G., Collingridge G. L., and Rammes G., “Memantine: Updating a Rare Success Story in Pro‐Cognitive Therapeutics,” Neuropharmacology 244 (2024): 109737. PubMed
Traynelis S. F., Wollmuth L. P., Mcbain C. J., et al., “Glutamate Receptor Ion Channels: Structure, Regulation, and Function,” Pharmacological Reviews 62, no. 3 (2010): 405–496. PubMed PMC
Reiner A. and Levitz J., “Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert,” Neuron 98, no. 6 (2018): 1080–1098. PubMed PMC
Crupi R., Impellizzeri D., and Cuzzocrea S., “Role of Metabotropic Glutamate Receptors in Neurological Disorders,” Frontiers in Molecular Neuroscience 12 (2019): 20. PubMed PMC
Haytural H., Benfeitas R., Schedin‐Weiss S., et al., “Insights Into the Changes in the Proteome of Alzheimer Disease Elucidated by a Meta‐Analysis,” Scientific Data 8, no. 1 (2021): 312. PubMed PMC
Zhou X., Wang L., Xiao W., et al., “Memantine Improves Cognitive Function and Alters Hippocampal and Cortical Proteome in Triple Transgenic Mouse Model of Alzheimer's Disease,” Experimental Neurobiology 28, no. 3 (2019): 390–403. PubMed PMC
Zhou X., “Memantine Improves Cognitive Function and Alters Hippocampal and Cortical Proteome in Triple Transgenic Mouse Model of Alzheimer's Disease,” Experimental Neurobiology 28, no. 3 (2019): 390–403. PubMed PMC
Alfredsson J., Fabrik I., Gorreja F., et al., “Isobaric Labeling‐Based Quantitative Proteomics of FACS‐Purified Immune Cells and Epithelial Cells From the Intestine of Crohn's Disease Patients Reveals Proteome Changes of Potential Importance in Disease Pathogenesis,” Proteomics 23, no. 5 (2023): 2200366. PubMed
Zougman A., Selby P. J., and Banks R. E., “Suspension Trapping (STrap) Sample Preparation Method for Bottom‐Up Proteomics Analysis,” Proteomics 14, no. 9 (2014): 1006–1000. PubMed
Kong A. T., Leprevost F. V., Avtonomov D. M., Mellacheruvu D., and Nesvizhskii A. I., “MSFragger: Ultrafast and Comprehensive Peptide Identification in Mass Spectrometry‐Based Proteomics,” Nature Methods 14, no. 5 (2017): 513–520. PubMed PMC
Yang K. L., Yu F., Teo G. C., et al., “MSBooster: Improving Peptide Identification Rates Using Deep Learning‐Based Features,” Nature Communications 14, no. 1 (2023): 4539. PubMed PMC
Käll L., Canterbury J. D., Weston J., Noble W. S., and MacCoss M. J., “Semi‐Supervised Learning for Peptide Identification From Shotgun Proteomics Datasets,” Nature Methods 4, no. 11 (2007): 923–925. PubMed
Clark D. J., Dhanasekaran S. M., Petralia F., et al., “Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma,” Cell 179, no. 4 (2019): 964–983.e31. PubMed PMC
Perez‐Riverol Y., Bai J., Bandla C., et al., “The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry‐Based Proteomics Evidences,” Nucleic Acids Research 50, no. D1 (2021): D543–D552. PubMed PMC
Mcallister J., Ghosh S., Berry D., et al., “Effects of Memantine on Mitochondrial Function,” Biochemical Pharmacology 75, no. 4 (2008): 956–964. PubMed PMC
Wei X., Gao H., Zou J., et al., “Contra‐Directional Coupling of Nur77 and Nurr1 in Neurodegeneration: A Novel Mechanism for Memantine‐Induced Anti‐Inflammation and Anti‐Mitochondrial Impairment,” Molecular Neurobiology 53, no. 9 (2016): 5876–5892. PubMed
Hirano K., Fujimaki M., Sasazawa Y., et al., “Neuroprotective Effects of Memantine via Enhancement of Autophagy,” Biochemical and Biophysical Research Communications 518, no. 1 (2019): 161–170. PubMed
De Wet S., Mangali A., Batt R., et al., “The Highs and Lows of Memantine‐An Autophagy and Mitophagy Inducing Agent That Protects Mitochondria,” Cells 12, no. 13 (2023): 1726. PubMed PMC
Réus G. Z., Stringari R. B., Rezin G. T., et al., “Administration of Memantine and Imipramine Alters Mitochondrial respiratory Chain and Creatine Kinase Activities in Rat Brain,” Journal of Neural Transmission (Vienna) 119, no. 4 (2012): 481–491. PubMed
Gingrich J. R., Pelkey K. A., Fam S. R., et al., “Unique Domain Anchoring of Src to Synaptic NMDA Receptors via the Mitochondrial Protein NADH Dehydrogenase Subunit 2,” PNAS 101, no. 16 (2004): 6237–6242. PubMed PMC
Scanlon D. P., Bah A., Krzeminski M., et al., “An Evolutionary Switch in ND2 Enables Src Kinase Regulation of NMDA Receptors,” Nature Communications 8 (2017): 15220. PubMed PMC
D'Souza A. R. and Minczuk M., “Mitochondrial Transcription and Translation: Overview,” Essays in Biochemistry 62, no. 3 (2018): 309–320. PubMed PMC
Ashleigh T., Swerdlow R. H., and Beal M. F., “The Role of Mitochondrial Dysfunction in Alzheimer's Disease Pathogenesis,” Alzheimers Dement 19, no. 1 (2023): 333–342. PubMed
Bhatia S., Rawal R., Sharma P., Singh T., Singh M., and Singh V., “Mitochondrial Dysfunction in Alzheimer's Disease: Opportunities for Drug Development,” Current Neuropharmacology 20, no. 4 (2022): 675–692. PubMed PMC
Thomsen M. S., Routhe L. J., and Moos T., “The Vascular Basement Membrane in the Healthy and Pathological Brain,” Journal of Cerebral Blood Flow and Metabolism 37, no. 10 (2017): 3300–3317. PubMed PMC
Fabrik I., Bilkei‐Gorzo O., Öberg M., et al., “Lung Macrophages Utilize Unique Cathepsin K‐Dependent Phagosomal Machinery to Degrade Intracellular Collagen,” Life Science Alliance 6, no. 4 (2023): 202201535. PubMed PMC
Kinney J. W., Bemiller S. M., Murtishaw A. S., Leisgang A. M., Salazar A. M., and Lamb B. T., “Inflammation as a Central Mechanism in Alzheimer's Disease,” Alzheimers Dement (N Y) 4 (2018): 575–590. PubMed PMC
Heneka M. T., Carson M. J., Khoury J El, et al., “Neuroinflammation in Alzheimer's Disease,” Lancet Neurology 14, no. 4 (2015): 388–405. PubMed PMC
Akiyama H., “Inflammation and Alzheimer's Disease,” Neurobiology of Aging 21, no. 3 (2000): 383–421. PubMed PMC
Lowinus T., Bose T., Busse S., et al., “Immunomodulation by Memantine in Therapy of Alzheimer's Disease Is Mediated Through Inhibition of Kv1.3 Channels and T Cell Responsiveness,” Oncotarget 7, no. 33 (2016): 53797–53807. PubMed PMC
Simma N., Bose T., Kahlfuß S., et al., “NMDA‐Receptor Antagonists Block B‐Cell Function but Foster IL‐10 Production in BCR/CD40‐Activated B Cells,” Cell Communication and Signaling 12 (2014): 75. PubMed PMC
Koopmans F., Van Nierop P., Andres‐Alonso M., et al., “SynGO: An Evidence‐Based, Expert‐Curated Knowledge Base for the Synapse,” Neuron 103, no. 2 (2019): 217–234.e4. PubMed PMC
Quan M. N., Zhang N., Wang Y. Y., Zhang T., and Yang Z., “Possible Antidepressant Effects and Mechanisms of Memantine in Behaviors and Synaptic Plasticity of a Depression Rat Model,” Neuroscience 182 (2011): 88–97. PubMed
Pozo K. and Goda Y., “Unraveling Mechanisms of Homeostatic Synaptic Plasticity,” Neuron 66, no. 3 (2010): 337–351. PubMed PMC
Wen Y., Dong Z., Liu J., et al., “Glutamate and GABAA Receptor Crosstalk Mediates Homeostatic Regulation of Neuronal Excitation in the Mammalian Brain,” Signal Transduction and Targeted Therapy 7, no. 1 (2022): 340. PubMed PMC
Kantamneni S., “Cross‐Talk and Regulation Between Glutamate and GABAB Receptors,” Frontiers in Cellular Neuroscience 9 (2015). PubMed PMC