• This record comes from PubMed

Genetic differences between primary colorectal cancer and its paired synchronous and metachronous metastases

. 2026 Jan 01 ; 158 (1) : 120-130. [epub] 20250830

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
23-05609S Grantová Agentura České Republiky

As the second most deadly cancerous disease worldwide, colorectal cancer (CRC) stands in the center of scientific interest in hope to develop novel approaches for precise diagnostics and prognosis determination. Metastatic disease remains the main cause of CRC mortality. To investigate the underlying genetic differences between CRC patients with synchronous and metachronous liver metastases, we performed whole-exome sequencing of 210 patient samples using formalin-fixed paraffin-embedded samples from primary tumors and the paired liver metastatic tissue. The analyses included types and levels of mutations and copy number variation. APC and TP53 were the most commonly mutated genes in all samples with differing frequency between primary CRC (both 50%) and its metachronous metastasis (both 64%). While MPDZ gene mutations were restricted to primary tumors that developed metachronous metastases only, mutations in VCAN, MTCL1, MDN1, SHROOM2, SPEG, and GLI2 were more prevalent in primary tumors giving rise to synchronous metastases. FBN1 mutations were unique to synchronous liver metastatic tissue. Analysis of genetic interactions revealed different associations between mutated genes in patients with tumors of different chronicity, including driver genes such as TP53, which was associated with APC in synchronous patients, while in primary tumors with metachronous metastases it co-occurs with mutations in NBPF11 and PRAMEF15, respectively. The results suggest that distinct tumor progression pathways account for different chronicity outcomes further affecting patients' survival. However, larger studies are needed incorporating transcriptomic and epigenomic data to shed further light on the mechanistic chain from mutations to downstream gene expression regulation.

See more in PubMed

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209‐249. doi: 10.3322/caac.21660 PubMed DOI

Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145‐164. doi: 10.3322/caac.21601 PubMed DOI

Carethers JM, Jung BH. Genetics and genetic biomarkers in sporadic colorectal cancer. Gastroenterology. 2015;149(5):1177‐1190.e3. doi: 10.1053/j.gastro.2015.06.047 PubMed DOI PMC

Zhuang Y, Wang H, Jiang D, et al. Multi gene mutation signatures in colorectal cancer patients: predict for the diagnosis, pathological classification, staging and prognosis. BMC Cancer. 2021;21:380. doi: 10.1186/s12885-021-08108-9 PubMed DOI PMC

Feng L, Hong S, Gao J, Li J. Whole‐exome sequencing characterized the landscape of somatic mutations and pathways in colorectal cancer liver metastasis. J Oncol. 2019;2019:2684075. doi: 10.1155/2019/2684075 PubMed DOI PMC

Mlecnik B, Bindea G, Kirilovsky A, et al. The tumor microenvironment and immunoscore are critical determinants of dissemination to distant metastasis. Sci Transl Med. 2016;8(327):327ra26. doi: 10.1126/scitranslmed.aad6352 PubMed DOI

Mogensen MB, Rossing M, Østrup O, et al. Genomic alterations accompanying tumour evolution in colorectal cancer: tracking the differences between primary tumours and synchronous liver metastases by whole‐exome sequencing. BMC Cancer. 2018;18(1):752. doi: 10.1186/s12885-018-4639-4 PubMed DOI PMC

Ma S, Ogino S, Parsana P, et al. Continuity of transcriptomes among colorectal cancer subtypes based on meta‐analysis. Genome Biol. 2018;19(1):142. doi: 10.1186/s13059-018-1511-4 PubMed DOI PMC

Pira G, Uva P, Scanu AM, et al. Landscape of transcriptome variations uncovering known and novel driver events in colorectal carcinoma. Sci Rep. 2020;10(1):432. doi: 10.1038/s41598‐019‐57311‐z PubMed PMC

Lopez G, Boggio F, Ferrero S, Fusco N, Del Gobbo A. Molecular and immunohistochemical markers with prognostic and predictive significance in liver metastases from colorectal carcinoma. Int J Mol Sci. 2018;19(10):3014. doi: 10.3390/ijms19103014 PubMed DOI PMC

Baldin P, Van den Eynde M, Mlecnik B, et al. Prognostic assessment of resected colorectal liver metastases integrating pathological features, RAS mutation and Immunoscore. J Pathol Clin Res. 2020;7(1):27‐41. doi: 10.1002/cjp2.178 PubMed DOI PMC

Engstrand J, Strömberg C, Nilsson H, Freedman J, Jonas E. Synchronous and metachronous liver metastases in patients with colorectal cancer—towards a clinically relevant definition. World J Surg Oncol. 2019;17(1):228. doi: 10.1186/s12957-019-1771-9 PubMed DOI PMC

Colloca GA, Venturino A, Guarneri D. Different variables predict the outcome of patients with synchronous versus metachronous metastases of colorectal cancer. Clin Transl Oncol. 2020;22(8):1399‐1406. doi: 10.1007/s12094-019-02277-7 PubMed DOI

Horak J, Kubecek O, Siskova A, et al. Differences in genome, transcriptome, miRNAome, and methylome in synchronous and metachronous liver metastasis of colorectal cancer. Front Oncol. 2023;13:1133598. doi: 10.3389/fonc.2023.1133598 PubMed DOI PMC

Li H. Toward better understanding of artifacts in variant calling from high‐coverage samples. Bioinformatics. 2014;30(20):2843‐2851. doi: 10.1093/bioinformatics/btu356 PubMed DOI PMC

Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinforma Ed Board Andreas Baxevanis Al. 2013;11(1110):11.10.1‐11.10.33. doi: 10.1002/0471250953.bi1110s43 PubMed DOI PMC

Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747‐1756. doi: 10.1101/gr.239244.118 PubMed DOI PMC

Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: genome‐wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol. 2016;12(4):e1004873. doi: 10.1371/journal.pcbi.1004873 PubMed DOI PMC

Shyr C, Tarailo‐Graovac M, Gottlieb M, Lee JJ, van Karnebeek C, Wasserman WW. FLAGS, frequently mutated genes in public exomes. BMC Med Genomics. 2014;7(1):64. doi: 10.1186/s12920-014-0064-y PubMed DOI PMC

Kinnersley B, Sud A, Everall A, et al. Analysis of 10,478 cancer genomes identifies candidate driver genes and opportunities for precision oncology. Nat Genet. 2024;56(9):1868‐1877. doi: 10.1038/s41588-024-01785-9 PubMed DOI PMC

Martínez‐Jiménez F, Movasati A, Brunner SR, et al. Pan‐cancer whole‐genome comparison of primary and metastatic solid tumours. Nature. 2023;618(7964):333‐341. doi: 10.1038/s41586-023-06054-z PubMed DOI PMC

Gui P, Bivona TG. Evolution of metastasis: new tools and insights. Trends Cancer. 2022;8(2):98‐109. doi: 10.1016/j.trecan.2021.11.002 PubMed DOI

Hirani P, McDermott J, Rajeeve V, et al. Versican associates with tumor immune phenotype and limits T‐cell trafficking via chondroitin sulfate. Cancer Res Commun. 2024;4(4):970‐985. doi: 10.1158/2767-9764.CRC-23-0548 PubMed DOI PMC

Lin K, Zhao Y, Tang Y, Chen Y, Lin M, He L. Collagen I‐induced VCAN/ERK signaling and PARP1/ZEB1‐mediated metastasis facilitate OSBPL2 defect to promote colorectal cancer progression. Cell Death Dis. 2024;15(1):85. doi: 10.1038/s41419-024-06468-1 PubMed DOI PMC

Geng S, Zhu L, Wang Y, et al. Co‐colorectal cancer stem cells employ the FADS1/DDA axis to evade NK cell‐mediated immunosuppression after co‐cultured with NK cells under hypoxia. Int Immunopharmacol. 2024;143:113535. doi: 10.1016/j.intimp.2024.113535 PubMed DOI

Guo P, Chen Q, Peng K, et al. Nuclear receptor coactivator SRC‐1 promotes colorectal cancer progression through enhancing GLI2‐mediated hedgehog signaling. Oncogene. 2022;41(20):2846‐2859. doi: 10.1038/s41388-022-02308-8 PubMed DOI

Chen Z, Ba Y, Zhao N, et al. MPDZ is associated with immune infiltration and regulates migration and invasion by switching YAP1 phosphorylation in colorectal cancer. Cell Signal. 2024;114:110967. doi: 10.1016/j.cellsig.2023.110967 PubMed DOI

Li W, Zhang H, Guo Q, et al. Detection of SNCA and FBN1 methylation in the stool as a biomarker for colorectal cancer. Dis Markers. 2015;2015:657570. doi: 10.1155/2015/657570 PubMed DOI PMC

Budczies J, Romanovsky E, Kirchner M, et al. KRAS and TP53 co‐mutation predicts benefit of immune checkpoint blockade in lung adenocarcinoma. Br J Cancer. 2024;131(3):524‐533. doi: 10.1038/s41416-024-02746-z PubMed DOI PMC

Tsilimigras DI, Ntanasis‐Stathopoulos I, Bagante F, et al. Clinical significance and prognostic relevance of KRAS, BRAF, PI3K and TP53 genetic mutation analysis for resectable and unresectable colorectal liver metastases: a systematic review of the current evidence. Surg Oncol. 2018;27(2):280‐288. doi: 10.1016/j.suronc.2018.05.012 PubMed DOI

Lang H, Baumgart J, Heinrich S, et al. Extended molecular profiling improves stratification and prediction of survival after resection of colorectal liver metastases. Ann Surg. 2019;270(5):799‐805. doi: 10.1097/SLA.0000000000003527 PubMed DOI

Yan H, Jiang F, Yang J. Association of β‐catenin, APC, SMAD3/4, Tp53, and cyclin D1 genes in colorectal cancer: a systematic review and meta‐analysis. Genet Res. 2022;2022:5338956. doi: 10.1155/2022/5338956 PubMed DOI PMC

Chun YS, Passot G, Yamashita S, et al. Deleterious effect of RAS and evolutionary high‐risk TP53 double mutation in colorectal liver metastases. Ann Surg. 2019;269(5):917‐923. doi: 10.1097/SLA.0000000000002450 PubMed DOI PMC

Bruun J, Kolberg M, Nesland JM, Svindland A, Nesbakken A, Lothe RA. Prognostic significance of β‐catenin, E‐cadherin, and SOX9 in colorectal cancer: results from a large population‐representative series. Front Oncol. 2014;4:118. doi: 10.3389/fonc.2014.00118 PubMed DOI PMC

Thota R, Yang M, Pflieger L, et al. APC and TP53 mutations predict cetuximab sensitivity across consensus molecular subtypes. Cancer. 2021;13(21):5394. doi: 10.3390/cancers13215394 PubMed DOI PMC

Reboux N, Jooste V, Goungounga J, Robaszkiewicz M, Nousbaum JB, Bouvier AM. Incidence and survival in synchronous and metachronous liver metastases from colorectal cancer. JAMA Netw Open. 2022;5(10):e2236666. doi: 10.1001/jamanetworkopen.2022.36666 PubMed DOI PMC

Hao M, Li H, Wang K, Liu Y, Liang X, Ding L. Predicting metachronous liver metastasis in patients with colorectal cancer: development and assessment of a new nomogram. World J Surg Oncol. 2022;20(1):80. doi: 10.1186/s12957-022-02558-6 PubMed DOI PMC

Trailin A, Ali E, Ye W, et al. Prognostic assessment of T‐cells in primary colorectal cancer and paired synchronous or metachronous liver metastasis. Int J Cancer. 2025;156(6):1282‐1292. doi: 10.1002/ijc.35252 PubMed DOI PMC

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...