Genetic differences between primary colorectal cancer and its paired synchronous and metachronous metastases
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
23-05609S
Grantová Agentura České Republiky
PubMed
40884237
PubMed Central
PMC12588547
DOI
10.1002/ijc.70116
Knihovny.cz E-resources
- Keywords
- WES, colorectal cancer, metachronous liver metastasis, synchronous liver metastasis, whole‐exome sequencing,
- MeSH
- Adult MeSH
- Colorectal Neoplasms * genetics pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Neoplasms, Multiple Primary * genetics MeSH
- Mutation MeSH
- Liver Neoplasms * genetics secondary MeSH
- Prognosis MeSH
- Neoplasms, Second Primary * genetics pathology MeSH
- Exome Sequencing MeSH
- Aged MeSH
- DNA Copy Number Variations MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
As the second most deadly cancerous disease worldwide, colorectal cancer (CRC) stands in the center of scientific interest in hope to develop novel approaches for precise diagnostics and prognosis determination. Metastatic disease remains the main cause of CRC mortality. To investigate the underlying genetic differences between CRC patients with synchronous and metachronous liver metastases, we performed whole-exome sequencing of 210 patient samples using formalin-fixed paraffin-embedded samples from primary tumors and the paired liver metastatic tissue. The analyses included types and levels of mutations and copy number variation. APC and TP53 were the most commonly mutated genes in all samples with differing frequency between primary CRC (both 50%) and its metachronous metastasis (both 64%). While MPDZ gene mutations were restricted to primary tumors that developed metachronous metastases only, mutations in VCAN, MTCL1, MDN1, SHROOM2, SPEG, and GLI2 were more prevalent in primary tumors giving rise to synchronous metastases. FBN1 mutations were unique to synchronous liver metastatic tissue. Analysis of genetic interactions revealed different associations between mutated genes in patients with tumors of different chronicity, including driver genes such as TP53, which was associated with APC in synchronous patients, while in primary tumors with metachronous metastases it co-occurs with mutations in NBPF11 and PRAMEF15, respectively. The results suggest that distinct tumor progression pathways account for different chronicity outcomes further affecting patients' survival. However, larger studies are needed incorporating transcriptomic and epigenomic data to shed further light on the mechanistic chain from mutations to downstream gene expression regulation.
Department of Cancer Epidemiology German Cancer Research Center Heidelberg Germany
Department of Surgery Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Toxicogenomics Unit National Institute of Public Health Prague Czech Republic
See more in PubMed
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209‐249. doi: 10.3322/caac.21660 PubMed DOI
Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145‐164. doi: 10.3322/caac.21601 PubMed DOI
Carethers JM, Jung BH. Genetics and genetic biomarkers in sporadic colorectal cancer. Gastroenterology. 2015;149(5):1177‐1190.e3. doi: 10.1053/j.gastro.2015.06.047 PubMed DOI PMC
Zhuang Y, Wang H, Jiang D, et al. Multi gene mutation signatures in colorectal cancer patients: predict for the diagnosis, pathological classification, staging and prognosis. BMC Cancer. 2021;21:380. doi: 10.1186/s12885-021-08108-9 PubMed DOI PMC
Feng L, Hong S, Gao J, Li J. Whole‐exome sequencing characterized the landscape of somatic mutations and pathways in colorectal cancer liver metastasis. J Oncol. 2019;2019:2684075. doi: 10.1155/2019/2684075 PubMed DOI PMC
Mlecnik B, Bindea G, Kirilovsky A, et al. The tumor microenvironment and immunoscore are critical determinants of dissemination to distant metastasis. Sci Transl Med. 2016;8(327):327ra26. doi: 10.1126/scitranslmed.aad6352 PubMed DOI
Mogensen MB, Rossing M, Østrup O, et al. Genomic alterations accompanying tumour evolution in colorectal cancer: tracking the differences between primary tumours and synchronous liver metastases by whole‐exome sequencing. BMC Cancer. 2018;18(1):752. doi: 10.1186/s12885-018-4639-4 PubMed DOI PMC
Ma S, Ogino S, Parsana P, et al. Continuity of transcriptomes among colorectal cancer subtypes based on meta‐analysis. Genome Biol. 2018;19(1):142. doi: 10.1186/s13059-018-1511-4 PubMed DOI PMC
Pira G, Uva P, Scanu AM, et al. Landscape of transcriptome variations uncovering known and novel driver events in colorectal carcinoma. Sci Rep. 2020;10(1):432. doi: 10.1038/s41598‐019‐57311‐z PubMed PMC
Lopez G, Boggio F, Ferrero S, Fusco N, Del Gobbo A. Molecular and immunohistochemical markers with prognostic and predictive significance in liver metastases from colorectal carcinoma. Int J Mol Sci. 2018;19(10):3014. doi: 10.3390/ijms19103014 PubMed DOI PMC
Baldin P, Van den Eynde M, Mlecnik B, et al. Prognostic assessment of resected colorectal liver metastases integrating pathological features, RAS mutation and Immunoscore. J Pathol Clin Res. 2020;7(1):27‐41. doi: 10.1002/cjp2.178 PubMed DOI PMC
Engstrand J, Strömberg C, Nilsson H, Freedman J, Jonas E. Synchronous and metachronous liver metastases in patients with colorectal cancer—towards a clinically relevant definition. World J Surg Oncol. 2019;17(1):228. doi: 10.1186/s12957-019-1771-9 PubMed DOI PMC
Colloca GA, Venturino A, Guarneri D. Different variables predict the outcome of patients with synchronous versus metachronous metastases of colorectal cancer. Clin Transl Oncol. 2020;22(8):1399‐1406. doi: 10.1007/s12094-019-02277-7 PubMed DOI
Horak J, Kubecek O, Siskova A, et al. Differences in genome, transcriptome, miRNAome, and methylome in synchronous and metachronous liver metastasis of colorectal cancer. Front Oncol. 2023;13:1133598. doi: 10.3389/fonc.2023.1133598 PubMed DOI PMC
Li H. Toward better understanding of artifacts in variant calling from high‐coverage samples. Bioinformatics. 2014;30(20):2843‐2851. doi: 10.1093/bioinformatics/btu356 PubMed DOI PMC
Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinforma Ed Board Andreas Baxevanis Al. 2013;11(1110):11.10.1‐11.10.33. doi: 10.1002/0471250953.bi1110s43 PubMed DOI PMC
Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747‐1756. doi: 10.1101/gr.239244.118 PubMed DOI PMC
Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: genome‐wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol. 2016;12(4):e1004873. doi: 10.1371/journal.pcbi.1004873 PubMed DOI PMC
Shyr C, Tarailo‐Graovac M, Gottlieb M, Lee JJ, van Karnebeek C, Wasserman WW. FLAGS, frequently mutated genes in public exomes. BMC Med Genomics. 2014;7(1):64. doi: 10.1186/s12920-014-0064-y PubMed DOI PMC
Kinnersley B, Sud A, Everall A, et al. Analysis of 10,478 cancer genomes identifies candidate driver genes and opportunities for precision oncology. Nat Genet. 2024;56(9):1868‐1877. doi: 10.1038/s41588-024-01785-9 PubMed DOI PMC
Martínez‐Jiménez F, Movasati A, Brunner SR, et al. Pan‐cancer whole‐genome comparison of primary and metastatic solid tumours. Nature. 2023;618(7964):333‐341. doi: 10.1038/s41586-023-06054-z PubMed DOI PMC
Gui P, Bivona TG. Evolution of metastasis: new tools and insights. Trends Cancer. 2022;8(2):98‐109. doi: 10.1016/j.trecan.2021.11.002 PubMed DOI
Hirani P, McDermott J, Rajeeve V, et al. Versican associates with tumor immune phenotype and limits T‐cell trafficking via chondroitin sulfate. Cancer Res Commun. 2024;4(4):970‐985. doi: 10.1158/2767-9764.CRC-23-0548 PubMed DOI PMC
Lin K, Zhao Y, Tang Y, Chen Y, Lin M, He L. Collagen I‐induced VCAN/ERK signaling and PARP1/ZEB1‐mediated metastasis facilitate OSBPL2 defect to promote colorectal cancer progression. Cell Death Dis. 2024;15(1):85. doi: 10.1038/s41419-024-06468-1 PubMed DOI PMC
Geng S, Zhu L, Wang Y, et al. Co‐colorectal cancer stem cells employ the FADS1/DDA axis to evade NK cell‐mediated immunosuppression after co‐cultured with NK cells under hypoxia. Int Immunopharmacol. 2024;143:113535. doi: 10.1016/j.intimp.2024.113535 PubMed DOI
Guo P, Chen Q, Peng K, et al. Nuclear receptor coactivator SRC‐1 promotes colorectal cancer progression through enhancing GLI2‐mediated hedgehog signaling. Oncogene. 2022;41(20):2846‐2859. doi: 10.1038/s41388-022-02308-8 PubMed DOI
Chen Z, Ba Y, Zhao N, et al. MPDZ is associated with immune infiltration and regulates migration and invasion by switching YAP1 phosphorylation in colorectal cancer. Cell Signal. 2024;114:110967. doi: 10.1016/j.cellsig.2023.110967 PubMed DOI
Li W, Zhang H, Guo Q, et al. Detection of SNCA and FBN1 methylation in the stool as a biomarker for colorectal cancer. Dis Markers. 2015;2015:657570. doi: 10.1155/2015/657570 PubMed DOI PMC
Budczies J, Romanovsky E, Kirchner M, et al. KRAS and TP53 co‐mutation predicts benefit of immune checkpoint blockade in lung adenocarcinoma. Br J Cancer. 2024;131(3):524‐533. doi: 10.1038/s41416-024-02746-z PubMed DOI PMC
Tsilimigras DI, Ntanasis‐Stathopoulos I, Bagante F, et al. Clinical significance and prognostic relevance of KRAS, BRAF, PI3K and TP53 genetic mutation analysis for resectable and unresectable colorectal liver metastases: a systematic review of the current evidence. Surg Oncol. 2018;27(2):280‐288. doi: 10.1016/j.suronc.2018.05.012 PubMed DOI
Lang H, Baumgart J, Heinrich S, et al. Extended molecular profiling improves stratification and prediction of survival after resection of colorectal liver metastases. Ann Surg. 2019;270(5):799‐805. doi: 10.1097/SLA.0000000000003527 PubMed DOI
Yan H, Jiang F, Yang J. Association of β‐catenin, APC, SMAD3/4, Tp53, and cyclin D1 genes in colorectal cancer: a systematic review and meta‐analysis. Genet Res. 2022;2022:5338956. doi: 10.1155/2022/5338956 PubMed DOI PMC
Chun YS, Passot G, Yamashita S, et al. Deleterious effect of RAS and evolutionary high‐risk TP53 double mutation in colorectal liver metastases. Ann Surg. 2019;269(5):917‐923. doi: 10.1097/SLA.0000000000002450 PubMed DOI PMC
Bruun J, Kolberg M, Nesland JM, Svindland A, Nesbakken A, Lothe RA. Prognostic significance of β‐catenin, E‐cadherin, and SOX9 in colorectal cancer: results from a large population‐representative series. Front Oncol. 2014;4:118. doi: 10.3389/fonc.2014.00118 PubMed DOI PMC
Thota R, Yang M, Pflieger L, et al. APC and TP53 mutations predict cetuximab sensitivity across consensus molecular subtypes. Cancer. 2021;13(21):5394. doi: 10.3390/cancers13215394 PubMed DOI PMC
Reboux N, Jooste V, Goungounga J, Robaszkiewicz M, Nousbaum JB, Bouvier AM. Incidence and survival in synchronous and metachronous liver metastases from colorectal cancer. JAMA Netw Open. 2022;5(10):e2236666. doi: 10.1001/jamanetworkopen.2022.36666 PubMed DOI PMC
Hao M, Li H, Wang K, Liu Y, Liang X, Ding L. Predicting metachronous liver metastasis in patients with colorectal cancer: development and assessment of a new nomogram. World J Surg Oncol. 2022;20(1):80. doi: 10.1186/s12957-022-02558-6 PubMed DOI PMC
Trailin A, Ali E, Ye W, et al. Prognostic assessment of T‐cells in primary colorectal cancer and paired synchronous or metachronous liver metastasis. Int J Cancer. 2025;156(6):1282‐1292. doi: 10.1002/ijc.35252 PubMed DOI PMC