Bone health: Age-related changes in diaphyseal structural properties among European Holocene humans during the last 9000 years
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, historické články
PubMed
40911685
PubMed Central
PMC12412659
DOI
10.1126/sciadv.adx7981
Knihovny.cz E-zdroje
- MeSH
- dějiny starověku MeSH
- diafýzy * fyziologie anatomie a histologie MeSH
- dospělí MeSH
- femur fyziologie anatomie a histologie MeSH
- kosti a kostní tkáň * fyziologie MeSH
- kostní denzita MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- senioři MeSH
- stárnutí * fyziologie MeSH
- tibie fyziologie anatomie a histologie MeSH
- Check Tag
- dějiny starověku MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- Geografické názvy
- Evropa MeSH
Age-related deterioration in bone strength among Western humans has been linked with sedentary lifestyles, but the effect remains debatable. We evaluated aging of diaphyseal strength and cortical bone loss in a European Holocene sample of 1881 adult humeri, femora, and tibiae. Diaphyseal aging did not differ between Early and Late Holocene adults, despite their differences in physical activity. Adult diaphyseal aging was accompanied by the disproportionate rate between a faster increase in the medullary area and an absent or marginal increase in the total area. This indicates that subperiosteal apposition did not fully biomechanically compensate for the medullary expansion. Diaphyseal strength remained unchanged through age in female femora and male diaphyses but declined in female humeri and tibiae. We highlight the importance of postnatal growth to compensate for adult medullary expansion. Diaphyseal aging is critical for the upper limbs, as humeri are more sensitive to aging than femora and tibiae.
Department of Anthropology Natural History Museum Burgring 7 1010 Vienna Austria
Department of Anthropology University of Washington BOX 353100 Seattle WA 98195 3100 USA
Department of Biology Seattle Pacific University Seattle WA 98119 USA
Zobrazit více v PubMed
Melton L. J., Adverse outcomes of osteoporotic fractures in the general population. J. Bone Miner. Res. 18, 1139–1141 (2003). PubMed
Lewiecki E. M., Ortendahl J. D., Vanderpuye-Orgle J., Grauer A., Arellano J., Lemay J., Harmon A. L., Broder M. S., Singer A. J., Healthcare policy changes in osteoporosis can improve outcomes and reduce costs in the United States. JBMR Plus 3, e10192 (2019). PubMed PMC
Willers C., Norton N., Harvey N. C., Jacobson T., Johansson H., Lorentzon M., McCloskey E. V., Borgström F., Kanis J. A., SCOPE review panel of the IOF , Osteoporosis in Europe: A compendium of country-specific reports. Arch. Osteoporos. 17, 23 (2022). PubMed PMC
Bergh C., Wennergren D., Möller M., Brisby H., Fracture incidence in adults in relation to age and gender: A study of 27,169 fractures in the Swedish Fracture Register in a well-defined catchment area. PLOS ONE 15, e0244291 (2020). PubMed PMC
Burge R., Dawson-Hughes B., Solomon D. H., Wong J. B., King A., Tosteson A., Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 22, 465–475 (2007). PubMed
Chirchir H., Kivell T. L., Ruff C. B., Hublin J.-J., Carlson K. J., Zipfel B., Richmond B. G., Recent origin of low trabecular bone density in modern humans. Proc. Natl. Acad. Sci. U.S.A. 112, 366–371 (2015). PubMed PMC
Nowlan N., Jepsen K., Morgan E., Smaller, weaker, and less stiff bones evolve from changes in subsistence strategy. Osteoporos. Int. 22, 1967–1980 (2011). PubMed
Chalmers J., Ho K., Geographical variations in senile osteoporosis: The association with physical activity. J. Bone Joint Surg. Br. 52, 667–675 (1970). PubMed
Warden S. J., Mantila Roosa S. M., Kersh M. E., Hurd A. L., Fleisig G. S., Pandy M. G., Fuchs R. K., Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc. Natl. Acad. Sci. U.S.A. 111, 5337–5342 (2014). PubMed PMC
Agarwal S. C., What is normal bone health? A bioarchaeological perspective on meaningful measures and interpretations of bone strength, loss, and aging. Am. J. Hum. Biol. 33, e23647 (2021). PubMed
Gurven M. D., Lieberman D. E., WEIRD bodies: Mismatch, medicine and missing diversity. Evol. Hum. Behav. 41, 330–340 (2020). PubMed PMC
S. C. Stearns, R. Medzhitov,
Ruff C. B., Hayes W. C., Cross-sectional geometry of Pecos Pueblo femora and tibiae: A biomechanical investigation: II. Sex, age, and side differences. Am. J. Phys. Anthropol. 60, 383–400 (1983). PubMed
Wallace I., Nesbitt A., Mongle C., Gould E., Grine F., Age-related variation in limb bone diaphyseal structure among Inuit foragers from Point Hope, northern Alaska. Arch. Osteoporos. 9, 202 (2014). PubMed
Lazenby R. A., Continuing periosteal apposition II: The significance of peak bone mass, strain equilibrium, and age-related activity differentials for mechanical compensation in human tubular bones. Am. J. Phys. Anthropol. 82, 473–484 (1990). PubMed
van der Meulen M. C. H., Jepsen K. J., Mikic B., Understanding bone strength: Size isn’t everything. Bone 29, 101–104 (2001). PubMed
Felsenberg D., Boonen S., The bone quality framework: Determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin. Ther. 27, 1–11 (2005). PubMed
Garn S. M., Rohmann C. G., Wagner B., Ascoli W., Continuing bone growth throughout life: A general phenomenon. Am. J. Phys. Anthropol. 26, 313–317 (1967). PubMed
C. B. Ruff, “Biomechanical analysis of archaeological human skeletons,” in
Ahlborg H. G., Johnell O., Turner C. H., Rannevik G., Karlsson M. K., Bone loss and bone size after menopause. N. Engl. J. Med. 349, 327–334 (2003). PubMed
Russo C. R., Lauretani F., Seeman E., Bartali B., Bandinelli S., Di Iorio A., Guralnik J., Ferrucci L., Structural adaptations to bone loss in aging men and women. Bone 38, 112–118 (2006). PubMed
Pfeiffer S., Age changes in the external dimensions of adult bone. Am. J. Phys. Anthropol. 52, 529–532 (1980). PubMed
Seeman E., During aging, men lose less bone than women because they gain more periosteal bone, not because they resorb less endosteal bone. Calcif. Tissue Int. 69, 205–208 (2001). PubMed
Ruff C. B., Hayes W. C., Sex differences in age-related remodeling of the femur and tibia. J. Orthopaed. Res. 6, 886–896 (1988). PubMed
Martin R. B., Atkinson P. J., Age and sex-related changes in the structure and strength of the human femoral shaft. J. Biomech. 10, 223–231 (1977). PubMed
Ruff C. B., Wallace I. J., Toya C., Muñoz M. A. P., Meyer J. V., Busby T., Reynolds A. Z., Martinez J., Miller-Moore M., Rios R., The effects of the industrial transition on lower limb bone structure: A comparison of the inhabitants of Pecos Pueblo and present-day Indigenous peoples of New Mexico. Am. J. Biol. Anthropol. 184, e24922 (2024). PubMed
Chevalier T., Tignères M., Age-related site-specific modifications in diaphyseal structural properties of the human fibula: Furrows and cross-sectional geometry. Am. J. Phys. Anthropol. 173, 535–555 (2020). PubMed
Allen M. D., McMillan S. J., Klein C. S., Rice C. L., Marsh G. D., Differential age-related changes in bone geometry between the humerus and the femur in healthy men. Aging Dis. 3, 156–163 (2012). PubMed PMC
Bouxsein M., Myburgh K., Van der Meulen M., Lindenberger E., Marcus R., Age-related differences in cross-sectional geometry of the forearm bones in healthy women. Calcif. Tissue Int. 54, 113–118 (1994). PubMed
Ericksen M. F., Aging changes in thickness of the proximal femoral cortex. Am. J. Phys. Anthropol. 59, 121–130 (1982). PubMed
Pearson O. M., Lieberman D. E., The aging of Wolff’s “Law”: Ontogeny and responses to mechanical loading in cortical bone. Yearb. Phys. Anthropol. 47, 63–99 (2004). PubMed
Tan V. P., Macdonald H. M., Kim S., Nettlefold L., Gabel L., Ashe M. C., McKay H. A., Influence of physical activity on bone strength in children and adolescents: A systematic review and narrative synthesis. J. Bone Miner. Res. 29, 2161–2181 (2014). PubMed
Murray A. A., Erlandson M. C., Tibial cortical and trabecular variables together can pinpoint the timing of impact loading relative to menarche in premenopausal females. Am. J. Hum. Biol. 34, e23711 (2022). PubMed
C. B. Ruff, “Introduction,” in
Ruff C. B., Holt B., Niskanen M., Sladek V., Berner M., Garofalo E., Garvin H., Hora M., Junno J. A., Schuplerova E., Vilkama R., Whittey E., Gradual decline in mobility with adoption of food production in Europe. Proc. Natl. Acad. Sci. U.S.A. 112, 7147–7152 (2015). PubMed PMC
C. B. Ruff, Ed.,
B. Holt, E. Whittey, M. Niskanen, V. Sladek, M. Berner, C. B. Ruff, “Temporal and geographic variation in robusticity,” in
Sládek V., Ruff C., Berner M., Holt B., Niskanen M., Schuplerova E., Hora M., The impact of subsistence changes on humeral bilateral asymmetry in Terminal Pleistocene and Holocene Europe. J. Hum. Evol. 92, 37–49 (2016). PubMed
A. M. Agnew, J. H. Bolte, “Bone fractures: biomechanics and risk,” in
Myers E. R., Hecker A. T., Rooks D. S., Hipp J. A., Hayes W. C., Geometric variables from DXA of the radius predict forearm fracture load in vitro. Calcif. Tissue Int. 52, 199–204 (1993). PubMed
R. B. Martin, “Functional adaptation and fragility of the skeleton,” in
J. G. Skedros, “Interpreting load history in limb-bone diaphyses: important considerations and their biomechanical foundations,” in
Robling A. G., Castillo A. B., Turner C. H., Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng. 8, 455–498 (2006). PubMed
Garn S. M., Sullivan T. V., Decker S. A., Larkin F. A., Hawthorne V. M., Continuing bone expansion and increasing bone loss over a two-decade period in men and women from a total community sample. Am. J. Hum. Biol. 4, 57–67 (1992). PubMed
Llera Martín C. J., Ruff C. B., Changes in diaphyseal cross-sectional properties with age in macaques. Am. J. Biol. Anthropol. 183, e24857 (2024). PubMed
Carlson K., Sumner D., Morbeck M., Nishida T., Yamanaka A., Boesch C., Role of nonbehavioral factors in adjusting long bone diaphyseal structure in free-ranging Pan troglodytes. Int. J. Primatol. 29, 1401–1420 (2008). PubMed PMC
Ruff C. B., Hayes W. C., Cross-sectional geometry of Pecos Pueblo femora and tibiae: A biomechanical investigation. I. Method and general patterns of variation. Am. J. Phys. Anthropol. 60, 359–381 (1983). PubMed
Ruff C. B., Growth in bone strength, body size, and muscle size in a juvenile longitudinal sample. Bone 33, 317–329 (2003). PubMed
Kannus P., Haapasalo H., Sankelo M., Sievanen H., Pasanen M., Heinonen A., Oja P., Vuori I., Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann. Intern. Med. 123, 27–31 (1995). PubMed
Riggs B. L., Melton L. J. III, Robb R. A., Camp J. J., Atkinson E. J., Peterson J. M., Rouleau P. A., McCollough C. H., Bouxsein M. L., Khosla S., Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J. Bone Miner. Res. 19, 1945–1954 (2004). PubMed
Jepsen K. J., Andarawis-Puri N., The amount of periosteal apposition required to maintain bone strength during aging depends on adult bone morphology and tissue-modulus degradation rate. J. Bone Miner. Res. 27, 1916–1926 (2012). PubMed PMC
Hare B., Survival of the friendliest: Homo sapiens evolved via selection for prosociality. Annu. Rev. Psychol. 68, 155–186 (2017). PubMed
Chirchir H., Trabecular bone in domestic dogs and wolves: Implications for understanding human self-domestication. Anat. Rec. 304, 31–41 (2021). PubMed
Hare B., Wobber V., Wrangham R., The self-domestication hypothesis: Evolution of bonobo psychology is due to selection against aggression. Anim. Behav. 83, 573–585 (2012).
Stock J. T., Hunter-gatherer postcranial robusticity relative to patterns of mobility, climatic adaptation, and selection for tissue economy. Am. J. Phys. Anthropol. 131, 194–204 (2006). PubMed
Ruff C. B., Holt B. M., Sladek V., Berner M., Murphy W. A. Jr., Zur Nedden D., Seidler H., Recheis W., Body size, body proportions, and mobility in the Tyrolean “Iceman”. J. Hum. Evol. 51, 91–101 (2006). PubMed
O. M. Pearson, T. R. Petersen, V. S. Sparacello, S. R. Daneshvari, F. E. Grine, “Activity,“body shape,” and cross-sectional geometry of the femur and tibia,” in
DiPietro L., Physical activity in aging: Changes in patterns and their relationship to health and function. J. Gerontol. A Biol. Sci. Med. Sci. 56, 13–22 (2001). PubMed
Kwan M. Y., Cairney J., Faulkner G. E., Pullenayegum E. E., Physical activity and other health-risk behaviors during the transition into early adulthood: A longitudinal cohort study. Am. J. Prev. Med. 42, 14–20 (2012). PubMed
McPhee J. S., French D. P., Jackson D., Nazroo J., Pendleton N., Degens H., Physical activity in older age: Perspectives for healthy ageing and frailty. Biogerontology 17, 567–580 (2016). PubMed PMC
L. E. Lanyon, “Mechanical function and bone remodeling,” in
Tschentscher M., Niederseer D., Niebauer J., Health benefits of Nordic walking: A systematic review. Am. J. Prev. Med. 44, 76–84 (2013). PubMed
P. I. Bogucki,
P. N. Stearns,
C. M. Cipolla,
A. F. Harding,
Fornander E., Eriksson G., Lidén K., Wild at heart: Approaching Pitted Ware identity, economy and cosmology through stable isotopes in skeletal material from the Neolithic site Korsnäs in Eastern Central Sweden. J. Anthropol. Archaeol. 27, 281–297 (2008).
M. Bouxsein, “Biomechanics of age-related fractures,” in
Boldsen J. L., Milner G. R., Ousley S. D., Paleodemography: From archaeology and skeletal age estimation to life in the past. Am. J. Biol. Anthropol. 178, 115–150 (2022). PubMed
Chintalapati M., Patterson N., Moorjani P., The spatiotemporal patterns of major human admixture events during the European Holocene. eLife 11, e77625 (2022). PubMed PMC
Büntgen U., Tegel W., Nicolussi K., McCormick M., Frank D., Trouet V., Kaplan J. O., Herzig F., Heussner K.-U., Wanner H., 2500 Years of European climate variability and human susceptibility. Science 331, 578–582 (2011). PubMed
Agostini G., Reedy S., Holt B., Ruff C., Tompkins D., Niskanen M., Sladek V., Berner M., Garvin H., Garofalo E., Schuplerova E., Hora M., Roman J., Age-related patterns in postcranial robusticity. Am. J. Phys. Anthropol. 147, 80–81 (2012).
V. Sládek, J. Macháček, Eds.,
Bruzek J., A method for visual determination of sex, using the human hip bone. Am. J. Phys. Anthropol. 117, 157–168 (2002). PubMed
J. E. Buikstra, D. H. Ubelaker, Eds.,
Murail P., Bruzek J., Braga J., A new approach to sexual diagnosis in past populations. Practical adjustments from Van Vark’s procedure. Int. J. Osteoarch. 9, 39–53 (1999).
Brooks S. T., Suchey J. M., Skeletal age determination based on the os pubis: A comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Hum. Evol. 5, 227–238 (1990).
Lovejoy C. O., Dental wear in the Libben population: Its functional pattern and role in the determination of adult skeletal age at death. Am. J. Phys. Anthropol. 68, 47–56 (1985). PubMed
Buckberry J. L., Chamberlain A. T., Age estimation from the auricular surface of the ilium: A revised method. Am. J. Phys. Anthropol. 119, 231–239 (2002). PubMed
F. Teixeira, E. Cunha, “Aging the elderly: Does the skull tell us something about age at death?,” in
C. B. Ruff, “Quantifying skeletal robusticity,” in
WHO,
Holt B., Whittey E., The impact of terrain on lower limb bone structure. Am. J. Phys. Anthropol. 168, 729–743 (2019). PubMed
J. Macháček, P. Dresler, R. Přichystalová, V. Sládek,
C. Fowler, J. Harding, D. Hofmann,
Greenfield H. J., The Secondary Products Revolution: the past, the present and the future. World Archaeol. 42, 29–54 (2010).
J. Collis,
G. Webster,
C. Popa-Gorjanu, “The rise of the Early Medieval Aristocracy,” in
Henrich J., Boyd R., Division of labor, economic specialization, and the evolution of social stratification. Curr. Anthropol. 49, 715–724 (2008).
Sládek V., Hora M., Farkasova K., Rocek T., Impact of grinding technology on bilateral asymmetry in muscle activity of the upper limb. J. Archaeol. Sci. 72, 142–156 (2016).
V. Sládek, E. Makajevová, M. Hora, “The assessment of sex for adult individuals from the Pohansko second church cemetery,” in
M. Berner, V. Sladek, B. Holt, M. Niskanen, C. B. Ruff, “Sexual dimorphism,” in
M. Schaefer, L. Scheuer, S. M. Black,
V. Sladek, M. Berner, B. Holt, M. Niskanen, C. B. Ruff, “Past human manipulative behavior in the European Holocene as assessed through upper limb asymmetry,” in
V. Sládek, E. Makajevová, M. Berner, “Dental and skeletal age-at-death for non-adult and adult individuals from the Pohansko second church cemetery,” in
Falys C., Lewis M., Proposing a way forward: A review of standardisation in the use of age categories and ageing techniques in osteological analysis (2004–2009). Int. J. Osteoarch. 21, 704–716 (2011).
Kaplan H., Hill K., Lancaster J., Hurtado A. M., A theory of human life history evolution: Diet, intelligence, and longevity. Evol. Anthropol. Issues News Rev. 9, 156–185 (2000).
Palacios S., Henderson V., Siseles N., Tan D., Villaseca P., Age of menopause and impact of climacteric symptoms by geographical region. Climacteric 13, 419–428 (2010). PubMed
Dratva J., Real F. G., Schindler C., Ackermann-Liebrich U., Gerbase M. W., Probst-Hensch N. M., Svanes C., Omenaas E. R., Neukirch F., Wjst M., Is age at menopause increasing across Europe? Results on age at menopause and determinants from two population-based studies. Menopause 16, 385–394 (2009). PubMed
Ruff C. B., Long bone articular and diaphyseal structure in old world monkeys and apes. I: Locomotor effects. Am. J. Phys. Anthropol. 119, 305–342 (2002). PubMed
O'Neill M. C., Ruff C. B., Estimating human long bone cross-sectional geometric properties: A comparison of noninvasive methods. J. Hum. Evol. 47, 221–235 (2004). PubMed
M. Niskanen, C. B. Ruff, “Body size and shape reconstruction,” in
M. Niskanen, C. B. Ruff, B. Holt, V. Sladek, M. Berner, “Temporal and geographic variation in body size and shape of Europeans from the Late Pleistocene to Recent Times,” in
V. Sládek, E. Makajevová, M. Hora, “Stature estimation for adults from the Pohansko second church cemetery,” in
V. Sládek, E. Makajevová, M. Hora, “Body mass estimation for adults from the Pohansko second church cemetery,” in
Cole J. H., van der Meulen M. C., Whole bone mechanics and bone quality. Clin. Orthop. Relat. Res. 469, 2139–2149 (2011). PubMed PMC