A genetically encoded nanobody sensor reveals conformational diversity in β-arrestins orchestrated by distinct seven transmembrane receptors

. 2025 Sep 16 ; 122 (37) : e2507384122. [epub] 20250909

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40924451

Grantová podpora
IA/S/20/1/504916 DBT-Wellcome Trust India Alliance - India
File No. DST/INT/Czech/P-03/2019 Department of Science and Technology, Ministry of Science and Technology, India (DST)
IA/S/20/1/504916 Wellcome Trust DBT India Alliance (India Alliance)

Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context. Here, we design an intrabody version of a βarr-recognizing nanobody (nanobody32), referred to as intrabody32 (Ib32), in NanoLuc enzyme complementation assay format and measure its ability to recognize βarr1 and 2 in live cells upon activation of a broad set of GPCRs. Ib32 robustly recognizes activated βarr1 and 2 in the plasma membrane and endosomes, and effectively mirrors βarr recruitment profile upon stimulation of selected GPCRs. We also design an Ib32 sensor for polarization microscopy with a change in linear dichroism as readout and demonstrate its utility for monitoring βarr activation upon stimulation of selected GPCRs by natural and biased agonists. Taken together with a previously described sensor of βarr1 activation, Ib32 underscores the inherent flexibility encoded in βarrs and conformational diversity imparted by different GPCRs, which is further corroborated using an orthogonal limited proteolysis assay. Our study presents Ib32 as a sensor of βarr activation and highlights the structural diversity of βarrs, which likely allows their ability to interact with, and regulate, a large repertoire of GPCRs.

Zobrazit více v PubMed

Hauser A. S., Attwood M. M., Rask-Andersen M., Schioth H. B., Gloriam D. E., Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017). 10.1038/nrd.2017.178. PubMed DOI PMC

Wootten D., Christopoulos A., Marti-Solano M., Babu M. M., Sexton P. M., Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 19, 638–653 (2018). 10.1038/s41580-018-0049-3. PubMed DOI

Pierce K. L., Premont R. T., Lefkowitz R. J., Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002). 10.1038/nrm908. PubMed DOI

Maharana J., Banerjee R., Yadav M. K., Sarma P., Shukla A. K., Emerging structural insights into GPCR-beta-arrestin interaction and functional outcomes. Curr. Opin. Struct. Biol. 75, 102406 (2022). 10.1016/j.sbi.2022.102406. PubMed DOI PMC

Kang D. S., Tian X., Benovic J. L., Role of beta-arrestins and arrestin domaincontaining proteins in G protein-coupled receptor trafficking. Curr. Opin. Cell Biol. 27, 63–71 (2014). 10.1016/j.ceb.2013.11.005. PubMed DOI PMC

Gurevich V. V., Gurevich E. V., The molecular acrobatics of arrestin activation. Trends Pharmacol. Sci. 25, 105–111 (2004). 10.1016/j.tips.2003.12.008. PubMed DOI

Reiter E., Ahn S., Shukla A. K., Lefkowitz R. J., Molecular mechanism of betaarrestin-biased agonism at seven-transmembrane receptors. Annu. Rev. Pharmacol. Toxicol. 52, 179–197 (2012). 10.1146/annurev.pharmtox.010909.105800. PubMed DOI PMC

Shukla A. K., et al. , Structure of active beta-arrestin-1 bound to a G-proteincoupled receptor phosphopeptide. Nature 497, 137–141 (2013). 10.1038/nature12120. PubMed DOI PMC

Lee Y., et al. , Molecular basis of betaarrestin coupling to formoterol-bound beta1-adrenoceptor. Nature 583, 862–866 (2020). 10.1038/s41586-020-2419-1. PubMed DOI PMC

Huang W., et al. , Structure of the neurotensin receptor 1 in complex with beta-arrestin 1. Nature 579, 303–308 (2020). 10.1038/s41586-020-1953-1. PubMed DOI PMC

Staus D. P., et al. , Structure of the M2 muscarinic receptor-betaarrestin complex in a lipid nanodisc. Nature 579, 297–302 (2020). 10.1038/s41586-020-1954-0. PubMed DOI PMC

Maharana J., et al. , Structural snapshots uncover a key phosphorylation motif in GPCRs driving beta-arrestin activation. Mol. Cell 83, 2091–2107 (2023). 10.1016/j.molcel.2023.04.025. PubMed DOI PMC

Maharana J., et al. , Molecular insights into atypical modes of betaarrestin interaction with seven transmembrane receptors. Science 383, 101–108 (2024). 10.1126/science.adj3347. PubMed DOI PMC

Isaikina P., et al. , A key GPCR phosphorylation motif discovered in arrestin2[Inline Image Removed1]CCR5 phosphopeptide complexes. Mol. Cell. 83, e7 (2023). 10.1016/j.molcel.2023.05.002. PubMed DOI

Ghosh E., et al. , Conformational sensors and domain swapping reveal structural and functional differences between beta-arrestin isoforms. Cell Rep. 28, e3286 (2019). 10.1016/j.celrep.2019.08.053. PubMed DOI PMC

Lee M. H., et al. , The conformational signature of beta-arrestin2 predicts its trafficking and signalling functions. Nature 531, 665–668 (2016). 10.1038/nature17154. PubMed DOI PMC

Nuber S., et al. , beta-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature 531, 661–664 (2016). 10.1038/nature17198. PubMed DOI PMC

Shukla A. K., et al. , Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors. Proc. Natl. Acad. Sci. U.S.A. 105, 9988–9993 (2008). 10.1073/pnas.0804246105. PubMed DOI PMC

Charest P. G., Terrillon S., Bouvier M., Monitoring agonist-promoted conformational changes of beta-arrestin in living cells by intramolecular BRET. EMBO Rep. 6, 334–340 (2005). 10.1038/sj.embor.7400373. PubMed DOI PMC

Baidya M., et al. , Genetically encoded intrabody sensors report the interaction and trafficking of beta-arrestin 1 upon activation of G-proteincoupled receptors. J. Biol. Chem. 295, 10153–10167 (2020). 10.1074/jbc.RA120.013470. PubMed DOI PMC

Steyaert J., Kobilka B. K., Nanobody stabilization of G protein-coupled receptor conformational states. Curr. Opin. Struct. Biol. 21, 567–572 (2011). 10.1016/j.sbi.2011.06.011. PubMed DOI PMC

Manglik A., Kobilka B. K., Steyaert J., Nanobodies to study G protein-coupled receptor structure and function. Annu. Rev. Pharmacol. Toxicol. 57, 19–37 (2017). 10.1146/annurevpharmtox-010716-104710. PubMed DOI PMC

Uchanski T., Pardon E., Steyaert J., Nanobodies to study protein conformational states. Curr. Opin. Struct. Biol. 60, 117–123 (2020). 10.1016/j.sbi.2020.01.003. PubMed DOI

Irannejad R., et al. , Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013). 10.1038/nature12000. PubMed DOI PMC

Kawakami K., et al. , Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying beta-arrestin transducer bias. Nat. Commun. 13, 487 (2022). 10.1038/s41467022-28056-7. PubMed DOI PMC

Grimes J., et al. , Plasma membrane preassociation drives beta-arrestin coupling to receptors and activation. Cell 186, 2238–2255, e2220 (2023). 10.1016/j.cell.2023.04.018. PubMed DOI PMC

Baidya M., et al. , Key phosphorylation sites in GPCRs orchestrate the contribution of beta-arrestin 1 in ERK1/2 activation. EMBO Rep. 21, e49886 (2020). PubMed PMC

Cahill T. J. III., et al. , Distinct conformations of GPCR-betaarrestin complexes mediate desensitization, signaling, and endocytosis. Proc. Natl. Acad. Sci. U.S.A. 114, 2562–2567 (2017). 10.1073/pnas.1701529114. PubMed DOI PMC

Nguyen A. H., et al. , Structure of an endosomal signaling GPCR-G protein-beta-arrestin megacomplex. Nat. Struct. Mol. Biol. 26, 1123–1131 (2019). 10.1038/s41594-019-0330-y. PubMed DOI PMC

Oakley R. H., Laporte S. A., Holt J. A., Caron M. G., Barak L. S., Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J. Biol. Chem. 275, 17201–17210 (2000). 10.1074/jbc.M910348199. PubMed DOI

Meyrath M., et al. , The atypical chemokine receptor ACKR3/CXCR7 is a broad-spectrum scavenger for opioid peptides. Nat. Commun. 11, 3033 (2020). PubMed PMC

Pandey S., et al. , Intrinsic bias at non-canonical, beta-arrestin-coupled seven transmembrane receptors. Mol. Cell 81, 4605–4621 (2021). 10.1016/j.molcel.2021.09.007. PubMed DOI PMC

Sarma P., et al. , Molecular insights into intrinsic transducercoupling bias in the CXCR4-CXCR7 system. Nat. Commun. 14, 4808 (2023). 10.1038/s41467-02340482-9. PubMed DOI PMC

Myskova J., et al. , Directionality of light absorption and emission in representative fluorescent proteins. Proc. Natl. Acad. Sci. U.S.A. 117, 32395–32401 (2020). 10.1073/pnas.2017379117. PubMed DOI PMC

Lazar J., Bondar A., Timr S., Firestein S. J., Two-photon polarization microscopy reveals protein structure and function. Nat. Methods 8, 684–690 (2011). 10.1038/nmeth.1643. PubMed DOI

Ranjan R., Dwivedi H., Baidya M., Kumar M., Shukla A. K., Novel structural insights into GPCR-beta-arrestin interaction and signaling. Trends Cell Biol. 27, 851–862 (2017). 10.1016/j.tcb.2017.05.008. PubMed DOI

Srivastava A., Gupta B., Gupta C., Shukla A. K., Emerging functional divergence of beta-arrestin isoforms in GPCR function. Trends Endocrinol. Metab. 26, 628–642 (2015). 10.1016/j.tem.2015.09.001. PubMed DOI

Shenoy S. K., et al. , Beta-arrestin-dependent signaling and trafficking of 7transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proc. Natl. Acad. Sci. U.S.A. 106, 6650–6655 (2009). 10.1073/pnas.0901083106. PubMed DOI PMC

Zhou X. E., et al. , Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170, 457–469 (2017). 10.1016/j.cell.2017.07.002. PubMed DOI PMC

Mayer D., et al. , Distinct G protein-coupled receptor phosphorylation motifs modulate arrestin affinity and activation and global conformation. Nat. Commun. 10, 1261 (2019). 10.1038/s41467-019-09204-y. PubMed DOI PMC

Yang Z., et al. , Phosphorylation of G protein-coupled receptors: From the barcode hypothesis to the flute model. Mol. Pharmacol. 92, 201–210 (2017). 10.1124/mol.116.107839. PubMed DOI

Dwivedi-Agnihotri H., et al. , Distinct phosphorylation sites in a prototypical GPCR differently orchestrate β-arrestin interaction, trafficking, and signaling. Sci. Adv. 6, eabb8368 (2020). 10.1126/sciadv.abb8368. PubMed DOI PMC

He Q. T., et al. , Structural studies of phosphorylation-dependent interactions between the V2R receptor and arrestin-2. Nat. Commun. 12, 2396 (2021). 10.1038/s41467-021-22731-x. PubMed DOI PMC

Kumari P., et al. , Functional competence of a partially engaged GPCR-beta-arrestin complex. Nat. Commun. 7, 13416 (2016). 10.1038/ncomms13416. PubMed DOI PMC

Kumari P., et al. , Core engagement with beta-arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation. Mol. Biol. Cell 28, 1003–1010 (2017). 10.1091/mbc.E16-12-0818. PubMed DOI PMC

Maharana J., et al. , Structural snapshots uncover a key phosphorylation motif in GPCRs driving β-arrestin activation. Mol. Cell 83, 2091–2107.e7 (2023). 10.1016/j.molcel.2023.04.025. PubMed DOI PMC

Dwivedi-Agnihotri H., Deeksha S.P., Kawakami S., Inoue K., Shukla A., An intrabody sensor to monitor conformational activation of β-arrestins. Methods in Cell Biology 169, 267278 (2022). PubMed

Baidya M., et al. , Allosteric modulation of GPCR-induced beta-arrestin trafficking and signaling by a synthetic intrabody. Nat. Commun. 13, 4634 (2022). 10.1038/s41467-022-32386-x. PubMed DOI PMC

Sente A., et al. , Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation. Nat. Struct. Mol. Biol. 25, 538–545 (2018). 10.1038/s41594-018-0071-3. PubMed DOI PMC

Yadav M. K., et al. , Molecular basis of anaphylatoxin binding, activation, and signaling bias at complement receptors. Cell 186, 4956–4973 (2023). 10.1016/j.cell.2023.09.020. PubMed DOI PMC

Goncharuk M. V., et al. , Purification of native CCL7 and its functional interaction with selected chemokine receptors. Protein Expr. Purif. 171, 105617 (2020). 10.1016/j.pep.2020.105617. PubMed DOI PMC

Saha S., et al. , Molecular basis of ligand promiscuity, structural mimicry, and atypical dimerization in the chemokine receptors. Mol. Cell 85, 976–988.e9 (2025). PubMed PMC

Pandey S., Roy D., Shukla A. K., Measuring surface expression and endocytosis of GPCRs using whole-cell ELISA. Methods Cell Biol. 149, 131–140 (2019). 10.1016/bs.mcb.2018.09.014. PubMed DOI PMC

Saha S., Ranjan A., Godara M., Shukla A. K., In-cellulo chemical cross-linking to visualize protein-protein interactions. Methods Cell Biol. 169, 295–307 (2022). 10.1016/bs.mcb.2021.12.024. PubMed DOI

Bondar A., et al. , Quantitative linear dichroism imaging of molecular processes in living cells made simple by open software tools. Commun. Biol. 4, 189 (2021). 10.1038/s42003-021-01694-1. PubMed DOI PMC

Cheng Z., et al. , Luciferase reporter assay system for deciphering GPCR pathways. Curr. Chem. Genomics 4, 84–91 (2010). PubMed PMC

Xiao K., Shenoy S. K., Nobles K., Lefkowitz R. J., Activation-dependent conformational changes in beta-arrestin 2. J. Biol. Chem. 279, 55744–55753 (2004). 10.1074/jbc.M409785200. PubMed DOI

Nobles K. N., Guan Z., Xiao K., Oas T. G., Lefkowitz R. J., The active conformation of beta-arrestin1: Direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins1 and -2. J. Biol. Chem. 282, 21370–21381 (2007). 10.1074/jbc.M611483200. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...