A genetically encoded nanobody sensor reveals conformational diversity in β-arrestins orchestrated by distinct seven transmembrane receptors
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
IA/S/20/1/504916
DBT-Wellcome Trust India Alliance - India
File No. DST/INT/Czech/P-03/2019
Department of Science and Technology, Ministry of Science and Technology, India (DST)
IA/S/20/1/504916
Wellcome Trust DBT India Alliance (India Alliance)
PubMed
40924451
PubMed Central
PMC12452856
DOI
10.1073/pnas.2507384122
Knihovny.cz E-zdroje
- Klíčová slova
- GPCRs, intrabodies, nanobodies, polarization microscopy, β-arrestins,
- MeSH
- beta arrestiny * metabolismus chemie genetika MeSH
- biosenzitivní techniky metody MeSH
- buněčná membrána metabolismus MeSH
- HEK293 buňky MeSH
- jednodoménové protilátky * genetika metabolismus chemie MeSH
- konformace proteinů MeSH
- lidé MeSH
- receptory spřažené s G-proteiny * metabolismus MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta arrestiny * MeSH
- jednodoménové protilátky * MeSH
- receptory spřažené s G-proteiny * MeSH
Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context. Here, we design an intrabody version of a βarr-recognizing nanobody (nanobody32), referred to as intrabody32 (Ib32), in NanoLuc enzyme complementation assay format and measure its ability to recognize βarr1 and 2 in live cells upon activation of a broad set of GPCRs. Ib32 robustly recognizes activated βarr1 and 2 in the plasma membrane and endosomes, and effectively mirrors βarr recruitment profile upon stimulation of selected GPCRs. We also design an Ib32 sensor for polarization microscopy with a change in linear dichroism as readout and demonstrate its utility for monitoring βarr activation upon stimulation of selected GPCRs by natural and biased agonists. Taken together with a previously described sensor of βarr1 activation, Ib32 underscores the inherent flexibility encoded in βarrs and conformational diversity imparted by different GPCRs, which is further corroborated using an orthogonal limited proteolysis assay. Our study presents Ib32 as a sensor of βarr activation and highlights the structural diversity of βarrs, which likely allows their ability to interact with, and regulate, a large repertoire of GPCRs.
1st Faculty of Medicine Charles University Prague Prague 121 08 Czech Republic
Faculty of Science Charles University Prague Prague 128 00 Czech Republic
Zobrazit více v PubMed
Hauser A. S., Attwood M. M., Rask-Andersen M., Schioth H. B., Gloriam D. E., Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017). 10.1038/nrd.2017.178. PubMed DOI PMC
Wootten D., Christopoulos A., Marti-Solano M., Babu M. M., Sexton P. M., Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 19, 638–653 (2018). 10.1038/s41580-018-0049-3. PubMed DOI
Pierce K. L., Premont R. T., Lefkowitz R. J., Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002). 10.1038/nrm908. PubMed DOI
Maharana J., Banerjee R., Yadav M. K., Sarma P., Shukla A. K., Emerging structural insights into GPCR-beta-arrestin interaction and functional outcomes. Curr. Opin. Struct. Biol. 75, 102406 (2022). 10.1016/j.sbi.2022.102406. PubMed DOI PMC
Kang D. S., Tian X., Benovic J. L., Role of beta-arrestins and arrestin domaincontaining proteins in G protein-coupled receptor trafficking. Curr. Opin. Cell Biol. 27, 63–71 (2014). 10.1016/j.ceb.2013.11.005. PubMed DOI PMC
Gurevich V. V., Gurevich E. V., The molecular acrobatics of arrestin activation. Trends Pharmacol. Sci. 25, 105–111 (2004). 10.1016/j.tips.2003.12.008. PubMed DOI
Reiter E., Ahn S., Shukla A. K., Lefkowitz R. J., Molecular mechanism of betaarrestin-biased agonism at seven-transmembrane receptors. Annu. Rev. Pharmacol. Toxicol. 52, 179–197 (2012). 10.1146/annurev.pharmtox.010909.105800. PubMed DOI PMC
Shukla A. K., et al. , Structure of active beta-arrestin-1 bound to a G-proteincoupled receptor phosphopeptide. Nature 497, 137–141 (2013). 10.1038/nature12120. PubMed DOI PMC
Lee Y., et al. , Molecular basis of betaarrestin coupling to formoterol-bound beta1-adrenoceptor. Nature 583, 862–866 (2020). 10.1038/s41586-020-2419-1. PubMed DOI PMC
Huang W., et al. , Structure of the neurotensin receptor 1 in complex with beta-arrestin 1. Nature 579, 303–308 (2020). 10.1038/s41586-020-1953-1. PubMed DOI PMC
Staus D. P., et al. , Structure of the M2 muscarinic receptor-betaarrestin complex in a lipid nanodisc. Nature 579, 297–302 (2020). 10.1038/s41586-020-1954-0. PubMed DOI PMC
Maharana J., et al. , Structural snapshots uncover a key phosphorylation motif in GPCRs driving beta-arrestin activation. Mol. Cell 83, 2091–2107 (2023). 10.1016/j.molcel.2023.04.025. PubMed DOI PMC
Maharana J., et al. , Molecular insights into atypical modes of betaarrestin interaction with seven transmembrane receptors. Science 383, 101–108 (2024). 10.1126/science.adj3347. PubMed DOI PMC
Isaikina P., et al. , A key GPCR phosphorylation motif discovered in arrestin2[Inline Image Removed1]CCR5 phosphopeptide complexes. Mol. Cell. 83, e7 (2023). 10.1016/j.molcel.2023.05.002. PubMed DOI
Ghosh E., et al. , Conformational sensors and domain swapping reveal structural and functional differences between beta-arrestin isoforms. Cell Rep. 28, e3286 (2019). 10.1016/j.celrep.2019.08.053. PubMed DOI PMC
Lee M. H., et al. , The conformational signature of beta-arrestin2 predicts its trafficking and signalling functions. Nature 531, 665–668 (2016). 10.1038/nature17154. PubMed DOI PMC
Nuber S., et al. , beta-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature 531, 661–664 (2016). 10.1038/nature17198. PubMed DOI PMC
Shukla A. K., et al. , Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors. Proc. Natl. Acad. Sci. U.S.A. 105, 9988–9993 (2008). 10.1073/pnas.0804246105. PubMed DOI PMC
Charest P. G., Terrillon S., Bouvier M., Monitoring agonist-promoted conformational changes of beta-arrestin in living cells by intramolecular BRET. EMBO Rep. 6, 334–340 (2005). 10.1038/sj.embor.7400373. PubMed DOI PMC
Baidya M., et al. , Genetically encoded intrabody sensors report the interaction and trafficking of beta-arrestin 1 upon activation of G-proteincoupled receptors. J. Biol. Chem. 295, 10153–10167 (2020). 10.1074/jbc.RA120.013470. PubMed DOI PMC
Steyaert J., Kobilka B. K., Nanobody stabilization of G protein-coupled receptor conformational states. Curr. Opin. Struct. Biol. 21, 567–572 (2011). 10.1016/j.sbi.2011.06.011. PubMed DOI PMC
Manglik A., Kobilka B. K., Steyaert J., Nanobodies to study G protein-coupled receptor structure and function. Annu. Rev. Pharmacol. Toxicol. 57, 19–37 (2017). 10.1146/annurevpharmtox-010716-104710. PubMed DOI PMC
Uchanski T., Pardon E., Steyaert J., Nanobodies to study protein conformational states. Curr. Opin. Struct. Biol. 60, 117–123 (2020). 10.1016/j.sbi.2020.01.003. PubMed DOI
Irannejad R., et al. , Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013). 10.1038/nature12000. PubMed DOI PMC
Kawakami K., et al. , Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying beta-arrestin transducer bias. Nat. Commun. 13, 487 (2022). 10.1038/s41467022-28056-7. PubMed DOI PMC
Grimes J., et al. , Plasma membrane preassociation drives beta-arrestin coupling to receptors and activation. Cell 186, 2238–2255, e2220 (2023). 10.1016/j.cell.2023.04.018. PubMed DOI PMC
Baidya M., et al. , Key phosphorylation sites in GPCRs orchestrate the contribution of beta-arrestin 1 in ERK1/2 activation. EMBO Rep. 21, e49886 (2020). PubMed PMC
Cahill T. J. III., et al. , Distinct conformations of GPCR-betaarrestin complexes mediate desensitization, signaling, and endocytosis. Proc. Natl. Acad. Sci. U.S.A. 114, 2562–2567 (2017). 10.1073/pnas.1701529114. PubMed DOI PMC
Nguyen A. H., et al. , Structure of an endosomal signaling GPCR-G protein-beta-arrestin megacomplex. Nat. Struct. Mol. Biol. 26, 1123–1131 (2019). 10.1038/s41594-019-0330-y. PubMed DOI PMC
Oakley R. H., Laporte S. A., Holt J. A., Caron M. G., Barak L. S., Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J. Biol. Chem. 275, 17201–17210 (2000). 10.1074/jbc.M910348199. PubMed DOI
Meyrath M., et al. , The atypical chemokine receptor ACKR3/CXCR7 is a broad-spectrum scavenger for opioid peptides. Nat. Commun. 11, 3033 (2020). PubMed PMC
Pandey S., et al. , Intrinsic bias at non-canonical, beta-arrestin-coupled seven transmembrane receptors. Mol. Cell 81, 4605–4621 (2021). 10.1016/j.molcel.2021.09.007. PubMed DOI PMC
Sarma P., et al. , Molecular insights into intrinsic transducercoupling bias in the CXCR4-CXCR7 system. Nat. Commun. 14, 4808 (2023). 10.1038/s41467-02340482-9. PubMed DOI PMC
Myskova J., et al. , Directionality of light absorption and emission in representative fluorescent proteins. Proc. Natl. Acad. Sci. U.S.A. 117, 32395–32401 (2020). 10.1073/pnas.2017379117. PubMed DOI PMC
Lazar J., Bondar A., Timr S., Firestein S. J., Two-photon polarization microscopy reveals protein structure and function. Nat. Methods 8, 684–690 (2011). 10.1038/nmeth.1643. PubMed DOI
Ranjan R., Dwivedi H., Baidya M., Kumar M., Shukla A. K., Novel structural insights into GPCR-beta-arrestin interaction and signaling. Trends Cell Biol. 27, 851–862 (2017). 10.1016/j.tcb.2017.05.008. PubMed DOI
Srivastava A., Gupta B., Gupta C., Shukla A. K., Emerging functional divergence of beta-arrestin isoforms in GPCR function. Trends Endocrinol. Metab. 26, 628–642 (2015). 10.1016/j.tem.2015.09.001. PubMed DOI
Shenoy S. K., et al. , Beta-arrestin-dependent signaling and trafficking of 7transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proc. Natl. Acad. Sci. U.S.A. 106, 6650–6655 (2009). 10.1073/pnas.0901083106. PubMed DOI PMC
Zhou X. E., et al. , Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170, 457–469 (2017). 10.1016/j.cell.2017.07.002. PubMed DOI PMC
Mayer D., et al. , Distinct G protein-coupled receptor phosphorylation motifs modulate arrestin affinity and activation and global conformation. Nat. Commun. 10, 1261 (2019). 10.1038/s41467-019-09204-y. PubMed DOI PMC
Yang Z., et al. , Phosphorylation of G protein-coupled receptors: From the barcode hypothesis to the flute model. Mol. Pharmacol. 92, 201–210 (2017). 10.1124/mol.116.107839. PubMed DOI
Dwivedi-Agnihotri H., et al. , Distinct phosphorylation sites in a prototypical GPCR differently orchestrate β-arrestin interaction, trafficking, and signaling. Sci. Adv. 6, eabb8368 (2020). 10.1126/sciadv.abb8368. PubMed DOI PMC
He Q. T., et al. , Structural studies of phosphorylation-dependent interactions between the V2R receptor and arrestin-2. Nat. Commun. 12, 2396 (2021). 10.1038/s41467-021-22731-x. PubMed DOI PMC
Kumari P., et al. , Functional competence of a partially engaged GPCR-beta-arrestin complex. Nat. Commun. 7, 13416 (2016). 10.1038/ncomms13416. PubMed DOI PMC
Kumari P., et al. , Core engagement with beta-arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation. Mol. Biol. Cell 28, 1003–1010 (2017). 10.1091/mbc.E16-12-0818. PubMed DOI PMC
Maharana J., et al. , Structural snapshots uncover a key phosphorylation motif in GPCRs driving β-arrestin activation. Mol. Cell 83, 2091–2107.e7 (2023). 10.1016/j.molcel.2023.04.025. PubMed DOI PMC
Dwivedi-Agnihotri H., Deeksha S.P., Kawakami S., Inoue K., Shukla A., An intrabody sensor to monitor conformational activation of β-arrestins. Methods in Cell Biology 169, 267278 (2022). PubMed
Baidya M., et al. , Allosteric modulation of GPCR-induced beta-arrestin trafficking and signaling by a synthetic intrabody. Nat. Commun. 13, 4634 (2022). 10.1038/s41467-022-32386-x. PubMed DOI PMC
Sente A., et al. , Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation. Nat. Struct. Mol. Biol. 25, 538–545 (2018). 10.1038/s41594-018-0071-3. PubMed DOI PMC
Yadav M. K., et al. , Molecular basis of anaphylatoxin binding, activation, and signaling bias at complement receptors. Cell 186, 4956–4973 (2023). 10.1016/j.cell.2023.09.020. PubMed DOI PMC
Goncharuk M. V., et al. , Purification of native CCL7 and its functional interaction with selected chemokine receptors. Protein Expr. Purif. 171, 105617 (2020). 10.1016/j.pep.2020.105617. PubMed DOI PMC
Saha S., et al. , Molecular basis of ligand promiscuity, structural mimicry, and atypical dimerization in the chemokine receptors. Mol. Cell 85, 976–988.e9 (2025). PubMed PMC
Pandey S., Roy D., Shukla A. K., Measuring surface expression and endocytosis of GPCRs using whole-cell ELISA. Methods Cell Biol. 149, 131–140 (2019). 10.1016/bs.mcb.2018.09.014. PubMed DOI PMC
Saha S., Ranjan A., Godara M., Shukla A. K., In-cellulo chemical cross-linking to visualize protein-protein interactions. Methods Cell Biol. 169, 295–307 (2022). 10.1016/bs.mcb.2021.12.024. PubMed DOI
Bondar A., et al. , Quantitative linear dichroism imaging of molecular processes in living cells made simple by open software tools. Commun. Biol. 4, 189 (2021). 10.1038/s42003-021-01694-1. PubMed DOI PMC
Cheng Z., et al. , Luciferase reporter assay system for deciphering GPCR pathways. Curr. Chem. Genomics 4, 84–91 (2010). PubMed PMC
Xiao K., Shenoy S. K., Nobles K., Lefkowitz R. J., Activation-dependent conformational changes in beta-arrestin 2. J. Biol. Chem. 279, 55744–55753 (2004). 10.1074/jbc.M409785200. PubMed DOI
Nobles K. N., Guan Z., Xiao K., Oas T. G., Lefkowitz R. J., The active conformation of beta-arrestin1: Direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins1 and -2. J. Biol. Chem. 282, 21370–21381 (2007). 10.1074/jbc.M611483200. PubMed DOI