FLIPs: Genetically encoded molecular biosensors for functional imaging of cell signaling by linear dichroism microscopy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41544164
PubMed Central
PMC12810643
DOI
10.1126/sciadv.adz5662
Knihovny.cz E-zdroje
- MeSH
- beta arrestiny metabolismus MeSH
- biosenzitivní techniky * metody MeSH
- HEK293 buňky MeSH
- lidé MeSH
- luminescentní proteiny genetika metabolismus MeSH
- proteiny vázající GTP metabolismus MeSH
- receptory spřažené s G-proteiny metabolismus MeSH
- signální transdukce * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta arrestiny MeSH
- luminescentní proteiny MeSH
- proteiny vázající GTP MeSH
- receptory spřažené s G-proteiny MeSH
Genetically encoded fluorescent biosensors convert specific biomolecular events into optically detectable signals. However, imaging biomolecular processes often requires modifying the proteins involved, and many molecular processes are still to be imaged. Here, we present a biosensor design that uses a hitherto overlooked detection principle: directionality of optical properties of fluorescent proteins. The biosensors (termed FLIPs) offer an extremely simple design, high sensitivity, multiplexing capability, ratiometric readout, and other advantages, without requiring modifications to their targets. We demonstrate the sensor performance by real-time imaging activity of G protein-coupled receptors (GPCRs), G proteins, arrestins, and other membrane-associated proteins, as well as by identifying a previously undescribed, pronounced, endocytosis-associated conformational change in a GPCR-β-arrestin complex. In combination with an original tri-scanning linear dichroism confocal microscope, FLIPs allow unparalleled imaging of activity of nonmodified, endogenously expressed G proteins. Thus, FLIPs establish a powerful molecular platform for imaging cell signaling, allowing numerous future developments and insights.
1st Faculty of Medicine Charles University Prague Kateřinská 32 121 08 Prague Czechia
Innovative Bioimaging s r o Podolská 1490 6 147 00 Prague 4 Czechia
Université de Lille LASIRe CNRS 59655 Villeneuve France
University of South Bohemia Faculty of Science Branišovská 1160 30 Budweis Czechia
Zobrazit více v PubMed
Ovechkina V. S., Zakian S. M., Medvedev S. P., Valetdinova K. R., Genetically encoded fluorescent biosensors for biomedical applications. Biomedicine 9, 1528 (2021). PubMed PMC
Bondar A., Lazar J., Optical sensors of heterotrimeric G protein signaling. FEBS J. 288, 2570–2584 (2021). PubMed
Irannejad R., Tomshine J. C., Tomshine J. R., Chevalier M., Mahoney J. P., Steyaert J., Rasmussen S. G., Sunahara R. K., El-Samad H., Huang B., von Zastrow M., Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013). PubMed PMC
Avet C., Mancini A., Breton B., Gouill C. L., Hauser A. S., Normand C., Kobayashi H., Gross F., Hogue M., Lukasheva V., St-Onge S., Carrier M., Héroux M., Morissette S., Fauman E. B., Fortin J.-P., Schann S., Leroy X., Gloriam D. E., Bouvier M., Effector membrane translocation biosensors reveal G protein and βarrestin coupling profiles of 100 therapeutically relevant GPCRs. eLife 11, e74101 (2022). PubMed PMC
Inoué S., Shimomura O., Goda M., Shribak M., Tran P., Fluorescence polarization of green fluorescence protein. Proc. Natl. Acad. Sci. U.S.A. 99, 4272–4277 (2002). PubMed PMC
Myšková J., Rybakova O., Brynda J., Khoroshyy P., Bondar A., Lazar J., Directionality of light absorption and emission in representative fluorescent proteins. Proc. Natl. Acad. Sci. U.S.A. 117, 32395–32401 (2020). PubMed PMC
Vrabioiu A. M., Mitchison T. J., Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature 443, 466–469 (2006). PubMed
Lazar J., Bondar A., Timr S., Firestein S. J., Two-photon polarization microscopy reveals protein structure and function. Nat. Methods 8, 684–690 (2011). PubMed
Han Z., Jin L., Chen F., Loturco J. J., Cohen L. B., Bondar A., Lazar J., Pieribone V. A., Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight. PLOS ONE 9, e113873 (2014). PubMed PMC
Valades Cruz C. A., Shaban H. A., Kress A., Bertaux N., Monneret S., Mavrakis M., Savatier J., Brasselet S., Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy. Proc. Natl. Acad. Sci. U.S.A. 113, E820–E828 (2016). PubMed PMC
Nakai N., Sato K., Tani T., Kawagishi M., Ka H., Saito K., Terada S., Development of nanobody-based POLArIS orientation probes enabled multi-color/multi-target orientation imaging in living cells. Biochem. Biophys. Res. Commun. 565, 50–56 (2021). PubMed
McQuilken M., Jentzsch M. S., Verma A., Mehta S. B., Oldenbourg R., Gladfelter A. S., Analysis of septin reorganization at cytokinesis using polarized fluorescence microscopy. Front. Cell Dev. Biol. 5, 42 (2017). PubMed PMC
Warren S. C., Margineanu A., Katan M., Dunsby C., French P. M. W., Homo-FRET based biosensors and their application to multiplexed imaging of signalling events in live cells. Int. J. Mol. Sci. 16, 14695–14716 (2015). PubMed PMC
Bondar A., Lazar J., Dissociated GαGTP and Gβγ protein subunits are the major activated form of heterotrimeric Gi/o proteins. J. Biol. Chem. 289, 1271–1281 (2014). PubMed PMC
Bondar A., Lazar J., The G protein Gi1 exhibits basal coupling but not preassembly with G protein-coupled receptors. J. Biol. Chem. 292, 9690–9698 (2017). PubMed PMC
Maziarz M., Park J.-C., Leyme A., Marivin A., Garcia-Lopez A., Patel P. P., Garcia-Marcos M., Revealing the activity of trimeric G-proteins in live cells with a versatile biosensor design. Cell 182, 770–785.e16 (2020). PubMed PMC
Johnston C. A., Lobanova E. S., Shavkunov A. S., Low J., Ramer J. K., Blaesius R., Fredericks Z., Willard F. S., Kuhlman B., Arshavsky V. Y., Siderovski D. P., Minimal determinants for binding activated Gα from the structure of a Gαi1−peptide dimer. Biochemistry 45, 11390–11400 (2006). PubMed PMC
J. T. Stickney, M. A. Booden, J. E. Buss, “Targeting proteins to membranes, using signal sequences for lipid modifications,” in PubMed
Bondar A., Rybakova O., Melcr J., Dohnálek J., Khoroshyy P., Ticháček O., Timr Š., Miclea P., Sakhi A., Marková V., Lazar J., Quantitative linear dichroism imaging of molecular processes in living cells made simple by open software tools. Commun. Biol. 4, 189 (2021). PubMed PMC
Timr S., Brabec J., Bondar A., Ryba T., Zelezny M., Lazar J., Jungwirth P., Nonlinear optical properties of fluorescent dyes allow for accurate determination of their molecular orientations in phospholipid membranes. J. Phys. Chem. B 119, 9706–9716 (2015). PubMed
Ast C., Foret J., Oltrogge L. M., De Michele R., Kleist T. J., Ho C.-H., Frommer W. B., Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins. Nat. Commun. 8, 431 (2017). PubMed PMC
Goedhart J., Von Stetten D., Noirclerc-Savoye M., Lelimousin M., Joosen L., Hink M. A., Van Weeren L., Gadella T. W. Jr., Royant A., Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat. Commun. 3, 751 (2012). PubMed PMC
Melkes B., Hejnova L., Novotny J., Biased μ-opioid receptor agonists diversely regulate lateral mobility and functional coupling of the receptor to its cognate G proteins. Naunyn Schmiedebergs Arch. Pharmacol. 389, 1289–1300 (2016). PubMed
Stoeber M., Jullié D., Lobingier B. T., Laeremans T., Steyaert J., Schiller P. W., Manglik A., von Zastrow M., A genetically encoded biosensor reveals location bias of opioid drug action. Neuron 98, 963–976.e5 (2018). PubMed PMC
Rasmussen S. G., Choi H.-J., Fung J. J., Pardon E., Casarosa P., Chae P. S., DeVree B. T., Rosenbaum D. M., Thian F. S., Kobilka T. S., Schnapp A., Konetzki I., Sunahara R. K., Gellman S. H., Pautsch A., Steyaert J., Weis W. I., Kobilka B. K., Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011). PubMed PMC
Wootten D., Christopoulos A., Marti-Solano M., Babu M. M., Sexton P. M., Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 19, 638–653 (2018). PubMed
Van Gastel J., Hendrickx J. O., Leysen H., Santos-Otte P., Luttrell L. M., Martin B., Maudsley S., β-Arrestin based receptor signaling paradigms: Potential therapeutic targets for complex age-related disorders. Front. Pharmacol. 9, 1369 (2018). PubMed PMC
Tsvetanova N. G., Irannejad R., von Zastrow M., G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes. J. Biol. Chem. 290, 6689–6696 (2015). PubMed PMC
Cahill T. J. III, Thomsen A. R., Tarrasch J. T., Plouffe B., Nguyen A. H., Yang F., Huang L.-Y., Kahsai A. W., Bassoni D. L., Gavino B. J., Lamerdin J. E., Triest S., Shukla A. K., Berger B., Little J. IV, Antar A., Blanc A., Qu C. X., Chen X., Kawakami K., Inoue A., Aoki J., Steyaert J., Sun J. P., Bouvier M., Skiniotis G., Lefkowitz R. J., Distinct conformations of GPCR–β-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc. Natl. Acad. Sci. U.S.A. 114, 2562–2567 (2017). PubMed PMC
Latorraca N. R., Wang J. K., Bauer B., Townshend R. J., Hollingsworth S. A., Olivieri J. E., Xu H. E., Sommer M. E., Dror R. O., Molecular mechanism of GPCR-mediated arrestin activation. Nature 557, 452–456 (2018). PubMed PMC
Nguyen A. H., Thomsen A. R., Cahill T. J. III, Huang R., Huang L.-Y., Marcink T., Clarke O. B., Heissel S., Masoudi A., Ben-Hail D., Samaan F., Dandey V. P., Tan Y. Z., Hong C., Mahoney J. P., Triest S., Little J. IV, Chen X., Sunahara R., Steyaert J., Molina H., Yu Z., des Georges A., Lefkowitz R. J., Structure of an endosomal signaling GPCR–G protein–β-arrestin megacomplex. Nat. Struct. Mol. Biol. 26, 1123–1131 (2019). PubMed PMC
Sarma P., Marková V. N., Zaidi N., Dalal A., Mishra S., Yadav M. K., Mahajan G., Roy N., Miclea P., Lazar J., Shukla A. K., A genetically-encoded nanobody sensor reveals conformational diversity in β-arrestins orchestrated by distinct seven transmembrane receptors. Proc. Natl. Acad. Sci. U.S.A. 122, e2507384122 (2025). PubMed PMC
Zimmerman B., Simaan M., Akoume M.-Y., Houri N., Chevallier S., Séguéla P., Laporte S. A., Role of ssarrestins in bradykinin B2 receptor-mediated signalling. Cell. Signal. 23, 648–659 (2011). PubMed
Simaan M., Bédard-Goulet S., Fessart D., Gratton J.-P., Laporte S. A., Dissociation of β-arrestin from internalized bradykinin B2 receptor is necessary for receptor recycling and resensitization. Cell. Signal. 17, 1074–1083 (2005). PubMed
Lamb M. E., De Weerd W. F., Leeb-Lundberg L. M., Agonist-promoted trafficking of human bradykinin receptors: Arrestin-and dynamin-independent sequestration of the B2 receptor and bradykinin in HEK293 cells. Biochem. J. 355, 741–750 (2001). PubMed PMC
Haasemann M., Cartaud J., Müller-Esterl W., Dunia I., Agonist-induced redistribution of bradykinin B 2 receptor in caveolae. J. Cell Sci. 111, 917–928 (1998). PubMed
Blaukat A., Pizard A., Breit A., Wernstedt C., Alhenc-Gelas F., Muller-Esterl W., Dikic I., Determination of bradykinin B2 receptor in vivo phosphorylation sites and their role in receptor function. J. Biol. Chem. 276, 40431–40440 (2001). PubMed
Pizard A., Blaukat A., Muller-Esterl W., Alhenc-Gelas F., Rajerison R. M., Bradykinin-induced internalization of the human B2 receptor requires phosphorylation of three serine and two threonine residues at its carboxyl tail. J. Biol. Chem. 274, 12738–12747 (1999). PubMed
Janetzko J., Kise R., Barsi-Rhyne B., Siepe D. H., Heydenreich F. M., Kawakami K., Masureel M., Maeda S., Garcia K. C., von Zastrow M., Inoue A., Kobilka B. K., Membrane phosphoinositides regulate GPCR-β-arrestin complex assembly and dynamics. Cell 185, 4560–4573.e19 (2022). PubMed PMC
Fried S. D., Lewis J. W., Szundi I., Martinez-Mayorga K., Mahalingam M., Vogel R., Kliger D. S., Brown M. F., Membrane curvature revisited—The archetype of rhodopsin studied by time-resolved electronic spectroscopy. Biophys. J. 120, 440–452 (2021). PubMed PMC
Hollins B., Kuravi S., Digby G. J., Lambert N. A., The c-terminus of GRK3 indicates rapid dissociation of G protein heterotrimers. Cell. Signal. 21, 1015–1021 (2009). PubMed PMC
Park K. C., Rivero F., Meili R., Lee S., Apone F., Firtel R. A., Rac regulation of chemotaxis and morphogenesis in Dictyostelium. EMBO J. 23, 4177–4189 (2004). PubMed PMC
Chan J. Y., Hackel B. J., Yee D., Targeting insulin receptor in breast cancer using small engineered protein scaffolds. Mol. Cancer Ther. 16, 1324–1334 (2017). PubMed PMC
R. Van den Eynde, J. Verheyen, P. Miclea, J. Lazar, W. Vandenberg, P. Dedecker, The TriScan: Fast and sensitive 3D confocal fluorescence imaging using a simple optical design. bioRxiv 101113439 [Preprint] (2024). 10.3030/101113439. DOI
Hardt S., Rates of diffusion controlled reactions in one, two and three dimensions. Biophys. Chem. 10, 239–243 (1979). PubMed
Sun F., Zeng J., Jing M., Zhou J., Feng J., Owen S. F., Luo Y., Li F., Wang H., Yamaguchi T., Yong Z., Gao Y., Peng W., Wang L., Zhang S., du J., Lin D., Xu M., Kreitzer A. C., Cui G., Li Y., A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19 (2018). PubMed PMC
Jing M., Zhang P., Wang G., Feng J., Mesik L., Zeng J., Jiang H., Wang S., Looby J. C., Guagliardo N. A., Langma L. W., Lu J., Zuo Y., Talmage D. A., Role L. W., Barrett P. Q., Zhang L. I., Luo M., Song Y., Zhu J. J., Li Y., A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36, 726–737 (2018). PubMed PMC
Patriarchi T., Cho J. R., Merten K., Howe M. W., Marley A., Xiong W.-H., Folk R. W., Broussard G. J., Liang R., Jang M. J., Zhong H., Dombeck D., von Zastrow M., Nimmerjahn A., Gradinaru V., Williams J. T., Tian L., Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018). PubMed PMC
Zhuo Y., Luo B., Yi X., Dong H., Miao X., Wan J., Williams J. T., Campbell M. G., Cai R., Qian T., Li F., Weber S. J., Wang L., Li B., Wei Y., Li G., Wang H., Zheng Y., Zhao Y., Wolf M. E., Zhu Y., Watabe-Uchida M., Li Y., Improved green and red GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods 21, 680–691 (2024). PubMed PMC
Kampmann M., Atkinson C. E., Mattheyses A. L., Simon S. M., Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy. Nat. Struct. Mol. Biol. 18, 643–649 (2011). PubMed PMC
Abrahamsson S., McQuilken M., Mehta S. B., Verma A., Larsch J., Ilic R., Heintzmann R., Bargmann C. I., Gladfelter A. S., Oldenbourg R., MultiFocus Polarization Microscope (MF-PolScope) for 3D polarization imaging of up to 25 focal planes simultaneously. Opt. Express 23, 7734–7754 (2015). PubMed PMC
Liu T., de Haan K., Bai B., Rivenson Y., Luo Y., Wang H., Karalli D., Fu H., Zhang Y., FitzGerald J., Ozcan A., Deep learning-based holographic polarization microscopy. ACS Photonics 7, 3023–3034 (2020). PubMed PMC
Chen L., Chen X., Yang X., He C., Wang M., Xi P., Gao J., Advances of super-resolution fluorescence polarization microscopy and its applications in life sciences. Comput. Struct. Biotechnol. J. 18, 2209–2216 (2020). PubMed PMC
Dean W. F., Nawara T. J., Albert R. M., Mattheyses A., OOPS: Object-oriented polarization software for analysis of fluorescence polarization microscopy images. PLOS Comput. Biol. 20, e1011723 (2024). PubMed PMC
Bruggeman E., Zhang O., Needham L.-M., Körbel M., Daly S., Cheetham M., Peters R., Wu T., Klymchenko A. S., Davis S. J., Paluch E. K., Klenerman D., Lew M. D., O’Holleran K., Lee S. F., POLCAM: Instant molecular orientation microscopy for the life sciences. Nat. Methods 21, 1873–1883 (2024). PubMed PMC
Keikhosravi A., Liu Y., Drifka C., Woo K. M., Verma A., Oldenbourg R., Eliceiri K. W., Quantification of collagen organization in histopathology samples using liquid crystal based polarization microscopy. Biomed. Opt. Express 8, 4243–4256 (2017). PubMed PMC
Zhanghao K., Chen X., Liu W., Li M., Liu Y., Wang Y., Luo S., Wang X., Shan C., Xie H., Gao J., Chen X., Jin D., Li X., Zhang Y., Dai Q., Xi P., Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy. Nat. Commun. 10, 4694 (2019). PubMed PMC
Brasselet S., Alonso M. A., Polarization microscopy: From ensemble structural imaging to single-molecule 3D orientation and localization microscopy. Optica 10, 1486–1510 (2023).
M. P. Benoit, H. Sosa, “Use of single molecule fluorescence polarization microscopy to study protein conformation and dynamics of kinesin–microtubule complexes,” in PubMed PMC