FLIPs: Genetically encoded molecular biosensors for functional imaging of cell signaling by linear dichroism microscopy

. 2026 Jan 16 ; 12 (3) : eadz5662. [epub] 20260116

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41544164

Genetically encoded fluorescent biosensors convert specific biomolecular events into optically detectable signals. However, imaging biomolecular processes often requires modifying the proteins involved, and many molecular processes are still to be imaged. Here, we present a biosensor design that uses a hitherto overlooked detection principle: directionality of optical properties of fluorescent proteins. The biosensors (termed FLIPs) offer an extremely simple design, high sensitivity, multiplexing capability, ratiometric readout, and other advantages, without requiring modifications to their targets. We demonstrate the sensor performance by real-time imaging activity of G protein-coupled receptors (GPCRs), G proteins, arrestins, and other membrane-associated proteins, as well as by identifying a previously undescribed, pronounced, endocytosis-associated conformational change in a GPCR-β-arrestin complex. In combination with an original tri-scanning linear dichroism confocal microscope, FLIPs allow unparalleled imaging of activity of nonmodified, endogenously expressed G proteins. Thus, FLIPs establish a powerful molecular platform for imaging cell signaling, allowing numerous future developments and insights.

Zobrazit více v PubMed

Ovechkina V. S., Zakian S. M., Medvedev S. P., Valetdinova K. R., Genetically encoded fluorescent biosensors for biomedical applications. Biomedicine 9, 1528 (2021). PubMed PMC

Bondar A., Lazar J., Optical sensors of heterotrimeric G protein signaling. FEBS J. 288, 2570–2584 (2021). PubMed

Irannejad R., Tomshine J. C., Tomshine J. R., Chevalier M., Mahoney J. P., Steyaert J., Rasmussen S. G., Sunahara R. K., El-Samad H., Huang B., von Zastrow M., Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013). PubMed PMC

Avet C., Mancini A., Breton B., Gouill C. L., Hauser A. S., Normand C., Kobayashi H., Gross F., Hogue M., Lukasheva V., St-Onge S., Carrier M., Héroux M., Morissette S., Fauman E. B., Fortin J.-P., Schann S., Leroy X., Gloriam D. E., Bouvier M., Effector membrane translocation biosensors reveal G protein and βarrestin coupling profiles of 100 therapeutically relevant GPCRs. eLife 11, e74101 (2022). PubMed PMC

Inoué S., Shimomura O., Goda M., Shribak M., Tran P., Fluorescence polarization of green fluorescence protein. Proc. Natl. Acad. Sci. U.S.A. 99, 4272–4277 (2002). PubMed PMC

Myšková J., Rybakova O., Brynda J., Khoroshyy P., Bondar A., Lazar J., Directionality of light absorption and emission in representative fluorescent proteins. Proc. Natl. Acad. Sci. U.S.A. 117, 32395–32401 (2020). PubMed PMC

Vrabioiu A. M., Mitchison T. J., Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature 443, 466–469 (2006). PubMed

Lazar J., Bondar A., Timr S., Firestein S. J., Two-photon polarization microscopy reveals protein structure and function. Nat. Methods 8, 684–690 (2011). PubMed

Han Z., Jin L., Chen F., Loturco J. J., Cohen L. B., Bondar A., Lazar J., Pieribone V. A., Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight. PLOS ONE 9, e113873 (2014). PubMed PMC

Valades Cruz C. A., Shaban H. A., Kress A., Bertaux N., Monneret S., Mavrakis M., Savatier J., Brasselet S., Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy. Proc. Natl. Acad. Sci. U.S.A. 113, E820–E828 (2016). PubMed PMC

Nakai N., Sato K., Tani T., Kawagishi M., Ka H., Saito K., Terada S., Development of nanobody-based POLArIS orientation probes enabled multi-color/multi-target orientation imaging in living cells. Biochem. Biophys. Res. Commun. 565, 50–56 (2021). PubMed

McQuilken M., Jentzsch M. S., Verma A., Mehta S. B., Oldenbourg R., Gladfelter A. S., Analysis of septin reorganization at cytokinesis using polarized fluorescence microscopy. Front. Cell Dev. Biol. 5, 42 (2017). PubMed PMC

Warren S. C., Margineanu A., Katan M., Dunsby C., French P. M. W., Homo-FRET based biosensors and their application to multiplexed imaging of signalling events in live cells. Int. J. Mol. Sci. 16, 14695–14716 (2015). PubMed PMC

Bondar A., Lazar J., Dissociated GαGTP and Gβγ protein subunits are the major activated form of heterotrimeric Gi/o proteins. J. Biol. Chem. 289, 1271–1281 (2014). PubMed PMC

Bondar A., Lazar J., The G protein Gi1 exhibits basal coupling but not preassembly with G protein-coupled receptors. J. Biol. Chem. 292, 9690–9698 (2017). PubMed PMC

Maziarz M., Park J.-C., Leyme A., Marivin A., Garcia-Lopez A., Patel P. P., Garcia-Marcos M., Revealing the activity of trimeric G-proteins in live cells with a versatile biosensor design. Cell 182, 770–785.e16 (2020). PubMed PMC

Johnston C. A., Lobanova E. S., Shavkunov A. S., Low J., Ramer J. K., Blaesius R., Fredericks Z., Willard F. S., Kuhlman B., Arshavsky V. Y., Siderovski D. P., Minimal determinants for binding activated Gα from the structure of a Gαi1−peptide dimer. Biochemistry 45, 11390–11400 (2006). PubMed PMC

J. T. Stickney, M. A. Booden, J. E. Buss, “Targeting proteins to membranes, using signal sequences for lipid modifications,” in PubMed

Bondar A., Rybakova O., Melcr J., Dohnálek J., Khoroshyy P., Ticháček O., Timr Š., Miclea P., Sakhi A., Marková V., Lazar J., Quantitative linear dichroism imaging of molecular processes in living cells made simple by open software tools. Commun. Biol. 4, 189 (2021). PubMed PMC

Timr S., Brabec J., Bondar A., Ryba T., Zelezny M., Lazar J., Jungwirth P., Nonlinear optical properties of fluorescent dyes allow for accurate determination of their molecular orientations in phospholipid membranes. J. Phys. Chem. B 119, 9706–9716 (2015). PubMed

Ast C., Foret J., Oltrogge L. M., De Michele R., Kleist T. J., Ho C.-H., Frommer W. B., Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins. Nat. Commun. 8, 431 (2017). PubMed PMC

Goedhart J., Von Stetten D., Noirclerc-Savoye M., Lelimousin M., Joosen L., Hink M. A., Van Weeren L., Gadella T. W. Jr., Royant A., Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat. Commun. 3, 751 (2012). PubMed PMC

Melkes B., Hejnova L., Novotny J., Biased μ-opioid receptor agonists diversely regulate lateral mobility and functional coupling of the receptor to its cognate G proteins. Naunyn Schmiedebergs Arch. Pharmacol. 389, 1289–1300 (2016). PubMed

Stoeber M., Jullié D., Lobingier B. T., Laeremans T., Steyaert J., Schiller P. W., Manglik A., von Zastrow M., A genetically encoded biosensor reveals location bias of opioid drug action. Neuron 98, 963–976.e5 (2018). PubMed PMC

Rasmussen S. G., Choi H.-J., Fung J. J., Pardon E., Casarosa P., Chae P. S., DeVree B. T., Rosenbaum D. M., Thian F. S., Kobilka T. S., Schnapp A., Konetzki I., Sunahara R. K., Gellman S. H., Pautsch A., Steyaert J., Weis W. I., Kobilka B. K., Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011). PubMed PMC

Wootten D., Christopoulos A., Marti-Solano M., Babu M. M., Sexton P. M., Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 19, 638–653 (2018). PubMed

Van Gastel J., Hendrickx J. O., Leysen H., Santos-Otte P., Luttrell L. M., Martin B., Maudsley S., β-Arrestin based receptor signaling paradigms: Potential therapeutic targets for complex age-related disorders. Front. Pharmacol. 9, 1369 (2018). PubMed PMC

Tsvetanova N. G., Irannejad R., von Zastrow M., G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes. J. Biol. Chem. 290, 6689–6696 (2015). PubMed PMC

Cahill T. J. III, Thomsen A. R., Tarrasch J. T., Plouffe B., Nguyen A. H., Yang F., Huang L.-Y., Kahsai A. W., Bassoni D. L., Gavino B. J., Lamerdin J. E., Triest S., Shukla A. K., Berger B., Little J. IV, Antar A., Blanc A., Qu C. X., Chen X., Kawakami K., Inoue A., Aoki J., Steyaert J., Sun J. P., Bouvier M., Skiniotis G., Lefkowitz R. J., Distinct conformations of GPCR–β-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc. Natl. Acad. Sci. U.S.A. 114, 2562–2567 (2017). PubMed PMC

Latorraca N. R., Wang J. K., Bauer B., Townshend R. J., Hollingsworth S. A., Olivieri J. E., Xu H. E., Sommer M. E., Dror R. O., Molecular mechanism of GPCR-mediated arrestin activation. Nature 557, 452–456 (2018). PubMed PMC

Nguyen A. H., Thomsen A. R., Cahill T. J. III, Huang R., Huang L.-Y., Marcink T., Clarke O. B., Heissel S., Masoudi A., Ben-Hail D., Samaan F., Dandey V. P., Tan Y. Z., Hong C., Mahoney J. P., Triest S., Little J. IV, Chen X., Sunahara R., Steyaert J., Molina H., Yu Z., des Georges A., Lefkowitz R. J., Structure of an endosomal signaling GPCR–G protein–β-arrestin megacomplex. Nat. Struct. Mol. Biol. 26, 1123–1131 (2019). PubMed PMC

Sarma P., Marková V. N., Zaidi N., Dalal A., Mishra S., Yadav M. K., Mahajan G., Roy N., Miclea P., Lazar J., Shukla A. K., A genetically-encoded nanobody sensor reveals conformational diversity in β-arrestins orchestrated by distinct seven transmembrane receptors. Proc. Natl. Acad. Sci. U.S.A. 122, e2507384122 (2025). PubMed PMC

Zimmerman B., Simaan M., Akoume M.-Y., Houri N., Chevallier S., Séguéla P., Laporte S. A., Role of ssarrestins in bradykinin B2 receptor-mediated signalling. Cell. Signal. 23, 648–659 (2011). PubMed

Simaan M., Bédard-Goulet S., Fessart D., Gratton J.-P., Laporte S. A., Dissociation of β-arrestin from internalized bradykinin B2 receptor is necessary for receptor recycling and resensitization. Cell. Signal. 17, 1074–1083 (2005). PubMed

Lamb M. E., De Weerd W. F., Leeb-Lundberg L. M., Agonist-promoted trafficking of human bradykinin receptors: Arrestin-and dynamin-independent sequestration of the B2 receptor and bradykinin in HEK293 cells. Biochem. J. 355, 741–750 (2001). PubMed PMC

Haasemann M., Cartaud J., Müller-Esterl W., Dunia I., Agonist-induced redistribution of bradykinin B 2 receptor in caveolae. J. Cell Sci. 111, 917–928 (1998). PubMed

Blaukat A., Pizard A., Breit A., Wernstedt C., Alhenc-Gelas F., Muller-Esterl W., Dikic I., Determination of bradykinin B2 receptor in vivo phosphorylation sites and their role in receptor function. J. Biol. Chem. 276, 40431–40440 (2001). PubMed

Pizard A., Blaukat A., Muller-Esterl W., Alhenc-Gelas F., Rajerison R. M., Bradykinin-induced internalization of the human B2 receptor requires phosphorylation of three serine and two threonine residues at its carboxyl tail. J. Biol. Chem. 274, 12738–12747 (1999). PubMed

Janetzko J., Kise R., Barsi-Rhyne B., Siepe D. H., Heydenreich F. M., Kawakami K., Masureel M., Maeda S., Garcia K. C., von Zastrow M., Inoue A., Kobilka B. K., Membrane phosphoinositides regulate GPCR-β-arrestin complex assembly and dynamics. Cell 185, 4560–4573.e19 (2022). PubMed PMC

Fried S. D., Lewis J. W., Szundi I., Martinez-Mayorga K., Mahalingam M., Vogel R., Kliger D. S., Brown M. F., Membrane curvature revisited—The archetype of rhodopsin studied by time-resolved electronic spectroscopy. Biophys. J. 120, 440–452 (2021). PubMed PMC

Hollins B., Kuravi S., Digby G. J., Lambert N. A., The c-terminus of GRK3 indicates rapid dissociation of G protein heterotrimers. Cell. Signal. 21, 1015–1021 (2009). PubMed PMC

Park K. C., Rivero F., Meili R., Lee S., Apone F., Firtel R. A., Rac regulation of chemotaxis and morphogenesis in Dictyostelium. EMBO J. 23, 4177–4189 (2004). PubMed PMC

Chan J. Y., Hackel B. J., Yee D., Targeting insulin receptor in breast cancer using small engineered protein scaffolds. Mol. Cancer Ther. 16, 1324–1334 (2017). PubMed PMC

R. Van den Eynde, J. Verheyen, P. Miclea, J. Lazar, W. Vandenberg, P. Dedecker, The TriScan: Fast and sensitive 3D confocal fluorescence imaging using a simple optical design. bioRxiv 101113439 [Preprint] (2024). 10.3030/101113439. DOI

Hardt S., Rates of diffusion controlled reactions in one, two and three dimensions. Biophys. Chem. 10, 239–243 (1979). PubMed

Sun F., Zeng J., Jing M., Zhou J., Feng J., Owen S. F., Luo Y., Li F., Wang H., Yamaguchi T., Yong Z., Gao Y., Peng W., Wang L., Zhang S., du J., Lin D., Xu M., Kreitzer A. C., Cui G., Li Y., A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19 (2018). PubMed PMC

Jing M., Zhang P., Wang G., Feng J., Mesik L., Zeng J., Jiang H., Wang S., Looby J. C., Guagliardo N. A., Langma L. W., Lu J., Zuo Y., Talmage D. A., Role L. W., Barrett P. Q., Zhang L. I., Luo M., Song Y., Zhu J. J., Li Y., A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36, 726–737 (2018). PubMed PMC

Patriarchi T., Cho J. R., Merten K., Howe M. W., Marley A., Xiong W.-H., Folk R. W., Broussard G. J., Liang R., Jang M. J., Zhong H., Dombeck D., von Zastrow M., Nimmerjahn A., Gradinaru V., Williams J. T., Tian L., Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018). PubMed PMC

Zhuo Y., Luo B., Yi X., Dong H., Miao X., Wan J., Williams J. T., Campbell M. G., Cai R., Qian T., Li F., Weber S. J., Wang L., Li B., Wei Y., Li G., Wang H., Zheng Y., Zhao Y., Wolf M. E., Zhu Y., Watabe-Uchida M., Li Y., Improved green and red GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods 21, 680–691 (2024). PubMed PMC

Kampmann M., Atkinson C. E., Mattheyses A. L., Simon S. M., Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy. Nat. Struct. Mol. Biol. 18, 643–649 (2011). PubMed PMC

Abrahamsson S., McQuilken M., Mehta S. B., Verma A., Larsch J., Ilic R., Heintzmann R., Bargmann C. I., Gladfelter A. S., Oldenbourg R., MultiFocus Polarization Microscope (MF-PolScope) for 3D polarization imaging of up to 25 focal planes simultaneously. Opt. Express 23, 7734–7754 (2015). PubMed PMC

Liu T., de Haan K., Bai B., Rivenson Y., Luo Y., Wang H., Karalli D., Fu H., Zhang Y., FitzGerald J., Ozcan A., Deep learning-based holographic polarization microscopy. ACS Photonics 7, 3023–3034 (2020). PubMed PMC

Chen L., Chen X., Yang X., He C., Wang M., Xi P., Gao J., Advances of super-resolution fluorescence polarization microscopy and its applications in life sciences. Comput. Struct. Biotechnol. J. 18, 2209–2216 (2020). PubMed PMC

Dean W. F., Nawara T. J., Albert R. M., Mattheyses A., OOPS: Object-oriented polarization software for analysis of fluorescence polarization microscopy images. PLOS Comput. Biol. 20, e1011723 (2024). PubMed PMC

Bruggeman E., Zhang O., Needham L.-M., Körbel M., Daly S., Cheetham M., Peters R., Wu T., Klymchenko A. S., Davis S. J., Paluch E. K., Klenerman D., Lew M. D., O’Holleran K., Lee S. F., POLCAM: Instant molecular orientation microscopy for the life sciences. Nat. Methods 21, 1873–1883 (2024). PubMed PMC

Keikhosravi A., Liu Y., Drifka C., Woo K. M., Verma A., Oldenbourg R., Eliceiri K. W., Quantification of collagen organization in histopathology samples using liquid crystal based polarization microscopy. Biomed. Opt. Express 8, 4243–4256 (2017). PubMed PMC

Zhanghao K., Chen X., Liu W., Li M., Liu Y., Wang Y., Luo S., Wang X., Shan C., Xie H., Gao J., Chen X., Jin D., Li X., Zhang Y., Dai Q., Xi P., Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy. Nat. Commun. 10, 4694 (2019). PubMed PMC

Brasselet S., Alonso M. A., Polarization microscopy: From ensemble structural imaging to single-molecule 3D orientation and localization microscopy. Optica 10, 1486–1510 (2023).

M. P. Benoit, H. Sosa, “Use of single molecule fluorescence polarization microscopy to study protein conformation and dynamics of kinesin–microtubule complexes,” in PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...