• This record comes from PubMed

Plasmonic Properties of Individual Bismuth Nanoparticles

. 2025 Sep 25 ; 16 (38) : 9933-9938. [epub] 20250913

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Bismuth nanoparticles are being investigated due to their reported photothermal and photocatalytic properties. In this study, we synthesized spherical bismuth nanoparticles (50-600 nm) and investigated their structural and optical properties at the single-particle level using analytical transmission electron microscopy. Our experimental results, supported by numerical simulations, demonstrate that bismuth nanoparticles support localized surface plasmon resonances, which can be tuned from the near-infrared to the near-ultraviolet spectral region by changing the nanoparticle size. Furthermore, plasmonic resonances demonstrate stability across the entire spectral bandwidth, enhancing the attractiveness of bismuth nanoparticles for applications over a wide spectral range. Bismuth's lower cost, biocompatibility, and oxidation resistance make bismuth nanoparticles a suitable candidate for utilization, particularly in large-scale and even industrial plasmonic applications.

See more in PubMed

Tarighatnia A., Fouladi M. R., Tohidkia M. R., Johal G., Nader N. D., Aghanejad A., Ghadiri H.. Engineering and quantification of bismuth nanoparticles as targeted contrast agent for computed tomography imaging in cellular and animal models. Journal of Drug Delivery Science and Technology. 2021;66:102895. doi: 10.1016/j.jddst.2021.102895. DOI

Torrisi L., Silipigni L., Restuccia N., Cuzzocrea S., Cutroneo M., Barreca F., Fazio B., Di Marco G., Guglielmino S.. Laser-generated bismuth nanoparticles for applications in imaging and radiotherapy. J. Phys. Chem. Solids. 2018;119:62–70. doi: 10.1016/j.jpcs.2018.03.034. DOI

Wang Y. W., Kim J. S., Kim G. H., Kim K. S.. Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy. Appl. Phys. Lett. 2006;88:143106. doi: 10.1063/1.2192624. DOI

Son J. S., Park K., Han M., Kang C., Park S., Kim J., Kim W., Kim S., Hyeon T.. Large-Scale Synthesis and Characterization of the Size-Dependent Thermoelectric Properties of Uniformly Sized Bismuth Nanocrystals. Angew. Chem., Int. Ed. 2011;50:1363–1366. doi: 10.1002/anie.201005023. PubMed DOI

Lee S., Ham J., Jeon K., Noh J.-S., Lee W.. Direct observation of the semimetal-to-semiconductor transition of individual single-crystal bismuth nanowires grown by on-film formation of nanowires. Nanotechnology. 2010;21:405701. doi: 10.1088/0957-4484/21/40/405701. PubMed DOI

Yang C., Guo C., Guo W., Zhao X., Liu S., Han X.. Multifunctional Bismuth Nanoparticles as Theranostic Agent for PA/CT Imaging and NIR Laser-Driven Photothermal Therapy. ACS Applied Nano Materials. 2018;1:820–830. doi: 10.1021/acsanm.7b00255. DOI

Griffith D. M., Li H., Werrett M. V., Andrews P. C., Sun H.. Medicinal chemistry and biomedical applications of bismuth-based compounds and nanoparticles. Chem. Soc. Rev. 2021;50:12037–12069. doi: 10.1039/D0CS00031K. PubMed DOI

Jiang S., Zhang Y., Gong J.. Applications of bismuth-based nanoparticles for the removal of pollutants in wastewater: a review. Environmental Science: Nano. 2024;11:1332–1367. doi: 10.1039/D3EN00983A. DOI

Jia G., Wang Y., Sun M., Zhang H., Li L., Shi Y., Zhang L., Cui X., Lo T. W. B., Huang B.. et al. Size Effects of Highly Dispersed Bismuth Nanoparticles on Electrocatalytic Reduction of Carbon Dioxide to Formic Acid. J. Am. Chem. Soc. 2023;145:14133–14142. doi: 10.1021/jacs.3c04727. PubMed DOI PMC

Dong F., Xiong T., Sun Y., Zhao Z., Zhou Y., Feng X., Wu Z.. A semimetal bismuth element as a direct plasmonic photocatalyst. Chem. Commun. 2014;50:10386–10389. doi: 10.1039/C4CC02724H. PubMed DOI

Qian H., Liu Y., Chen H., Feng K., Jia K., Pan K., Wang G., Huang T., Pang X., Zhang Q.. Emerging bismuth-based materials: From fundamentals to electrochemical energy storage applications. Energy Storage Materials. 2023;58:232–270. doi: 10.1016/j.ensm.2023.03.023. DOI

Schuller J. A., Barnard E. S., Cai W., Jun Y. C., White J. S., Brongersma M. L.. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010;9:193–204. doi: 10.1038/nmat2630. PubMed DOI

McMahon J. M., Schatz G. C., Gray S. K.. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 2013;15:5415–5423. doi: 10.1039/C3CP43856B. PubMed DOI

Klinghammer S., Uhlig T., Patrovsky F., Böhm M., Schütt J., Pütz N., Baraban L., Eng L. M., Cuniberti G.. Plasmonic Biosensor Based on Vertical Arrays of Gold Nanoantennas. ACS Sensors. 2018;3:1392–1400. doi: 10.1021/acssensors.8b00315. PubMed DOI

Riley J. A., Horák M., Křápek V., Healy N., Pacheco-Peña V.. Plasmonic sensing using Babinet’s principle. Nanophotonics. 2023;12:3895–3909. doi: 10.1515/nanoph-2023-0317. PubMed DOI PMC

Chacon-Sanchez F., de Galarreta C. R., Nieto-Pinero E., Garcia-Pardo M., Garcia-Tabares E., Ramos N., Castillo M., Lopez-Garcia M., Siegel J., Toudert J.. et al. Building Conventional Metasurfaces with Unconventional Interband Plasmonics: A Versatile Route for Sustainable Structural Color Generation Based on Bismuth. Advanced Optical Materials. 2024;12:2302130. doi: 10.1002/adom.202302130. DOI

Islam M. A., Masson J.-F.. Plasmonic Biosensors for Health Monitoring: Inflammation Biomarker Detection. ACS Sensors. 2025;10:577–601. doi: 10.1021/acssensors.4c03562. PubMed DOI

Sander M. S., Gronsky R., Lin Y. M., Dresselhaus M. S.. Plasmon excitation modes in nanowire arrays. J. Appl. Phys. 2001;89:2733–2736. doi: 10.1063/1.1337940. DOI

García de Abajo F. J., Howie A.. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B. 2002;65:115418. doi: 10.1103/PhysRevB.65.115418. DOI

Martínez-Lara D., González-Campuzano R., Mendoza D.. Bismuth plasmonics in the visible spectrum using texturized films. Photonics and Nanostructures - Fundamentals and Applications. 2022;52:101058. doi: 10.1016/j.photonics.2022.101058. DOI

Toudert J., Serna R., Jiménez de Castro M.. Exploring the Optical Potential of Nano-Bismuth: Tunable Surface Plasmon Resonances in the Near Ultraviolet-to-Near Infrared Range. J. Phys. Chem. C. 2012;116:20530–20539. doi: 10.1021/jp3065882. DOI

Foltýn M., Šikola T., Horák M.. Bismuth Plasmonic Antennas. ACS Nano. 2025 doi: 10.1021/acsnano.5c07482. PubMed DOI PMC

Zhou Y., Li W., Zhang Q., Yan S., Cao Y., Dong F., Wang F.. Non-noble metal plasmonic photocatalysis in semimetal bismuth films for photocatalytic NO oxidation. Phys. Chem. Chem. Phys. 2017;19:25610–25616. doi: 10.1039/C7CP04359G. PubMed DOI

Wang Y. W., Hong B. H., Kim K. S.. Size Control of Semimetal Bismuth Nanoparticles and the UV-Visible and IR Absorption Spectra. J. Phys. Chem. B. 2005;109:7067–7072. doi: 10.1021/jp046423v. PubMed DOI

Wang Z., Jiang C., Huang R., Peng H., Tang X.. Investigation of Optical and Photocatalytic Properties of Bismuth Nanospheres Prepared by a Facile Thermolysis Method. J. Phys. Chem. C. 2014;118:1155–1160. doi: 10.1021/jp4065505. DOI

Leng D., Wang T., Li Y., Huang Z., Wang H., Wan Y., Pei X., Wang J.. Plasmonic Bismuth Nanoparticles: Thiolate Pyrolysis Synthesis, Size-Dependent LSPR Property, and Their Oxidation Behavior. Inorg. Chem. 2021;60:17258–17267. doi: 10.1021/acs.inorgchem.1c02621. PubMed DOI

Tomaszewska E., Soliwoda K., Kadziola K., Tkacz-Szczesna B., Celichowski G., Cichomski M., Szmaja W., Grobelny J.. Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids. J. Nanomater. 2013;2013:313081. doi: 10.1155/2013/313081. DOI

Hendel T., Wuithschick M., Kettemann F., Birnbaum A., Rademann K., Polte J.. In Situ Determination of Colloidal Gold Concentrations with UV-Vis Spectroscopy: Limitations and Perspectives. Anal. Chem. 2014;86:11115–11124. doi: 10.1021/ac502053s. PubMed DOI

Labrador-Páez L., Casasnovas-Melián A., Junquera E., Guerrero-Martínez A., Ahijado-Guzmán R.. Optical dark-field spectroscopy of single plasmonic nanoparticles for molecular biosciences. Nanoscale. 2024;16:19192–19206. doi: 10.1039/D4NR03055A. PubMed DOI

Abadie C., Liu M., Prado Y., Pluchery O.. Hyperspectral dark-field optical microscopy correlated to atomic force microscopy for the analysis of single plasmonic nanoparticles: tutorial. Journal of the Optical Society of America B. 2024;41:1678. doi: 10.1364/JOSAB.523547. DOI

García de Abajo F. J.. Optical excitations in electron microscopy. Rev. Mod. Phys. 2010;82:209–275. doi: 10.1103/RevModPhys.82.209. DOI

Schultz J., Kirner F., Potapov P., Büchner B., Lubk A., Sturm E. V.. Tailoring Plasmonics of AuAg Nanoparticles by Silica Encapsulation. Advanced Optical Materials. 2021;9:2101221. doi: 10.1002/adom.202101221. DOI

Das P. P., Guzzinati G., Coll C., Gomez Perez A., Nicolopoulos S., Estrade S., Peiro F., Verbeeck J., Zompra A. A., Galanis A. S.. Reliable Characterization of Organic & Pharmaceutical Compounds with High Resolution Monochromated EEL Spectroscopy. Polymers. 2020;12:1434. doi: 10.3390/polym12071434. PubMed DOI PMC

Tehuacanero-Cuapa S., Reyes-Gasga J., Rodríguez-Gómez A., Bahena D., Hernández-Calderón I., García-García R.. The low-loss EELS spectra from radiation damaged gold nanoparticles. J. Appl. Phys. 2016;120:164302. doi: 10.1063/1.4965862. DOI

Wang W. Z., Poudel B., Ma Y., Ren Z. F.. Shape Control of Single Crystalline Bismuth Nanostructures. J. Phys. Chem. B. 2006;110:25702–25706. doi: 10.1021/jp063474e. PubMed DOI

Sepulveda-Guzman S., Elizondo-Villarreal N., Ferrer D., Torres-Castro A., Gao X., Zhou J. P., Jose-Yacaman M.. In situformation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope. Nanotechnology. 2007;18:335604. doi: 10.1088/0957-4484/18/33/335604. DOI

Wei Z., Dubceac C., Petrukhina M. A., Dikarev E. V.. From a volatile molecular precursor to twin-free single crystals of bismuth. Chem. Commun. 2019;55:5717–5719. doi: 10.1039/C9CC02820J. PubMed DOI

Klinger M.. More features, more tools, more CrysTBox. J. Appl. Crystallogr. 2017;50:1226–1234. doi: 10.1107/S1600576717006793. DOI

Li J., Zhu J., Liu X.. Ultrafine silver nanoparticles obtained from ethylene glycol at room temperature: catalyzed by tungstate ions. Dalton Transactions. 2014;43:132–137. doi: 10.1039/C3DT52242C. PubMed DOI

Horák M., Čalkovský V., Mach J., Křápek V., Šikola T.. Plasmonic Properties of Individual Gallium Nanoparticles. J. Phys. Chem. Lett. 2023;14:2012–2019. doi: 10.1021/acs.jpclett.3c00094. PubMed DOI PMC

Horák M., Foltýn M., Čalkovský V., Mikerásek V., Bartošík M., Mach J., Šikola T.. Plasmonic Response to Liquid-Solid Phase Transition in Individual Gallium Nanoparticles. J. Phys. Chem. Lett. 2025;16:8891–8896. doi: 10.1021/acs.jpclett.5c02035. PubMed DOI PMC

Ligmajer F., Horák M., Šikola T., Fojta M., Daňhel A.. Silver Amalgam Nanoparticles and Microparticles: A Novel Plasmonic Platform for Spectroelectrochemistry. J. Phys. Chem. C. 2019;123:16957–16964. doi: 10.1021/acs.jpcc.9b04124. DOI

Knight M. W., King N. S., Liu L., Everitt H. O., Nordlander P., Halas N. J.. Aluminum for Plasmonics. ACS Nano. 2014;8:834–840. doi: 10.1021/nn405495q. PubMed DOI

Muñeton Arboleda D., Coviello V., Palumbo A., Pilot R., Amendola V.. Rhodium nanospheres for ultraviolet and visible plasmonics. Nanoscale Horizons. 2025;10:336–348. doi: 10.1039/D4NH00449C. PubMed DOI

Horák M., Šikola T.. Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy. Ultramicroscopy. 2020;216:113044. doi: 10.1016/j.ultramic.2020.113044. PubMed DOI

Waxenegger J., Trügler A., Hohenester U.. Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures. Comput. Phys. Commun. 2015;193:138–150. doi: 10.1016/j.cpc.2015.03.023. DOI

Werner W. S. M., Glantschnig K., Ambrosch-Draxl C.. Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals. J. Phys. Chem. Ref. Data. 2009;38:1013–1092. doi: 10.1063/1.3243762. DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...