Plasmonic Properties of Individual Bismuth Nanoparticles
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40944649
PubMed Central
PMC12478859
DOI
10.1021/acs.jpclett.5c02531
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Bismuth nanoparticles are being investigated due to their reported photothermal and photocatalytic properties. In this study, we synthesized spherical bismuth nanoparticles (50-600 nm) and investigated their structural and optical properties at the single-particle level using analytical transmission electron microscopy. Our experimental results, supported by numerical simulations, demonstrate that bismuth nanoparticles support localized surface plasmon resonances, which can be tuned from the near-infrared to the near-ultraviolet spectral region by changing the nanoparticle size. Furthermore, plasmonic resonances demonstrate stability across the entire spectral bandwidth, enhancing the attractiveness of bismuth nanoparticles for applications over a wide spectral range. Bismuth's lower cost, biocompatibility, and oxidation resistance make bismuth nanoparticles a suitable candidate for utilization, particularly in large-scale and even industrial plasmonic applications.
See more in PubMed
Tarighatnia A., Fouladi M. R., Tohidkia M. R., Johal G., Nader N. D., Aghanejad A., Ghadiri H.. Engineering and quantification of bismuth nanoparticles as targeted contrast agent for computed tomography imaging in cellular and animal models. Journal of Drug Delivery Science and Technology. 2021;66:102895. doi: 10.1016/j.jddst.2021.102895. DOI
Torrisi L., Silipigni L., Restuccia N., Cuzzocrea S., Cutroneo M., Barreca F., Fazio B., Di Marco G., Guglielmino S.. Laser-generated bismuth nanoparticles for applications in imaging and radiotherapy. J. Phys. Chem. Solids. 2018;119:62–70. doi: 10.1016/j.jpcs.2018.03.034. DOI
Wang Y. W., Kim J. S., Kim G. H., Kim K. S.. Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy. Appl. Phys. Lett. 2006;88:143106. doi: 10.1063/1.2192624. DOI
Son J. S., Park K., Han M., Kang C., Park S., Kim J., Kim W., Kim S., Hyeon T.. Large-Scale Synthesis and Characterization of the Size-Dependent Thermoelectric Properties of Uniformly Sized Bismuth Nanocrystals. Angew. Chem., Int. Ed. 2011;50:1363–1366. doi: 10.1002/anie.201005023. PubMed DOI
Lee S., Ham J., Jeon K., Noh J.-S., Lee W.. Direct observation of the semimetal-to-semiconductor transition of individual single-crystal bismuth nanowires grown by on-film formation of nanowires. Nanotechnology. 2010;21:405701. doi: 10.1088/0957-4484/21/40/405701. PubMed DOI
Yang C., Guo C., Guo W., Zhao X., Liu S., Han X.. Multifunctional Bismuth Nanoparticles as Theranostic Agent for PA/CT Imaging and NIR Laser-Driven Photothermal Therapy. ACS Applied Nano Materials. 2018;1:820–830. doi: 10.1021/acsanm.7b00255. DOI
Griffith D. M., Li H., Werrett M. V., Andrews P. C., Sun H.. Medicinal chemistry and biomedical applications of bismuth-based compounds and nanoparticles. Chem. Soc. Rev. 2021;50:12037–12069. doi: 10.1039/D0CS00031K. PubMed DOI
Jiang S., Zhang Y., Gong J.. Applications of bismuth-based nanoparticles for the removal of pollutants in wastewater: a review. Environmental Science: Nano. 2024;11:1332–1367. doi: 10.1039/D3EN00983A. DOI
Jia G., Wang Y., Sun M., Zhang H., Li L., Shi Y., Zhang L., Cui X., Lo T. W. B., Huang B.. et al. Size Effects of Highly Dispersed Bismuth Nanoparticles on Electrocatalytic Reduction of Carbon Dioxide to Formic Acid. J. Am. Chem. Soc. 2023;145:14133–14142. doi: 10.1021/jacs.3c04727. PubMed DOI PMC
Dong F., Xiong T., Sun Y., Zhao Z., Zhou Y., Feng X., Wu Z.. A semimetal bismuth element as a direct plasmonic photocatalyst. Chem. Commun. 2014;50:10386–10389. doi: 10.1039/C4CC02724H. PubMed DOI
Qian H., Liu Y., Chen H., Feng K., Jia K., Pan K., Wang G., Huang T., Pang X., Zhang Q.. Emerging bismuth-based materials: From fundamentals to electrochemical energy storage applications. Energy Storage Materials. 2023;58:232–270. doi: 10.1016/j.ensm.2023.03.023. DOI
Schuller J. A., Barnard E. S., Cai W., Jun Y. C., White J. S., Brongersma M. L.. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010;9:193–204. doi: 10.1038/nmat2630. PubMed DOI
McMahon J. M., Schatz G. C., Gray S. K.. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 2013;15:5415–5423. doi: 10.1039/C3CP43856B. PubMed DOI
Klinghammer S., Uhlig T., Patrovsky F., Böhm M., Schütt J., Pütz N., Baraban L., Eng L. M., Cuniberti G.. Plasmonic Biosensor Based on Vertical Arrays of Gold Nanoantennas. ACS Sensors. 2018;3:1392–1400. doi: 10.1021/acssensors.8b00315. PubMed DOI
Riley J. A., Horák M., Křápek V., Healy N., Pacheco-Peña V.. Plasmonic sensing using Babinet’s principle. Nanophotonics. 2023;12:3895–3909. doi: 10.1515/nanoph-2023-0317. PubMed DOI PMC
Chacon-Sanchez F., de Galarreta C. R., Nieto-Pinero E., Garcia-Pardo M., Garcia-Tabares E., Ramos N., Castillo M., Lopez-Garcia M., Siegel J., Toudert J.. et al. Building Conventional Metasurfaces with Unconventional Interband Plasmonics: A Versatile Route for Sustainable Structural Color Generation Based on Bismuth. Advanced Optical Materials. 2024;12:2302130. doi: 10.1002/adom.202302130. DOI
Islam M. A., Masson J.-F.. Plasmonic Biosensors for Health Monitoring: Inflammation Biomarker Detection. ACS Sensors. 2025;10:577–601. doi: 10.1021/acssensors.4c03562. PubMed DOI
Sander M. S., Gronsky R., Lin Y. M., Dresselhaus M. S.. Plasmon excitation modes in nanowire arrays. J. Appl. Phys. 2001;89:2733–2736. doi: 10.1063/1.1337940. DOI
García de Abajo F. J., Howie A.. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B. 2002;65:115418. doi: 10.1103/PhysRevB.65.115418. DOI
Martínez-Lara D., González-Campuzano R., Mendoza D.. Bismuth plasmonics in the visible spectrum using texturized films. Photonics and Nanostructures - Fundamentals and Applications. 2022;52:101058. doi: 10.1016/j.photonics.2022.101058. DOI
Toudert J., Serna R., Jiménez de Castro M.. Exploring the Optical Potential of Nano-Bismuth: Tunable Surface Plasmon Resonances in the Near Ultraviolet-to-Near Infrared Range. J. Phys. Chem. C. 2012;116:20530–20539. doi: 10.1021/jp3065882. DOI
Foltýn M., Šikola T., Horák M.. Bismuth Plasmonic Antennas. ACS Nano. 2025 doi: 10.1021/acsnano.5c07482. PubMed DOI PMC
Zhou Y., Li W., Zhang Q., Yan S., Cao Y., Dong F., Wang F.. Non-noble metal plasmonic photocatalysis in semimetal bismuth films for photocatalytic NO oxidation. Phys. Chem. Chem. Phys. 2017;19:25610–25616. doi: 10.1039/C7CP04359G. PubMed DOI
Wang Y. W., Hong B. H., Kim K. S.. Size Control of Semimetal Bismuth Nanoparticles and the UV-Visible and IR Absorption Spectra. J. Phys. Chem. B. 2005;109:7067–7072. doi: 10.1021/jp046423v. PubMed DOI
Wang Z., Jiang C., Huang R., Peng H., Tang X.. Investigation of Optical and Photocatalytic Properties of Bismuth Nanospheres Prepared by a Facile Thermolysis Method. J. Phys. Chem. C. 2014;118:1155–1160. doi: 10.1021/jp4065505. DOI
Leng D., Wang T., Li Y., Huang Z., Wang H., Wan Y., Pei X., Wang J.. Plasmonic Bismuth Nanoparticles: Thiolate Pyrolysis Synthesis, Size-Dependent LSPR Property, and Their Oxidation Behavior. Inorg. Chem. 2021;60:17258–17267. doi: 10.1021/acs.inorgchem.1c02621. PubMed DOI
Tomaszewska E., Soliwoda K., Kadziola K., Tkacz-Szczesna B., Celichowski G., Cichomski M., Szmaja W., Grobelny J.. Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids. J. Nanomater. 2013;2013:313081. doi: 10.1155/2013/313081. DOI
Hendel T., Wuithschick M., Kettemann F., Birnbaum A., Rademann K., Polte J.. In Situ Determination of Colloidal Gold Concentrations with UV-Vis Spectroscopy: Limitations and Perspectives. Anal. Chem. 2014;86:11115–11124. doi: 10.1021/ac502053s. PubMed DOI
Labrador-Páez L., Casasnovas-Melián A., Junquera E., Guerrero-Martínez A., Ahijado-Guzmán R.. Optical dark-field spectroscopy of single plasmonic nanoparticles for molecular biosciences. Nanoscale. 2024;16:19192–19206. doi: 10.1039/D4NR03055A. PubMed DOI
Abadie C., Liu M., Prado Y., Pluchery O.. Hyperspectral dark-field optical microscopy correlated to atomic force microscopy for the analysis of single plasmonic nanoparticles: tutorial. Journal of the Optical Society of America B. 2024;41:1678. doi: 10.1364/JOSAB.523547. DOI
García de Abajo F. J.. Optical excitations in electron microscopy. Rev. Mod. Phys. 2010;82:209–275. doi: 10.1103/RevModPhys.82.209. DOI
Schultz J., Kirner F., Potapov P., Büchner B., Lubk A., Sturm E. V.. Tailoring Plasmonics of AuAg Nanoparticles by Silica Encapsulation. Advanced Optical Materials. 2021;9:2101221. doi: 10.1002/adom.202101221. DOI
Das P. P., Guzzinati G., Coll C., Gomez Perez A., Nicolopoulos S., Estrade S., Peiro F., Verbeeck J., Zompra A. A., Galanis A. S.. Reliable Characterization of Organic & Pharmaceutical Compounds with High Resolution Monochromated EEL Spectroscopy. Polymers. 2020;12:1434. doi: 10.3390/polym12071434. PubMed DOI PMC
Tehuacanero-Cuapa S., Reyes-Gasga J., Rodríguez-Gómez A., Bahena D., Hernández-Calderón I., García-García R.. The low-loss EELS spectra from radiation damaged gold nanoparticles. J. Appl. Phys. 2016;120:164302. doi: 10.1063/1.4965862. DOI
Wang W. Z., Poudel B., Ma Y., Ren Z. F.. Shape Control of Single Crystalline Bismuth Nanostructures. J. Phys. Chem. B. 2006;110:25702–25706. doi: 10.1021/jp063474e. PubMed DOI
Sepulveda-Guzman S., Elizondo-Villarreal N., Ferrer D., Torres-Castro A., Gao X., Zhou J. P., Jose-Yacaman M.. In situformation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope. Nanotechnology. 2007;18:335604. doi: 10.1088/0957-4484/18/33/335604. DOI
Wei Z., Dubceac C., Petrukhina M. A., Dikarev E. V.. From a volatile molecular precursor to twin-free single crystals of bismuth. Chem. Commun. 2019;55:5717–5719. doi: 10.1039/C9CC02820J. PubMed DOI
Klinger M.. More features, more tools, more CrysTBox. J. Appl. Crystallogr. 2017;50:1226–1234. doi: 10.1107/S1600576717006793. DOI
Li J., Zhu J., Liu X.. Ultrafine silver nanoparticles obtained from ethylene glycol at room temperature: catalyzed by tungstate ions. Dalton Transactions. 2014;43:132–137. doi: 10.1039/C3DT52242C. PubMed DOI
Horák M., Čalkovský V., Mach J., Křápek V., Šikola T.. Plasmonic Properties of Individual Gallium Nanoparticles. J. Phys. Chem. Lett. 2023;14:2012–2019. doi: 10.1021/acs.jpclett.3c00094. PubMed DOI PMC
Horák M., Foltýn M., Čalkovský V., Mikerásek V., Bartošík M., Mach J., Šikola T.. Plasmonic Response to Liquid-Solid Phase Transition in Individual Gallium Nanoparticles. J. Phys. Chem. Lett. 2025;16:8891–8896. doi: 10.1021/acs.jpclett.5c02035. PubMed DOI PMC
Ligmajer F., Horák M., Šikola T., Fojta M., Daňhel A.. Silver Amalgam Nanoparticles and Microparticles: A Novel Plasmonic Platform for Spectroelectrochemistry. J. Phys. Chem. C. 2019;123:16957–16964. doi: 10.1021/acs.jpcc.9b04124. DOI
Knight M. W., King N. S., Liu L., Everitt H. O., Nordlander P., Halas N. J.. Aluminum for Plasmonics. ACS Nano. 2014;8:834–840. doi: 10.1021/nn405495q. PubMed DOI
Muñeton Arboleda D., Coviello V., Palumbo A., Pilot R., Amendola V.. Rhodium nanospheres for ultraviolet and visible plasmonics. Nanoscale Horizons. 2025;10:336–348. doi: 10.1039/D4NH00449C. PubMed DOI
Horák M., Šikola T.. Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy. Ultramicroscopy. 2020;216:113044. doi: 10.1016/j.ultramic.2020.113044. PubMed DOI
Waxenegger J., Trügler A., Hohenester U.. Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures. Comput. Phys. Commun. 2015;193:138–150. doi: 10.1016/j.cpc.2015.03.023. DOI
Werner W. S. M., Glantschnig K., Ambrosch-Draxl C.. Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals. J. Phys. Chem. Ref. Data. 2009;38:1013–1092. doi: 10.1063/1.3243762. DOI